1
|
Chen Y, Lv B, Wang W, Wu Y, Li D. Structure-switching G-quadruplex: An efficient CRISPR/Cas12a signal reporter for label-free colorimetric biosensing. Int J Biol Macromol 2025; 307:142410. [PMID: 40122420 DOI: 10.1016/j.ijbiomac.2025.142410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/14/2025] [Accepted: 03/20/2025] [Indexed: 03/25/2025]
Abstract
G-quadruplex is widely used as a signal reporter for colorimetric biosensor construction. However, the effectiveness of CRISPR/Cas12a in trans-cleaving G-quadruplexes is significantly influenced by their resistance to nuclease, resulting in a weak colorimetric signal response. Herein, a structure-switching G-quadruplex regulated by transducer DNA is used as a signal reporter to construct CRISPR/Cas12a-based biosensors. The transducer DNA lacks a stable secondary structure, enabling efficient cleavage by CRISPR/Cas12a, which subsequently affects the catalytic activity of the G-quadruplex/hemin DNAzyme. We used microRNAs (miRNAs) and ATP as model targets to develop a label-free colorimetric detection platform. By optimizing the DNA sequences and reaction conditions, the biosensors exhibit excellent detection selectivity and sensitivity. The reliability of the proposed method was validated by its consistency with RT-qPCR for miRNAs detection and a commercial chemiluminescence kit for ATP assay, demonstrating its potential in clinical diagnosis and bioanalytical studies. The assay is concise and cost-effective because it does not require DNA labeling, magnetic separation, or enzymatic DNA amplification. Our design strategy avoids the use of G-quadruplex as a cleavage substrate for CRISPR/Cas12a while ensuring an efficient response of the G-quadruplex/hemin DNAzyme to CRISPR/Cas12a system, addressing the issue of G-quadruplex resistance to CRISPR/Cas12a nuclease activity.
Collapse
Affiliation(s)
- Yang Chen
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Bei Lv
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Wenzhu Wang
- Key Lab of Innovative Applications of Bioresources and Functional Molecules of Jiangsu Province, College of Life Science and Chemistry, Jiangsu Second Normal University, Nanjing 210013, China
| | - Yapeng Wu
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China
| | - Dawei Li
- Key Laboratory of State Forestry and Grassland Administration on Subtropical Forest Biodiversity Conservation, College of Life Sciences, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Chao A, Hu Q, Yin K. A Label-Free CRISPR/Cas12a-G4 Biosensor Integrated with FTA Card for Detection of Foodborne Pathogens. BIOSENSORS 2025; 15:230. [PMID: 40277544 PMCID: PMC12025128 DOI: 10.3390/bios15040230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 04/01/2025] [Accepted: 04/03/2025] [Indexed: 04/26/2025]
Abstract
CRISPR/Cas-based diagnostics offer unparalleled specificity, but their reliance on fluorescently labeled probes and complex nucleic acid extraction limits field applicability. To tackle this problem, we have developed a label-free, equipment-free platform integrating FTA card-based extraction, CRISPR/Cas12a, and pre-folded G-quadruplex (G4)-Thioflavin T (ThT) signal reporter. This system eliminates costly fluorescent labeling by leveraging G4-ThT structural binding for visible fluorescence output, while FTA cards streamline nucleic acid isolation without centrifugation. Achieving a limit of detection (LOD) to 101 CFU/mL for Escherichia coli O157:H7 in spiked food samples, the platform demonstrated 100% concordance with qPCR and standard fluorescent probe-based CRISPR/Cas12a system. Its simplicity, minimal equipment (portable heating/imaging), and cost-effectiveness make it a revolutionary tool for detecting foodborne pathogens in resource-limited environments.
Collapse
Affiliation(s)
| | - Qinqin Hu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| | - Kun Yin
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China;
| |
Collapse
|
3
|
Li C, Li X, Wei S, Wu T. Exploration and Application of the Catalytic Superiority of Non-G-Quadruplex Hemin Aptamers. Anal Chem 2025; 97:3680-3686. [PMID: 39907727 DOI: 10.1021/acs.analchem.4c06315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025]
Abstract
A newly identified hemin aptamer with a non-G-quadruplex structure exhibits stronger peroxidase activity and selectivity than traditional G-quadruplex/hemin DNAzymes, addressing challenges such as weak hemin binding, low catalytic activity, and poor selectivity. In this study, we optimized ion activation conditions, refined reaction parameters, and developed a spontaneous recombination method via aptamer splitting to enhance DNAzyme activity and enable activity regulation. The aptamer demonstrated superior performance in enzyme-free sensing, polymerase-assisted amplification, and CRISPR/Cas12a systems, achieving higher sensitivity and improved colorimetric thresholds compared to G-quadruplexes. We have also developed a comprehensive operational guide for aptamer/hemin DNAzymes, which is poised to revolutionize colorimetric sensor signal generation elements.
Collapse
Affiliation(s)
- Changjiang Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaolong Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Shengqi Wei
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongbo Wu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| |
Collapse
|
4
|
Liu C, Liu Q, Chen X, Guo M, Chen Z, Zhao J, Chen H, Guo S, Cen H, Yao G, Chen L, Wang Y, Yang PC, Wang L, Chen F. A novel label-free biosensor for myocardial ischemia biomarker detection via CRISPR/12a. Biosens Bioelectron 2025; 270:116954. [PMID: 39577179 DOI: 10.1016/j.bios.2024.116954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/23/2024] [Accepted: 11/16/2024] [Indexed: 11/24/2024]
Abstract
Myocardial infarction (MI) is the leading cause of death worldwide. Here, we present a novel, label-free biosensor for detecting myocardial ischemia biomarkers via CRISPR/Cas12a. This system utilizes the unique properties of CRISPR/Cas12a and G-quadruplex-ThT-based biosensors, enabling sensitive and specific detection of ATP, a crucial biomarker in cardiovascular diseases, at concentrations as low as 23 nM. Our method demonstrates substantial improvements over traditional ATP detection techniques, such as high-performance liquid chromatography and enzymatic assays, which often require complex sample preparation methods and costly equipment. The feasibility of the biosensor was further demonstrated in various models, including heart failure in mice and hypoxic conditions in cardiomyocytes. This successfully showcased its ability to function as a practical tool for diagnosing and monitoring diseases characterized by ATP dysregulation, highlighting its effectiveness in real-world clinical scenarios. This biosensor is notable for its rapid response, ease of use, and potential for integration into point-of-care diagnostics. These features offer significant advantages for the early diagnosis and management of ischemic heart disease and other conditions where ATP serves as a key metabolic biomarker. This technology also offers significant potential for early diagnosis and monitoring of myocardial ischemia and cardiovascular diagnostics. These findings underscore the biosensor's capacity for real-time ATP monitoring, offering crucial insights into mitochondrial function and disease progression, particularly in cardiovascular and inflammatory diseases.
Collapse
Affiliation(s)
- Chunping Liu
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China; State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510080, Guangdong Province, China
| | - Qiaojing Liu
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Xiaoling Chen
- Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Mingli Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Zhijun Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Jiaxiong Zhao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Huiqi Chen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Sien Guo
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Huan Cen
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Gengzhen Yao
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Lu Chen
- Pharma Technology A/S, Åshøjvej 24, 4600, Køge, Denmark
| | - Yong Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Phillip C Yang
- Division of Cardiovascular Medicine, Department of Medicine and Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Lei Wang
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China; Department of Cardiovascular Medicine, Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, Guangdong Province, China; Second Clinical Medical College, Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China.
| | - Feng Chen
- School of Biology and Food Engineering, Changshu Institute of Technology, Changshu, 215500, Jiangsu Province, China.
| |
Collapse
|
5
|
Ma Q, Li T, Liu Y, Chai J, Xu Z, Liu A, Ma Y, Li M, Qu Y, Gao L. Experimental study on the detection of Gastrodia elata by enzymatic recombinase amplification and immunochromatography. Anal Biochem 2024; 694:115618. [PMID: 39009105 DOI: 10.1016/j.ab.2024.115618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/13/2024] [Accepted: 07/13/2024] [Indexed: 07/17/2024]
Abstract
OBJECTIVE The objective of this research is to develop two methodologies, Enzymatic recombinase amplification (ERA) and Polymerase Chain Reaction (PCR) coupled with Lateral Flow Dipstick (LFD), for the swift authentication of Gastrodia elata. METHODOLOGY Primers and nfo probes for the ERA of Gastrodia elata were developed based on the ITS2 genome sequences of Gastrodia elata and its counterfeits. Specific primers for the PCR analysis of Gastrodia elata were generated using the NCBI (National Center for Biotechnology Information) online platform. Through experimental validation, the optimal reaction system and conditions for both methodologies were established, and their efficacy was assessed. RESULTS The methodologies developed herein are applicable for the targeted analysis of the medicinal species, Gastrodia elata. The sensitivity of the ERA-LFD detection method matched that of the conventional PCR-LFD approach, recorded at 1 ng μL-1. Consistency was observed in the results across three replicates of visualization test strips for both techniques. Upon evaluation, both the PCR-LFD and ERA-LFD methods demonstrated a total compliance rate of 100 %. CONCLUSION The ERA-LFD and PCR-LFD methods facilitate reduced detection times and offer visual results. These techniques are particularly effective for on-site detection and quality control in the authentication of Gastrodia elata within traditional Chinese medicine markets and at the primary level of healthcare provision.
Collapse
Affiliation(s)
- Qiuhe Ma
- School of Medical Technology, Beihua University, Jilin, 132013, China
| | - Tao Li
- School of Medical Technology, Beihua University, Jilin, 132013, China
| | - Yue Liu
- School of Medical Technology, Beihua University, Jilin, 132013, China
| | - Jinjun Chai
- School of Medical Technology, Beihua University, Jilin, 132013, China
| | - Ziqiang Xu
- School of Medical Technology, Beihua University, Jilin, 132013, China
| | - Ang Liu
- School of Medical Technology, Beihua University, Jilin, 132013, China
| | - Yuhe Ma
- School of Medical Technology, Beihua University, Jilin, 132013, China
| | - Mingcheng Li
- School of Medical Technology, Beihua University, Jilin, 132013, China; Innovation Center for Detection on DNA Fingerprint of Traditional Chinese Medicine, Jilin, 132013, China
| | - Yongmei Qu
- Jilin Guoan Pharmaceutical Limited Company, Jilin, 132013, China
| | - Lijun Gao
- School of Medical Technology, Beihua University, Jilin, 132013, China.
| |
Collapse
|
6
|
Gu X, Tang Q, Zhu Y, Sun C, Wu L, Ji H, Wang Q, Wu L, Qin Y. Advancements of CRISPR technology in public health-related analysis. Biosens Bioelectron 2024; 261:116449. [PMID: 38850734 DOI: 10.1016/j.bios.2024.116449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/10/2024]
Abstract
Pathogens and contaminants in food and the environment present significant challenges to human health, necessitating highly sensitive and specific diagnostic methods. Traditional approaches often struggle to meet these requirements. However, the emergence of the Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) system has revolutionized nucleic acid diagnostics. The present review provides a comprehensive overview of the biological sensing technology based on the CRISPR/Cas system and its potential applications in public health-related analysis. Additionally, it explores the enzymatic cleavage capabilities mediated by Cas proteins, highlighting the promising prospects of CRISPR technology in addressing bioanalysis challenges. We discuss commonly used CRISPR-Cas proteins and elaborate on their application in detecting foodborne bacteria, viruses, toxins, other chemical pollution, and drug-resistant bacteria. Furthermore, we highlight the advantages of CRISPR-based sensors in the field of public health-related analysis and propose that integrating CRISPR-Cas biosensing technology with other technologies could facilitate the development of more diverse detection platforms, thereby indicating promising prospects in this field.
Collapse
Affiliation(s)
- Xijuan Gu
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China; Xinglin College, Nantong University, Qidong, Jiangsu, 226236, PR China
| | - Qu Tang
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Yidan Zhu
- Medical School, Nantong University, Nantong, Jiangsu, 226001, PR China
| | - Chenling Sun
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Lingwei Wu
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Haiwei Ji
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China
| | - Qi Wang
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Li Wu
- Nantong Key Laboratory of Public Health and Medical Analysis, School of Life Sciences, Nantong University, Nantong, Jiangsu, 226019, PR China; School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| | - Yuling Qin
- School of Public Health, Nantong University, Nantong, Jiangsu, 226019, PR China.
| |
Collapse
|
7
|
Gong S, Song K, Pan W, Li N, Tang B. Filter Membrane-Based Colorimetric Approach for Point-of-Care Detection of Biomarkers Using CRISPR-Cas12a. Anal Chem 2024; 96:15789-15796. [PMID: 39308213 DOI: 10.1021/acs.analchem.4c03959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
CRISPR-Cas-based point-of-care testing (POCT) strategies have been widely explored for the detection of diverse biomarkers. However, these methods often require complicated operations, such as careful solution transfer steps, to achieve high sensitivity and accuracy. In this study, we combine a filter membrane-based POCT method with CRISPR-Cas12a for colorimetric detection of biomarkers. For the nucleic acid target, the trans-cleavage activity of CRISPR-Cas12a is directly triggered, cutting the single-stranded DNA linkers on glucose oxidase (GOx)-modified polymer nanoparticles. Due to the size difference between GOx and the polymer nanoparticles, GOx can be separated using a filter membrane. The filtrate containing GOx reacts with the substrate to generate a colorimetric signal. For the non-nucleic acid target, the non-nucleic acid signal is converted into a nucleic acid signal that activates CRISPR-Cas12a, resulting in a colorimetric signal. The entire operation is easy to perform, and the signal can be directly observed via the naked eye, which circumvents the use of costly instruments. The developed strategy holds great promise for accurate and accessible POCT detection of disease biomarkers in resource-limited settings.
Collapse
Affiliation(s)
- Shaohua Gong
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Kexin Song
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Wei Pan
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, Jinan 250014, P. R. China
- Laoshan Laboratory, Qingdao 266237, P. R. China
| |
Collapse
|
8
|
Luo B, Zhou J, Zhan X, Ying B, Lan F, Wu Y. Visual and colorimetric detection of microRNA in clinical samples based on strand displacement amplification and nanozyme-mediated CRISPR-Cas12a system. Talanta 2024; 277:126310. [PMID: 38815319 DOI: 10.1016/j.talanta.2024.126310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 05/15/2024] [Accepted: 05/20/2024] [Indexed: 06/01/2024]
Abstract
The sensitive and accurate detection of target microRNA is especially important for the diagnosis, staging, and treatment of hepatocellular carcinoma (HCC). Herein, we report a simple strand displacement and CRISPR-Cas12a amplification strategy with nanozymes as a signal reporter for the binary visual and colorimetric detection of the HCC related microRNA. Pt@Au nanozymes with excellent peroxidase enzyme activity were prepared and linked to magnetic beads via a single-stranded DNA (ssDNA) linker. The target microRNA was designed to trigger strand displacement amplification and release a DNA promoter to activate the CRISPR-Cas12a system. The activated CRISPR-Cas12a system efficiently cleaved the linker ssDNA and released Pt@Au nanozymes from magnetic beads to induce the colorimetric reaction of 3,3',5,5'-tetramethylbenzidine. The strand displacement amplification converted the single microRNA input into abundant DNA promoter output, which improved the detection sensitivity by over two orders of magnitude. Through integration of strand displacement amplification and the nanozyme-mediated CRISPR-Cas12a system, limits of detection of 0.5 pM and 10 pM for miRNA-21 were achieved with colorimetric and visual readouts, respectively. The proposed strategy can achieve accurate quantitative detection of miRNA-21 in the range from 1 pM to 500 pM. The detection results for miRNA-21 using both colorimetric and visual readouts were validated in 40 clinical serum samples. Significantly, the proposed strategy achieved visual HCC diagnosis with the naked eye and could distinguish distinct Barcelona clinical HCC stages by colorimetric detection, showing good application prospects for sensitive and facile point-of-care testing for HCC.
Collapse
Affiliation(s)
- Bin Luo
- Analytical and Testing Center, Sichuan University, Chengdu, 610064, PR China
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xiaohui Zhan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Fang Lan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China
| | - Yao Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, 610064, PR China.
| |
Collapse
|
9
|
Zhang D, Tian B, Ling Y, Ye L, Xiao M, Yuan K, Zhang X, Zheng G, Li X, Zheng J, Liao Y, Shu B, Gu B. CRISPR/Cas12a-Powered Amplification-Free RNA Diagnostics by Integrating T7 Exonuclease-Assisted Target Recycling and Split G-Quadruplex Catalytic Signal Output. Anal Chem 2024; 96:10451-10458. [PMID: 38860917 DOI: 10.1021/acs.analchem.4c01800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Rapid and sensitive RNA detection is of great value in diverse areas, ranging from biomedical research to clinical diagnostics. Existing methods for RNA detection often rely on reverse transcription (RT) and DNA amplification or involve a time-consuming procedure and poor sensitivity. Herein, we proposed a CRISPR/Cas12a-enabled amplification-free assay for rapid, specific, and sensitive RNA diagnostics. This assay, which we termed T7/G4-CRISPR, involved the use of a T7-powered nucleic acid circuit to convert a single RNA target into numerous DNA activators via toehold-mediated strand displacement reaction and T7 exonuclease-mediated target recycling amplification, followed by activating Cas12a trans-cleavage of the linker strands inhibiting split G-Quadruplex (G4) assembly, thereby inducing fluorescence attenuation proportion to the input RNA target. We first performed step-by-step validation of the entire assay process and optimized the reaction parameters. Using the optimal conditions, T7/G4-CRISPR was capable of detecting as low as 3.6 pM target RNA, obtaining ∼100-fold improvement in sensitivity compared with the most direct Cas12a assays. Meanwhile, its excellent specificity could discriminate single nucleotide variants adjacent to the toehold region and allow species-specific pathogen identification. Furthermore, we applied it for analyzing bacterial 16S rRNA in 40 clinical urine samples, exhibiting a sensitivity of 90% and a specificity of 100% when validated by RT-quantitative PCR. Therefore, we envision that T7/G4-CRISPR will serve as a promising RNA sensing approach to expand the toolbox of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Decai Zhang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Benshun Tian
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Yong Ling
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Long Ye
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Meng Xiao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
| | - Kaixuan Yuan
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xinqiang Zhang
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Guansheng Zheng
- Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou 510000, China
| | - Xinying Li
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Judun Zheng
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Yuhui Liao
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bowen Shu
- Dermatology Hospital, Southern Medical University, Guangzhou 510091, China
| | - Bing Gu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Science, Guangzhou 510000, China
| |
Collapse
|
10
|
Shi K, Tian Y, Liu S, Luo W, Liu K, Zhang L, Zhang Y, Chang J, Zhang J, Wang S. Phosphorothioate-modified G-quadruplex as a signal-on dual-mode reporter for CRISPR/Cas12a-based portable detection of environmental pollutants. Anal Chim Acta 2024; 1308:342649. [PMID: 38740457 DOI: 10.1016/j.aca.2024.342649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-powered biosensor with a G-quadruplex (G4) reporter offer the benefits of simplicity and sensitivity, making them extensively utilized in detection applications. However, these biosensors used for monitoring pollutants in environmental water samples may face the problem of high background signal and easy interference due to the "signal-off" output. It is obvious that a biosensor based on the CRISPR/Cas12a system and G4 with a "signal on" output mode needs to be designed for detecting environmental pollutants. RESULTS By using phosphorothioate-modified G4 as a reporter and catalytic hairpin assembly (CHA) integrated with Cas12a as an amplification strategy, a "signal-on" colorimetric/photothermal biosensor (psG4-CHA/Cas) for portable detection of environmental pollutants was developed. With the help of functional nucleotides, the target pollutant (kanamycin or Pb2+) triggers a CHA reaction to produce numerous double-strand DNA, which can activate Cas12a's trans-cleavage activity. The active Cas12a cleaves locked DNA to release caged psG-rich sequences. Upon binding hemin, the psG-rich sequence forms a psG4/hemin complex, facilitating the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue photothermal agent (oxTMB). The smartphone was employed for portable colorimetric detection of kanamycin and Pb2+. The detection limits were found to be 100 pM for kanamycin and 50 pM for Pb2+. Detection of kanamycin and Pb2+ was also carried out using a portable thermometer with a detection limit of 10 pM for kanamycin and 8 pM for Pb2+. SIGNIFICANCE Sensitive, selective, simple and robust detection of kanamycin and Pb2+ in environmental water samples is achieved with the psG4-CHA/Cas system. This system not only provides a new perspective on the development of efficient CRISPR/Cas12a-based "signal-on" designs, but also has a promising application for safeguarding human health and environmental monitoring.
Collapse
Affiliation(s)
- Kai Shi
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China.
| | - Yi Tian
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Sujun Liu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China; Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan, Sichuan, 614000, PR China
| | - Wenjie Luo
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Keer Liu
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Lin Zhang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Ying Zhang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China
| | - Jiali Chang
- College of New Energy Materials and Chemistry, Leshan Normal University, Leshan, Sichuan, 614000, PR China.
| | - Jiaheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Shuo Wang
- National Innovation Center for Advanced Medical Devices, Shenzhen, Guangdong, 518110, PR China.
| |
Collapse
|
11
|
Lei X, Cao S, Liu T, Wu Y, Yu S. Non-canonical CRISPR/Cas12a-based technology: A novel horizon for biosensing in nucleic acid detection. Talanta 2024; 271:125663. [PMID: 38232570 DOI: 10.1016/j.talanta.2024.125663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/19/2024]
Abstract
Nucleic acids are essential biomarkers in molecular diagnostics. The CRISPR/Cas system has been widely used for nucleic acid detection. Moreover, canonical CRISPR/Cas12a based biosensors can specifically recognize and cleave target DNA, as well as single-strand DNA serving as reporter probe, which have become a super star in recent years in the field of nucleic acid detection due to its high specificity, universal programmability and simple operation. However, canonical CRISPR/Cas12a based biosensors are hard to meet the requirements of higher sensitivity, higher specificity, higher efficiency, larger target scope, easier operation, multiplexing, low cost and diversified signal reading. Then, advanced non-canonical CRISPR/Cas12a based biosensors emerge. In this review, applications of non-canonical CRISPR/Cas12a-based biosensors in nucleic acid detection are summarized. And the principles, peculiarities, performances and perspectives of these non-canonical CRISPR/Cas12a based biosensors are also discussed.
Collapse
Affiliation(s)
- Xueying Lei
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Shengnan Cao
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Tao Liu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Yongjun Wu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China
| | - Songcheng Yu
- . College of Public Health, Zhengzhou University, No. 100 Science Avenue, Zhengzhou City, 450001, PR China.
| |
Collapse
|
12
|
Xue P, Peng Y, Wang R, Wu Q, Chen Q, Yan C, Chen W, Xu J. Advances, challenges, and opportunities for food safety analysis in the isothermal nucleic acid amplification/CRISPR-Cas12a era. Crit Rev Food Sci Nutr 2024; 65:2473-2488. [PMID: 38659323 DOI: 10.1080/10408398.2024.2343413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Global food safety stands out as a prominent public concern, affecting populations worldwide. The recurrent challenge of food safety incidents reveals the need for a robust inspection framework. In recent years, the integration of isothermal nucleic acid amplification with CRISPR-Cas12a techniques has emerged as a promising tool for molecular detection of food hazards, presenting next generation of biosensing for food safety detection. This paper provides a comprehensive review of the current state of research on the synergistic application of isothermal nucleic acid amplification and CRISPR-Cas12a technology in the field of food safety. This innovative combination not only enriches the analytical tools, but also improving assay performance such as sensitivity and specificity, addressing the limitations of traditional methods. The review summarized various detection methodologies by the integration of isothermal nucleic acid amplification and CRISPR-Cas12a technology for diverse food safety concerns, including pathogenic bacterium, viruses, mycotoxins, food adulteration, and genetically modified foods. Each section elucidates the specific strategies employed and highlights the advantages conferred. Furthermore, the paper discussed the challenges faced by this technology in the context of food safety, offering insightful discussions on potential solutions and future prospects.
Collapse
Affiliation(s)
- Pengpeng Xue
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Yubo Peng
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Renjing Wang
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qian Wu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Qi Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Chao Yan
- School of Life Science, Anhui University, Hefei, P. R. China
| | - Wei Chen
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
| | - Jianguo Xu
- Engineering Research Center of Bio-process, Ministry of Education, School of Food and Biological Engineering, Hefei University of Technology, Hefei, P. R. China
- Jiaxing Key Laboratory of Molecular Recognition and Sensing, College of Biological, Chemical Sciences and Engineering, Jiaxing University, Zhejiang, P. R. China
| |
Collapse
|
13
|
Ma L, Xie L, Wu Q, Yang L, Zhou Y, Cui Y, Zhang Y, Jiao B, Wang C, He Y. Integrating CRISPR-Cas12a and rolling circle-amplified G-quadruplex for naked-eye fluorescent "off-on" detection of citrus Alternaria. Int J Biol Macromol 2024; 262:129983. [PMID: 38354935 DOI: 10.1016/j.ijbiomac.2024.129983] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/26/2023] [Accepted: 01/29/2024] [Indexed: 02/16/2024]
Abstract
Alternaria is a plant pathogen that spreads globally and is prone to causing citrus brown spot disease and metabolizing mycotoxins, thus seriously hindering the development of this economic crop industry. Herein, a "label-free" and "turn on" visual fluorescent assay for citrus Alternaria based on CRISPR-Cas12a and rolling circle amplification (RCA) was described. Using ssDNA complementary to RCA primer as a trans-cleavage substrate for CRISPR-Cas12a, the two systems of CRISPR-Cas12a and RCA-amplified G-quadruplex were skillfully integrated. By using a portable light source for excitation, the positive sample produced obvious red fluorescence, while the negative sample remained almost colorless, making them easy to differentiate with the naked eye. In addition, the specificity was demonstrated by distinguishing Alternaria from other citrus disease related pathogens. Moreover, the practicality was verified by analyzing cultured Alternaria and Alternaria in actual citrus leaf and fruit samples. Therefore, this method may contribute to the on-site diagnosis of Alternaria.
Collapse
Affiliation(s)
- Lanrui Ma
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - Longyingzi Xie
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - Qi Wu
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - Lu Yang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - Yan Zhou
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - Yongliang Cui
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - Yaohai Zhang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - Bining Jiao
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China
| | - Chengqiu Wang
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China.
| | - Yue He
- Key Laboratory of Quality and Safety Control of Citrus Fruits, Ministry of Agriculture and Rural Affairs, Southwest University, Chongqing, 400712, PR China; National Citrus Engineering Research Center, Citrus Research Institute, Southwest University, Chongqing 400712, PR China.
| |
Collapse
|
14
|
Yin Y, Wen J, Wen M, Fu X, Ke G, Zhang XB. The design strategies for CRISPR-based biosensing: Target recognition, signal conversion, and signal amplification. Biosens Bioelectron 2024; 246:115839. [PMID: 38042054 DOI: 10.1016/j.bios.2023.115839] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 12/04/2023]
Abstract
Rapid, sensitive and selective biosensing is highly important for analyzing biological targets and dynamic physiological processes in cells and living organisms. As an emerging tool, clustered regularly interspaced short palindromic repeats (CRISPR) system is featured with excellent complementary-dependent cleavage and efficient trans-cleavage ability. These merits enable CRISPR system to improve the specificity, sensitivity, and speed for molecular detection. Herein, the structures and functions of several CRISPR proteins for biosensing are summarized in depth. Moreover, the strategies of target recognition, signal conversion, and signal amplification for CRISPR-based biosensing were highlighted from the perspective of biosensor design principles. The state-of-art applications and recent advances of CRISPR system are then outlined, with emphasis on their fluorescent, electrochemical, colorimetric, and applications in POCT technology. Finally, the current challenges and future prospects of this frontier research area are discussed.
Collapse
Affiliation(s)
- Yao Yin
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Jialin Wen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Mei Wen
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xiaoyi Fu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China.
| | - Guoliang Ke
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Xiao-Bing Zhang
- State Key Laboratory for Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
15
|
Li T, Cheng N. Sensitive and Portable Signal Readout Strategies Boost Point-of-Care CRISPR/Cas12a Biosensors. ACS Sens 2023; 8:3988-4007. [PMID: 37870387 DOI: 10.1021/acssensors.3c01338] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Point-of-care (POC) detection is getting more and more attention in many fields due to its accuracy and on-site test property. The CRISPR/Cas12a system is endowed with excellent sensitivity, target identification specificity, and signal amplification ability in biosensing because of its unique trans-cleavage ability. As a result, a lot of research has been made to develop CRISPR/Cas12a-based biosensors. In this review, we focused on signal readout strategies and summarized recent sensitivity-improving strategies in fluorescence, colorimetric, and electrochemical signaling. Then we introduced novel portability-improving strategies based on lateral flow assays (LFAs), microfluidic chips, simplified instruments, and one-pot design. In the end, we also provide our outlook for the future development of CRISPR/Cas12a biosensors.
Collapse
Affiliation(s)
- Tong Li
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Nan Cheng
- Beijing Laboratory for Food Quality and Safety, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|