1
|
Luo P, Liu L, Chen H, Gong Y, Tang X, Hu B, Zhou D, Chen P. Dithiophene chemosensor for ultrasensitive intracellular detection of Al 3+: Design, DFT analysis, and ESIPT-PET mechanisms. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 339:126244. [PMID: 40252538 DOI: 10.1016/j.saa.2025.126244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/29/2025] [Accepted: 04/14/2025] [Indexed: 04/21/2025]
Abstract
Metal ions play essential roles in living cells, yet their biological functions, which depend on intracellular concentrations, are not fully understood. Therefore, there is a critical need for efficient and sensitive methods to monitor metal ion levels in biological systems. Herein, we report the development of a fluorescent probe, 2-hydroxy-1-naphthaldehyde-(dithiophen-2-yl)ethanediamine (NS), for the precise and sensitive detection of intracellular Al3+ at concentrations as low as 3.92 × 10-8 M. The probe features a bifunctional thienyl ethanol ligand, consisting of two thiophene rings and a hydroxyl group, which forms stable coordination with Al3+. This interaction modifies the electron allocation within the ligand, suppressing the excited-state intramolecular proton transfer (ESIPT) mechanism and significantly increasing fluorescence intensity. Notably, in the presence of Al3+, compared to other ions, the fluorescence intensity of NS at 452 nm increases by 77-fold, with an exceptional sensitivity and selectivity for Al3+. Furthermore, the hydroxyl group enhances the probe's solubility and stability in aqueous solutions, making it highly effective for intracellular detection of Al3+ in prostate cancer RM-1 cells. The response mechanism is further investigated through 1H NMR and DFT studies, revealing the contributions of ESIPT, photoinduced electron transfer (PET), and CN isomerization to the probe's fluorescence behavior. This work provides a promising and advanced tool for ionobiology, opening new avenues for research into metal ion-related biological processes.
Collapse
Affiliation(s)
- Pengwen Luo
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Lu Liu
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Hong Chen
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Yu Gong
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xiaoli Tang
- Shanghai East Hospital, Tongji University School of Medicine, 200331, PR China.
| | - Bin Hu
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Dan Zhou
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Pinghua Chen
- College of Environment and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, PR China
| |
Collapse
|
2
|
Chen M, Bai C, Xue W, Wang X, Wang S, Song Q, Wang X, Liu C, Zhang L, Wei B, Miao H, Qiao R. Ratiometric fluorescent probe for triphosgene detection and its application in electrospun fluorescent fibers. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 337:126149. [PMID: 40184984 DOI: 10.1016/j.saa.2025.126149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 03/19/2025] [Accepted: 03/30/2025] [Indexed: 04/07/2025]
Abstract
Triphosgene poses a potentially great threat to human health and safety. Therefore, it is of great significance to develop an effective method to realize the inexpensive, on-site, convenient, and rapid detection of triphosgene. Herein, based on the excited-state intramolecular proton transfer mechanism, a new fluorescent probe DPIM was designed and synthesized, which realized the rapid ratiometric identification and detection of triphosgene for the first time. Its limit of detection for triphosgene was 3.54 × 10-8 M, and it had a large Stokes shift of 198 nm. Its recognition mechanism was comprehensively analyzed. A smartphone detection platform and probe-loaded test paper were prepared to realize the inexpensive, on-site, and convenient detection of triphosgene. DPIM effectively enabled the ratiometric fluorescence "turn-on" for detecting residual triphosgene in the sand, showing its application practicality. Most importantly, the probe was incorporated into nanofibers and successfully used to monitor gaseous triphosgene with high specificity, showing its excellent application potential. This study provides a promising analytical tool for the rapid quantitative detection of triphosgene in solution and gaseous phases.
Collapse
Affiliation(s)
- Mengyu Chen
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Cuibing Bai
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Wenhui Xue
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xin Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Shizhen Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Qixiang Song
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Xinyu Wang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Chenxu Liu
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Lin Zhang
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Biao Wei
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| | - Hui Miao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China
| | - Rui Qiao
- School of Chemistry and Materials Engineering, Anhui Provincial Key Laboratory of Innovative Drug Development and Industrial Integration Jointly Established Discipline, Anhui Provincial Key Laboratory of Green Carbon Chemistry, Engineering Research Center of Biomass Conversion and Pollution Prevention of Anhui Educational Institutions, Fuyang Normal University, Fuyang, Anhui Province 236037, PR China.
| |
Collapse
|
3
|
Wu W, Song P, Xu Q, Li Y, Liu J, Di T, Wang J, Fu B, Hou Y, Kong W. "Three-in-One" MIL@PDA-UiOL@AIEgens driven lateral flow immunosensor for multimodal detection of aflatoxin B 1. Food Chem 2025; 486:144635. [PMID: 40349522 DOI: 10.1016/j.foodchem.2025.144635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 04/13/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
The multi-modal lateral flow immunosensor (LFIS) with integrated advantages and mutual built-in calibration ability could avoid the limitations of traditional single-signal output mode to meet the growing demands for trace contaminants. In this study, an innovative "three-in-one" LFIS platform was developed for colorimetric, grayscale, and fluorescent detection of aflatoxin B1 (AFB1). It integrated polydopamine (PDA)-coated ferric metal-organic framework (MOF) (MIL@PDA) and the functionalized zirconium MOF of a UiO linker enriched with abundant AIEgens (UiOL@AIEgens) as signal probes. The synthesized MIL and UiOL with large surface area and high porosity could enrich numerous PDA and AIEgens probes, respectively, for signal amplification, not only significantly enhancing the colorimetric signal outputs, and grayscale and fluorescence responses, but also largely improving the detection sensitivity and analytical accuracy. The MIL@PDA-monoclonal antibodies (mAbs) probes could specifically identify AFB1 antigens on the test (T) line to produce a visible dark-grey band for qualitative colorimetric detection, and the grayscale intensities were monitored for the quantitation of AFB1 via a portable device. The fluorescence mode was realized through the MIL@PDA-mAbs probes quenching the fluorescence of UiOL@AIEgens on the T line, and the fluorescence intensities were recorded by using a smartphone for accurate quantitation. Under optimal conditions, this MIL@PDA-UiOL@AIEgens driven three-modal LFIS platform allowed for AFB1 detection in a wide range of 0.01-5 ng/mL with a low limit of detection of 0.01 ng/mL that was more than 59-fold lower than the traditional AuNPs-based LFIS. The feasibility and practicability of this LFIS platform was verified for AFB1 detection in lotus seeds. This study opened up a new avenue for developing high-performance LFIS platforms for the trace detection more harmful analytes in complex matrices.
Collapse
Affiliation(s)
- Wenjuan Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; College of Science, China Agricultural University, Beijing 100193, China
| | - Pengyue Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qingbin Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Jianlong Liu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tingting Di
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bin Fu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Yujiao Hou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; College of Traditional Chinese Medicine, Xinjiang Medical University, Urumqi 830017, China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; Laboratory for Clinical Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
4
|
Hu H, Zhu J, Wu Z, Fu Y, Xie J, Liu H, Feng Y, Zhang Q, Jia C. Insight into Cys and its derivatives metabolism in living system with 3D-printed portable smartphone platform via multifunctional fluorescent probe. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 340:126324. [PMID: 40344886 DOI: 10.1016/j.saa.2025.126324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 03/27/2025] [Accepted: 04/27/2025] [Indexed: 05/11/2025]
Abstract
Cysteine (Cys) is a crucial biological thiol that facilitates broad range of biological circumstances and health conditions. Especially the aberrant Cys level in human serum is an independent risk factor for cardiovascular diseases. What more, Cys metabolism (Cys to SO2) is typically connected with illnesses such as lung cancer, and are recognized as biomarker. Herein, an innovative multifunctional fluorescent probe was rudimentarily designed and utilized, not only for realizing real-time visualization of the metabolism of Cys to SO2 in tumors through two self-sufficient channels without spectral cross-interference, but also for sensitive, real-time, on-site, and quantitative visual recognition of Cys in human serum through 3D-printed smartphone sensing platform. In addition, the probe's unique response to Cys/HSO3- in distinct spectral behaviors, which have been characterized theoretically using UV-Vis, fluorescence, DFT calculations, and 1H NMR. More importantly, the methodology reported herein enables an available pathway for real-time/on-site and visual determination of Cys in human serum and is expected to extend the use of potential cardiovascular disease biomarker studies for initial monitoring and clinical diagnosis.
Collapse
Affiliation(s)
- Hao Hu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Jiali Zhu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Ziyan Wu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| | - Yuan Fu
- Department of Public Safety Technolog, Hainan Vocational College of Politics and Law, Haikou 571100, China
| | - Jialin Xie
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Hongtao Liu
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China
| | - Yan Feng
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| | - Qiangsheng Zhang
- Hainan Provincial Key Laboratory of Fine Chem, School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| | - Chunman Jia
- Analysis and Testing Center, Hainan University, Haikou 570228, China; One Health Institute, Hainan University, Haikou 570228, China.
| |
Collapse
|
5
|
Qin Z, Xu J, Cao Y, Liao C, Lan T, Shi S. Visual detection of glyphosate by Al 3+-regulated carbon dots/CdTe quantum dots ratiometric fluorescent sensing platform. Food Chem 2025; 473:143070. [PMID: 39893924 DOI: 10.1016/j.foodchem.2025.143070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/18/2025] [Accepted: 01/23/2025] [Indexed: 02/04/2025]
Abstract
Highly sensitive monitoring of pesticides has garnered attention for food safety. Here, a ratiometric fluorescent probe (AG-CDs-Al3+/CdTe QDs) was fabricated for specific and sensitive sensing of glyphosate. Surface modifications revealed the chelation-enhanced fluorescence process between the surface -OH of AG-CDs and Al3+. Positively charged green-emission AG-CDs-Al3+ assembled with negatively charged red-emission CdTe QDs, and photoinduced electron transfer (PET) occurred from CdTe QDs to AG CDs-Al3+. Glyphosate specifically coordinated with Al3+, causing remarkable variations in F500/F630 (linear range, 0.2-4.0 μM; detection limit, 5.7 nM) and a distinguishable green-yellow-red color change on the paper platform (linear range, 0.5-8.0 μM; detection limit, 26 nM). Furthermore, for real sample analysis, the sensor has the advantages of fast response (5 min), excellent accuracy (spiked recoveries, 95.0-105.0 %), high precision (relative standard deviation, < 3.33 %), and superior specificity, which endowed the designed sensing platform with great potential practicality in the field of food analysis.
Collapse
Affiliation(s)
- Ziyi Qin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Jinju Xu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China.
| | - Yuanxin Cao
- Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China
| | - Chunhui Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Tian Lan
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China
| | - Shuyun Shi
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, Hunan, China; Natural Product Research Laboratory, Guangxi Baise High-tech Development Zone, Baise 533612, Guangxi, China.
| |
Collapse
|
6
|
Sun X, Jiang X, Zhao X, Wang Z, Yuan J, Li Y, Li X, Li J, Tang L, Zhong K. Colorimetric and fluorescent probe assisted by smartphone app for monitoring fish freshness. Food Chem 2025; 473:143013. [PMID: 39864177 DOI: 10.1016/j.foodchem.2025.143013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/25/2024] [Accepted: 01/20/2025] [Indexed: 01/28/2025]
Abstract
In this study, a novel "OFF-ON" fluorescent probe MPZ ((E)-5-((10-ethyl-2-methoxy-10H-phenothiazin-3-yl)methylene)thiazolidine-2,4-dione) based on phenothiazine is synthesized, which can rapidly (7 s) detect biogenic amines (BAs) through deprotonation, utilizing both colorimetric and fluorescent dual channels. An app for visual portable detection of fish freshness, named "Visual Evaluation", is independently developed. This app integrates several functions, including image capture, editable scanning of red, green, and blue (RGB) values, data analysis fitting, data storage, and verification. More importantly, the smart detection platform composed of the app and MPZ-loaded filter paper tags (MPZ/FPS) can quantitatively detect the total volatile basic nitrogen (TVB-N) value in salmon and has been validated for its accuracy and reliability using the national standard method of China. This smart detection platform is expected to provide new ideas for the field of portable visual inspection, and also offer merchants, and regulators a new instrument-free and intelligent reading tool for assessing the freshness of salmon.
Collapse
Affiliation(s)
- Xiaofei Sun
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China; State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian 116023, PR China
| | - Xin Jiang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Xinyi Zhao
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Zengdong Wang
- Shandong Anyuan Marine Breeding Co., Ltd., Yantai 265617, PR China
| | - Jie Yuan
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Yang Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Xuepeng Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China
| | - Jianrong Li
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| | - Lijun Tang
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| | - Keli Zhong
- College of Food Science and Engineering, College of Chemistry and Materials Engineering, Institute of Ocean, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
7
|
Nandi N, Sarkar P, Barnwal N, Sahu K. Intricacies of Carbon Dot Photoluminescence for Emerging Applications: A Review. Chem Asian J 2025; 20:e202401470. [PMID: 39907296 DOI: 10.1002/asia.202401470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 02/06/2025]
Abstract
Discovered only in 2004, carbon dots (CDs) have already traversed a long journey, generating many promising research directions. Its cheapness, ease of synthesis, high water-solubility, tunable emission, and excellent biocompatibility make it a single-point solution to many problems, and tremendous efforts were invested into understanding the structure-property-function relationship, which eases the engineering of the CD properties suitable for a desired application. From the usual random choice of precursors or carbon materials as a starting point in the early days, more systematic approaches are now available for choosing proper starting materials and appropriate experimental conditions (solvent medium, reaction temperature, reaction duration, pH, etc) to customize its photoluminescence. The presence of impurities has a crucial role in the outcome and applicability of photoluminescence. Recently, a significant focus has been on the long-wavelength emissive CDs, particularly in the red to near-infrared (NIR) regions, for better penetration into live cells and to circumvent autofluorescence problems. Proper design can harvest phosphorescence from CDs. Many excellent reviews are available, focusing on different facets of CD prospects. Hence, we will only highlight the importance of the optical properties of CDs and ways to modulate them. We will mention some of the new works that have appeared in the last five years.
Collapse
Affiliation(s)
- Nilanjana Nandi
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Priyanka Sarkar
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| | - Neha Barnwal
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| | - Kalyanasis Sahu
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam, India
| |
Collapse
|
8
|
Yin X, Wang C, Wei S, Liu M, Hu K, Song X, Sun G, Lu L. Carbon dots-based dual-mode sensor for highly selective detection of nitrite in food substrates through diazo coupling reaction. Food Chem 2025; 463:141213. [PMID: 39270494 DOI: 10.1016/j.foodchem.2024.141213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/01/2024] [Accepted: 09/08/2024] [Indexed: 09/15/2024]
Abstract
As an antioxidant and preservative agent, nitrite (NO2-) plays an essential role in the food industry to maintain freshness or inhibit microbial growth. However, excessive addition of NO2- is detrimental to health, so accurate and portable detection of NO2- is critical for food quality control. Notably, the selectivity of most carbon dots (CDs)-based fluorescence sensors was not enough due to the nonspecific interaction mechanism of hydrogen bond, electrostatic interaction and inner filter effect etc. Herein, a novel fluorescence/UV-vis absorption (FL/UV-vis) dual-mode sensor was developed on basis of mC-CDs, which were prepared by simple solvothermal treatment of m-Phenylenediamine (m-PDA) and cyanidin cation (CC). The fluorescence of these mC-CDs could be selectively responded by NO2- through the specific diazo coupling reaction between NO2- and amino groups on the surface of mC-CDs, thus effectively improving the selectivity of NO2- detection. The CDs-based fluorescence sensor possessed a low detection limit of 0.091 μM and 0.143 μM for FL and UV-vis methods and the excellent linear range of 0.0-60.0 μM. Furthermore, the mC-CDs sensor was employed to detect NO2- in real samples with a recovery rate of 97.11 %-104.15 % for quantitative addition. Moreover, the smartphone-assisted fluorescence sensing platform developed could identify the subtle color changes that could not be distinguished by the naked eye, and had the advantages of fast detection speed and intelligence. More importantly, the portable solid phase sensor based on mC-CDs had been successfully applied to the specific fluorescence identification and concentration monitoring of NO2-. Accordingly, the designed sensor provided a new strategy for the highly selective and convenient sensing of NO2- in food substrates, and paved the way for the wide application of CDs-based nanomaterials in the detection of food safety.
Collapse
Affiliation(s)
- Xiangyu Yin
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Chenzhao Wang
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Shanshan Wei
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Min Liu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Kaixin Hu
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Xuewei Song
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China
| | - Guoying Sun
- School of Chemistry and Life Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China; Advanced Institute of Materials Science, Changchun University of Technology, 2055 Yanan Street, Changchun 130012, PR China.
| | - Lehui Lu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, PR China.
| |
Collapse
|
9
|
Wei Y, Tang J, Zhang J, Lin Y, Zheng C. A label-free fluorescent-hydrogel sensor for heparin detection in diluted whole blood. Chem Commun (Camb) 2025; 61:1215-1218. [PMID: 39704102 DOI: 10.1039/d4cc03780d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2024]
Abstract
Heparin is a widely used blood anticoagulant and its monitoring in blood is essential during surgery. Unavoidable interference factors such as blood color and luminescence can interfere with the fluorescence visualization of heparin. Herein, we found a ratiometric fluorescence probe consisting of SYBR green and cresyl violet responsive to heparin mainly based on electrostatic interactions. A simple sensor was further embedded in an agarose hydrogel, exhibiting an obvious color change from orange to green without complex pretreatment of blood, which overcomes the susceptibility of fluorescence sensors toward biological samples.
Collapse
Affiliation(s)
- Yingnan Wei
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Jie Tang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
- Cosmetics Safety and Efficacy Evaluation Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jinyi Zhang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| | - Yao Lin
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, Sichuan 610041, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan 610064, China.
| |
Collapse
|
10
|
Jiao D, Gu S, Cheng L, Li S, Liu C. Flexible, self-healing and portable supramolecular visualization smart sensors for monitoring and quantifying structural damage. MATERIALS HORIZONS 2025; 12:190-204. [PMID: 39431720 DOI: 10.1039/d4mh01233j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Visually monitoring micro-crack initiation and corrosion failure evolution is crucial for early diagnosis of structural health and ensuring safe operation of infrastructures. However, existing damage detecting approaches are subject to the limited-detection of heterogeneous structures, intolerance of harsh environments, and challenge of quantitative analysis, impeding applications in structural health monitoring (SHM). Herein, we present a stretchable, semi-quantitative, instrument-free, supramolecular SHM sensor by integrating a polyurea elastomer with sensitive corrosion-probes, enabling localized corrosion monitoring and quantification of failure dynamics. Initially, a correlation between visual monitoring signals and structural health status is proposed, and sensor-based image processing software that accurately quantifies structural failure indicators (crack scale, corrosion reactivity and deterioration status) is proposed. Moreover, this sensor can be fabricated as multiple derivatives: a coating or patch covered on metallic substrates and an ionic-responsive test strip, ensuring real-time detection of the initiation of pitting, degradation events of metallic components and convenient monitoring of ion concentrations in corrosive media. Furthermore, the inherent geometric plasticity and dynamic hydrogen-bonded network validates the reliability for heterogeneous components and stability under extreme environments of sensors. This portable, smart SHM strategy established the channel-transformation model from corrosion dynamics to visual signals, exhibiting prospects for structural monitoring in offshore energy-harvesting equipment.
Collapse
Affiliation(s)
- Dezhi Jiao
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Sihan Gu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Li Cheng
- Laboratory of Advanced Rubber Material, Ministry of Education (Type B), Qingdao University of Science and Technology, Qingdao 266042, China
| | - Shuoqi Li
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| | - Chengbao Liu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.
| |
Collapse
|
11
|
Zhang S, Li J, Zhou J, Xu P, Li Y, Zhang Y, Wu S. Modulating carbon dots from aggregation-caused quenching to aggregation-induced emission and applying them in sensing, imaging and anti-counterfeiting. Talanta 2025; 282:126983. [PMID: 39395306 DOI: 10.1016/j.talanta.2024.126983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/22/2024] [Accepted: 10/02/2024] [Indexed: 10/14/2024]
Abstract
Aggregation Induced Emission Carbon Dots (AIE-CDs) address the problem of conventional CDs being quenched in the solid-state. However, there are still challenges in comprehending the luminescence mechanism. This work proposed a strategy for preparing green, yellow, and near-infrared CDs by modifying the functional groups on the precursor from hydroxyl and amino to p-methylenediamine, in which electronic supply capacity determined the redshift. Additionally, The CDs' properties transformed from Aggregation-Caused Quenching (ACQ) to AIE was realized by substituting non-rotatable hydroxyl or amino groups with the rotatable p-methylenediamine on the precursor. The resulting CDs were then applied in multifield. C-CDs was used for ratiometric detection of Al3+ and F- in pure water through three methods including fluorometer, test strip and smartphone. R-CDs was used for imaging cell nucleus and zebrafish. NIR-CDs (λem = 676 nm) exhibits dual emission, AIE and phosphorescent characteristics was used for triple anti-counterfeiting and binary information encryption. In summary, our finding presented a strategy for preparing multicolor CDs, proposed a mechanism for the transition of CDs from ACQ to AIE, and explore their multiple applications in anti-counterfeiting, information encapsulation, sensing and imaging.
Collapse
Affiliation(s)
- Shengtao Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China; Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Jinhong Li
- Shaanxi Hantang Pharmaceutical Co., Ltd, Xi'an, 710021, PR China
| | - Jieyu Zhou
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Pengyue Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710069, P. R. China.
| | - Yongmin Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China; Sorbonne Université, CNRS, Institut Parisien de Chimie Moléculaire, UMR 8232, 4 Place Jussieu, 75005, Paris, France
| | - Shaoping Wu
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Biomedicine Key Laboratory of Shaanxi Province, Northwest University, 229 Taibai Road, Xi'an, Shaanxi, 710069, P. R. China.
| |
Collapse
|
12
|
Luo X, Liu Z, Wang L, Gao L, Wang D, Zhang T, Chen D. Smartphone-assisted sensing platform based on dual-responsive nitrogen-doped carbon dots for enzyme-free and visual quantitative detection of Cu2+ and glyphosate. Microchem J 2024; 207:112166. [DOI: 10.1016/j.microc.2024.112166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
13
|
Zhong K, Li Y, Zhou L, Sun X, Tang L, Zhang N, Tang Y. A benzopyran-hemicyanine-based mitochondria-targeted NIR fluorescent probe for detection of SO2 derivatives in food samples and living cells. Microchem J 2024; 207:112037. [DOI: 10.1016/j.microc.2024.112037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Zhou Y, Li H, Gu J, Fu Y, Liu J, Li Z, Li X, Liu X, Qiao Z, Liu Y. Construction of a Fluorescence/Phase-Change Dual-Mode Sensor Based on Carbon Dots/Poly(acrylic acid) for Highly Selective and Sensitive Detection of Ferric Ions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61036-61049. [PMID: 39436028 DOI: 10.1021/acsami.4c14018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Fe3+ is one of the crucial metal ions in biological systems, and its excess or deficiency in the body can trigger various diseases, posing a serious threat to human health. Moreover, improper handling or disposal of Fe3+ can lead to water pollution, thereby harming the environment. Therefore, the development of highly selective and sensitive Fe3+ detection probes is particularly urgent. In this paper, a dual-mode sensor based on sol-gel and fluorescence signal responses was developed for the visual detection of Fe3+. The visual sensing method based on the simultaneous response of Fe3+-triggered dual signals can minimize the interference from false-positive signals and enhance detection accuracy. The dual-mode sensor, denoted as PAA@CDs, was constructed by incorporating high-brightness (high fluorescence emission intensity) green-yellow carbon dots (CDs) into poly(acrylic acid) (PAA), which possesses a large number of carboxyl functional groups. Based on the interaction of Fe3+ with the surface functional groups of CDs, nonfluorescent complexes are formed, leading to nonradiative electron transfer, which induces fluorescence quenching and produces a fluorescence signal visible to the naked eye. Additionally, the interaction of Fe3+ with the carboxyl groups of PAA triggers the cross-linking of PAA, causing a sol-gel phase change signal. Consequently, the PAA@CDs exhibit a dual-response signal in Fe3+ detection. Based on the fluorescence method, the linear detection range of PAA@CDs for Fe3+ is 0.05-2.60 mM with a limit of detection (LOD) of 5.14 μM. Meanwhile, using the sol-gel method, the linear detection range is 0.02-2.20 mM, and the LOD is 42.5 μM. Furthermore, the PAA@CDs probes can be successfully applied to the detection of Fe3+ in real water samples, demonstrating their potential value in the analysis of real samples containing multiple ions.
Collapse
Affiliation(s)
- Yao Zhou
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Huidong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Junqi Gu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yonglin Fu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Jingchun Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Zhaoyang Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xinlong Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xunyong Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Zhuhui Qiao
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| | - Yi Liu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
- Shandong Laboratory of Yantai Advanced Materials and Green Manufacturing, Yantai 264006, China
| |
Collapse
|
15
|
Pu Q, Wang C, Yin X, Ye N, Zhang L, Xiang Y. A ratiometric fluorescent dark box and smartphone integrated portable sensing platform based on hydrogen bonding induction for on-site determination of enrofloxacin. Food Chem 2024; 455:139876. [PMID: 38823143 DOI: 10.1016/j.foodchem.2024.139876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/15/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Enrofloxacin (ENR) residues in animal-derived food and water threaten human health. Simple, low-cost and on-site detection methods are urgently needed. Blue emitting carbon quantum dots (CQDs) and orange rhodamine B (RhB) were used as recognition and reference signals, respectively, to construct a ratiometric fluorescence sensor. After the addition of ENR, the color of the sensor changed from orange to blue because hydrogen bonding induced a considerable increase in CQDs fluorescence. Based on this mechanism, a simple and low cost on-site portable sensing platform was constructed, which integrated a stable UV light strip and a smartphone with voice-controlled phototaking function and an RGB app. The t-test results of spiked ENR recoveries for diluted milk, honey and drinking water revealed no significant differences between the ratiometric fluorescent sensor and portable sensing platform. Thus, this portable sensing platform provides a novel strategy for on-site quantification of quinolone antibiotics in foodstuffs and environmental water.
Collapse
Affiliation(s)
- Qi Pu
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Chumeng Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xinyue Yin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Nengsheng Ye
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Lu Zhang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| | - Yuhong Xiang
- Department of Chemistry, Capital Normal University, Beijing 100048, China.
| |
Collapse
|
16
|
Ji P, Liu Y, Li W, Guo R, Xiong L, Song Z, Wang B, Feng G. A new FRET-based fluorescent probe: Colorimetric and ratiometric detection of hypochlorite and anti-counterfeiting applications. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 318:124477. [PMID: 38810433 DOI: 10.1016/j.saa.2024.124477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/28/2024] [Accepted: 05/16/2024] [Indexed: 05/31/2024]
Abstract
Hypochlorite (ClO-), as the main component of widely used disinfectants in daily life, comes into closer contact with the human body, which can lead to a number of diseases. The high-performance method is increasingly needed to detect ClO- in our daily life. In this report, we successfully synthesized a FRET ratiometric fluorescent probe (NDAC) containing benzoxadiazole moieties and coumarin moieties bound via ethylenediamine. As expected, NDAC has excellent selectivity and anti-interference ability toward ClO-, and the ratio of fluorescence intensity (I471 nm/I533 nm) has a very good linear relationship with the concentration of ClO-, with a wide linear range (2.5-1750 μM) and low detection limit (0.887 μM). Furthermore, we have successfully applied it for the quantitative detection of ClO- in water samples in daily life. At the same time, there is a very clear change in the fluorescence color after the reaction of the NDAC with ClO-. The blue/green value (B/G) of this color change also shows a very good linear relationship to ClO- (5.0-1000 μM). Therefore, the NDAC has also been successfully used for test strip detection and quantitative detection of ClO- in actual samples through smartphone-based fluorescence image analysis, and this method can provide faster, more convenient and more accessible detection. In addition, NDAC sensors also have potential applications in the field of information anti-counterfeiting.
Collapse
Affiliation(s)
- Peng Ji
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Yuntong Liu
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China; State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Wanmeng Li
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Ruixue Guo
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Lingxiao Xiong
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China
| | - Zhiguang Song
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China
| | - Bo Wang
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin 130012, China.
| | - Guodong Feng
- College of Chemistry, Jilin University, Changchun, Jilin 130021, China.
| |
Collapse
|
17
|
Zhu Y, Zhang R, Hu Z, Wu F. B, N co-doped carbon dots as efficient nanozymes for colorimetric and fluorometric dual-mode detection of cholesterol. Talanta 2024; 278:126471. [PMID: 38941812 DOI: 10.1016/j.talanta.2024.126471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/07/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
In this work, the B, N co-doped carbon dots (B, N-CDs) were synthesized via facile hydrothermal approach with 6-aminopyridine boronic acid as precursor. In addition to emitting intense blue luminescence when exposed to ultraviolet light, the prepared B, N-CDs displayed remarkable peroxidase-like activity, which could efficiently catalyze the oxidation of 3, 3', 5, 5' -tetramethylbenzidine (TMB) to blue ox-TMB in the presence of hydrogen peroxide (H2O2). Furthermore, the fluorescence intensity of B, N-CDs increased gradually upon the addition of H2O2. Since cholesterol oxidase (ChOx) can catalyze the oxidation of cholesterol to form H2O2, the as-prepared B, N-CDs was then used as both colorimetric and fluorometric sensors for the detection of cholesterol with detection limit of 0.87 and 2.31 μM, respectively. Finally, the dual-mode approach based on B, N-CDs was effectively utilized for detecting cholesterol levels in serum samples, proving the potential application of B, N-CDs in the field of biological assay.
Collapse
Affiliation(s)
- Yuyan Zhu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Ruilin Zhang
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China
| | - Zhiyuan Hu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China; National Center for Nanoscience and Technology, Beijing, 100190, PR China
| | - Fengshou Wu
- Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Key Laboratory of Novel Biomass-Based Environmental and Energy Materials in Petroleum and Chemical Industry, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan, 430072, PR China.
| |
Collapse
|
18
|
Yu L, Huang L, Wang Z, Xiong Y, Li G, Chen Z. Pressure-resistant and portable array gas membrane device for rapid Escherichia coli detection in infant milk powder via smartphone colorimetry with all-in-one preparation strategy. SENSORS AND ACTUATORS B: CHEMICAL 2024; 412:135791. [DOI: 10.1016/j.snb.2024.135791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
|
19
|
Lin X, Chen T, Hu J, Mao X, Liu M, Zeng R, Zhong Q, Chen W. Construction of a novel fluorescent probe for sensitive determination of glyphosate in food and imaging living cells. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3364-3371. [PMID: 38742948 DOI: 10.1039/d4ay00380b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Glyphosate is a widely used broad-spectrum herbicide in agriculture and horticulture to control a variety of weeds and undesirable plants. However, the excessive use of glyphosate has raised a number of environmental and human health concerns. It is urgent to develop tools to detect glyphosate. Herein, a novel dual-signal probe CCU-Cu2+ was designed and synthesized on the basis of CCU. CCU exhibited excellent selectivity and great sensitivity for Cu2+ which were based on both fluorescence "turn-off" reaction and comparative color visualisation methods. Due to the strong chelating ability of glyphosate on Cu2+, the CCU-Cu2+ complex was applied to glyphosate detection in practical samples. The experimental results in vitro showed that the CCU-Cu2+ complex was highly selective and rapid, with a low detection limit (1.6 μM), and could be recognised by the naked eye in the detection of glyphosate. Based on the excellent properties of the CCU-Cu2+ complex, we also constructed a smartphone-assisted detection sensing system for glyphosate detection, which has the advantages of precision, sensitivity, and high interference immunity. Moreover, the CCU-Cu2+ complex was also successfully employed for exogenous glyphosate imaging in living cells. These characteristics demonstrated that CCU-Cu2+ holds significant potential for detection and imaging of glyphosate in bio-systems.
Collapse
Affiliation(s)
- Xiaoping Lin
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Taiyi Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Jiayun Hu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Xiaoqiong Mao
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Mengqing Liu
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Rongying Zeng
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Qingmei Zhong
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| | - Wen Chen
- Hunan Engineering Research Center for Monitoring and Treatment of Heavy Metal Pollution in the Upper Reaches of Xiangjiang River, College of Chemistry and Material Science, Hengyang Normal University, Hengyang, 421001, P. R. China.
| |
Collapse
|
20
|
Sun R, Liu P, Yang Q, Ma Y. Smartphone-integrated ratiometric sensing strategy for on-line quantitation of tetracycline based on functionalized g-C 3N 4/Eu electrospun film. Food Chem 2024; 437:137912. [PMID: 37931452 DOI: 10.1016/j.foodchem.2023.137912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/16/2023] [Accepted: 10/29/2023] [Indexed: 11/08/2023]
Abstract
On-line quantitation of tetracycline (TC) is significant to ensure environmental health and food security. Hence, a novel smartphone-integrated ratiometric sensing platform for on-line quantitative analysis of TC was designed. A CitNa-functionalized g-C3N4/Eu3+ (g-C3N4/CitNa/Eu) composites with blue and red dual-emissive feature were fabricated as dual indicators for shielding background interference, enhancing anti-interference capability. The fluorescent response (F620/F450) ratio and TC concentration demonstrated good linear relationship ranged from 0.0 to 100.0 μM with a detection limit of 1.96 nM. Furthermore, the combination of g-C3N4/CitNa/Eu and polyacrylonitrile polymers forming electrospun film was achieved via electrospinning method. Smartphone-integrated ratiometric sensing platform was developed based on the fluorescent color of electrospun film from blue to light red with TC. This solid sensing platform achieved excellent sensitivity with a detection limit of 7.42 nM. Combining the solid ratiometric fluorescent film with smartphone reader provides a potential way for on-line quantitation of TC in food and other fields.
Collapse
Affiliation(s)
- Ruiqing Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Ping Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China
| | - Qingli Yang
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| | - Yongchao Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, People's Republic of China.
| |
Collapse
|
21
|
Hu H, Chen Z, Li T, Wang L, Xing H, Guo G, Wang G, Chen D. A sensitive lateral flow test strip sensor for visual detection of acid red 18 in food using bicentric-emission carbon dots. NANOSCALE 2024; 16:5574-5583. [PMID: 38393678 DOI: 10.1039/d3nr05662g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Hazardous synthetic colorants have found widespread use in food production, and excessive consumption of these pigments can pose potential risks to human health. In this study, we propose an ultrasensitive fluorescence method for the analysis of Acid Red 18 (AR18) in food products. The method is based on the nitrogen-doped carbon dots (N-CDs) derived from tris and resorcinol through a hydrothermal way. The as-synthesized N-CDs exhibit two emission centers at 425 nm and 541 nm, corresponding to the excitation wavelengths of 377 nm and 465 nm, respectively. Upon the addition of AR18, the fluorescence intensity at 541 nm significantly decreases with a simultaneous, though less pronounced, reduction in the intensity at 425 nm, which is attributed to the localization of fluorescence resonance energy transfer (L-FRET). Specifically, a novel ratiometric fluorescent probe was constructed based on the extracted data from the 3D fluorescence excitation-emission matrix. This probe demonstrates a wide linear range from 0.0539 to 30 μM and a low limit of detection (LOD) of 53.9 nM. For practical applications, a portable fluorescent sensor based on a lateral flow test strip (LFTS) was designed for real-time monitoring of AR18. Color channel values were determined using a smartphone application, resulting in a satisfactory LOD of 75.3 nM. Furthermore, the suitability of the proposed ratiometric fluorescent probe was validated through the detection of AR18 in real food samples, consistently achieving recovery rates in the range of 99.7-101.4%. This research not only expands the scope of CDs in sensing fields, but also provides an effective strategy for the development of an excellent platform for real-time AR18 detection, contributing to public food safety.
Collapse
Affiliation(s)
- Houwen Hu
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Zewei Chen
- Department of Electrical and Electronic Engineering, Synchrotron Light Application Center, Saga University, Saga 840-8502, Japan
| | - Tingting Li
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Linfan Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Haoming Xing
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| | - Guoqiang Guo
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Full Spectral Solar Electricity Generation (FSSEG), Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Gang Wang
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
- National Key Laboratory of Materials for Integrated Circuits, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Da Chen
- Department of Microelectronic Science and Engineering, School of Physical Science and Technology, Ningbo University, Ningbo 315211, P. R. China.
| |
Collapse
|
22
|
Elfadil D, Amine A. Molecularly imprinted photopolymers combined with smartphone-based optical sensing for selective detection of bisphenol A in foods. Anal Bioanal Chem 2024:10.1007/s00216-024-05212-0. [PMID: 38462592 DOI: 10.1007/s00216-024-05212-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/13/2024] [Accepted: 02/19/2024] [Indexed: 03/12/2024]
Abstract
Bisphenol A (BPA), known for its endocrine-disrupting properties and potential to leach into food products, has led to significant food safety concerns. Therefore, the development of sensitive and selective BPA rapid detection methods is crucial. In this study, molecularly imprinted solid-phase extraction coupled to a colorimetric method was adopted for the smartphone-based determination of BPA. The molecularly imprinted polymer (MIP) was prepared via photopolymerization and used as a selective adsorbent material for SPE columns. The solid-phase extraction (SPE) columns with multiple cycles significantly reduced the extraction time to only 30 min. The developed method demonstrates useful sensitivity for BPA (LOD = 30 ppb). Furthermore, BPA migration from plastic packaging was evaluated under different storage conditions, revealing that microwave treatment for 5 min led to BPA release from polycarbonate packaging in juice and basic solutions. The MIP selective extraction/clean-up and smartphone-based optical sensor were successfully applied to BPA standard solutions and complex food samples (e.g., juice and tap water), resulting in reproducible and selective BPA determination (RSD ≤ 6%, n = 3). This rapid and cost-effective method of producing MIPs for BPA offers a promising solution for fast and low-cost sensing for on-site fresh food analysis.
Collapse
Affiliation(s)
- Dounia Elfadil
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, 20650, Mohammedia, Morocco
| | - Aziz Amine
- Laboratory of Process Engineering and Environment, Faculty of Sciences and Techniques, Hassan II University of Casablanca, 20650, Mohammedia, Morocco.
| |
Collapse
|
23
|
Wu W, Li Y, Song P, Xu Q, Lei D, Wang J, Fu B, Kong W. UiOL@AIEgens-assisted lateral flow immunosensor for the ultrasensitive dual-modal point-of-care detection of aflatoxin B 1. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133103. [PMID: 38043421 DOI: 10.1016/j.jhazmat.2023.133103] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/13/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
Aflatoxin B1 (AFB1) contamination in food has attracted worldwide attention. The sensitive detection of AFB1 is vital for ensuring food quality and safety. This study developed an ultrasensitive signal-enhanced lateral flow immunosensor (LFIS) based on the functionalized zirconium metal-organic framework (MOF) of a UiO linker enriched with abundant aggregation-induced emission luminogen (UiOL@AIEgens) probes for the rapid dual-modal point-of-care (POC) determination of AFB1. Using UiO MOFs with numerous active sites as the carrier facilitated abundant AIEgens enrichment on the surface. After coupling with enough anti-AFB1 monoclonal antibodies (mAbs), the green-emissive UiOL@AIEgens-mAbs probes with high specificity and remarkably-enhanced fluorescence responses were obtained to competitively capture target AFB1 in the standard or sample solution and AFB1 antigen immobilized on the test (T) line of the POC LFIS. Under optimum conditions, the LFIS was capable of visual qualitative and smartphone-assisted dual-modal determination of target AFB1 within 7 min. Detection occurred in a range of 0.01-5 ng/mL at an ultra-low detection limit of 0.003 ng/mL, which was 300- and 600-fold lower than traditional immunoassays and the maximum limit set by the European Union, respectively. Moreover, the feasibility and robustness of the LFIS platform were assessed by detecting AFB1 in maize and lotus seed samples with average recoveries of 94.3-109.0%. The developed UiOL@AIEgens-based POC LFIS can be used for ultrasensitive, reliable, on-site detection in food. This study provides a new method for the real-time monitoring of AFB1 and other harmful contaminants in food and more complex matrices.
Collapse
Affiliation(s)
- Wenjuan Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China; College of Science, China Agricultural University, Beijing 100193, China
| | - Ying Li
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Pengyue Song
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Qingbin Xu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100193, China
| | - Doudou Lei
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jiabo Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Bin Fu
- College of Science, China Agricultural University, Beijing 100193, China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
24
|
Ma X, Jin X, Bai H, Ma L, Li X, Fang X, Chen W, She M. Visual detection of water content in liquor with near-infrared fluorescence sensor assisted by smartphone. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 308:123791. [PMID: 38134656 DOI: 10.1016/j.saa.2023.123791] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/16/2023] [Indexed: 12/24/2023]
Abstract
Water content was an essential indicator in organic solvents, and it was necessary to develop a facile, cheap and readily available tool for the real-time, specifical and sensitive detection of water content. In this work, two novel D-π-A type near-infrared fluorescence sensors (DCM-1 and DCM-2) were designed and synthesized for the detection of trace water in organic solvents. DCM-1 and DCM-2 with solvent-dependent effects and large Stokes shift (>120 nm) showed good linear "intensity-to-content" relationships in four commonly-used organic solvents, and accomplished the ultra-fast and high-accuracy detection of the trace water in organic solvents. More importantly, a portable, fast, and accurate smartphone-assisted visual assay was designed for visual quantitative detection of the water content in organic solvents with a detection limit as low as 1.028 % v/v (e.g. in ethanol) and a wide detection range (0-60 % v/v). The smartphone-based visual assay was further applied to estimate the water content in disinfection alcohol and commercial liquor, which furnished a new strategy and broad prospects to achieve the accurate onsite detection of water content.
Collapse
Affiliation(s)
- Xuehao Ma
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xilang Jin
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China.
| | - Haiyan Bai
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Liyuan Ma
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xiao Li
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Xingliang Fang
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Weixing Chen
- Engineering Research Center of Light Stabilizers for Polymer Materials, Universities of Shaanxi Province, School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an 710021, PR China
| | - Mengyao She
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, The College of Life Sciences, Northwest University, Xi'an, Shaanxi Province 710069, PR China.
| |
Collapse
|
25
|
Han J, Zhang Y, Lv X, Fan D, Dong S. A facile, low-cost bimetallic iron-nickel MOF nanozyme-propelled ratiometric fluorescent sensor for highly sensitive and selective uric acid detection and its smartphone application. NANOSCALE 2024; 16:1394-1405. [PMID: 38165141 DOI: 10.1039/d3nr05028a] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
As a kind of well-known disease biomarker, uric acid (UA) is closely associated with normal metabolism and health. Despite versatile nanozymes facilitating the analysis of UA, most previous works could only generate single-signal outputs with unsatisfactory detection performance. Exploring a novel ratiometric fluorescent UA sensor with high sensitivity, reliability and portable sensing ability based on facile, low-cost nanozymes is still challenging. Herein, we report the first metal-organic-framework (MOF) nanozyme-originated ratiometric fluorescent UA sensor based on Fe3Ni-MOF-NH2 propelled UA/uricase/o-phenylenediamine tandem catalytic reaction. Different from previous reports, the peroxidase-like property and fluorescence of Fe3Ni-MOF-NH2 were simultaneously employed. In the absence of UA, only the MOF's fluorescence at 430 nm (FI430) can be observed, while the addition of UA will initiate UA/uricase catalytic reaction, and the generated H2O2 could oxidize o-phenylenediamine into highly fluorescent 2,3-diaminophenazine (DAP) (emission at 565 nm, FI565) under the catalysis of the MOF nanozyme. Coincidently, MOF's fluorescence can be quenched by DAP via the inner filter effect, resulting in a low FI430 value and high FI565 value, respectively. Therefore, H2O2 and UA can be alternatively detected through monitoring the above contrary fluorescence changes. The limit of detection for UA is 24 nM, which is much lower than those in most previous works, and the lowest among nanozyme-based ratiometric fluorescent UA sensors reported to date. Moreover, the portable sensing of UA via smartphone-based RGB analysis was facilely achieved by virtue of the above nanozyme-propelled tandem catalytic system, and MOF nanozyme-based molecular contrary logic pairs were further implemented accordingly.
Collapse
Affiliation(s)
- Jiawen Han
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Yuwei Zhang
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Xujuan Lv
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
| | - Daoqing Fan
- Laboratory for Marine Drugs and Bioproducts, National Laboratory for Marine Science and Technology; Key Laboratory of Marine Drugs, Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, Shandong, 266003, China.
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Shaojun Dong
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| |
Collapse
|
26
|
Hussain MM, Li F, Ahmed F, Khan WU, Xiong H. Fluorescence switch based on NIR-emitting carbon dots revealing high selectivity in the rapid response and bioimaging of oxytetracycline. J Mater Chem B 2023; 11:11290-11299. [PMID: 38013459 DOI: 10.1039/d3tb02139d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The abuse of antibiotics has led to serious environmental pollution and the emergence of drug-resistant bacteria surpassing the replacement rate of antibiotics. Herein, near-infrared fluorescent carbon dots (NIR-CDs) were developed to meet the requirements for oxytetracycline (OTC) detection in food and water samples (milk, honey, and lake water) with a detection limit of 0.112 μM. These NIR-CDs, possessing excellent water-solubility, deep tissue penetration ability, and tunable optical properties, exhibit maximum emission at 790 nm (NIR-I window). Unlike traditional CDs, this novel NIR-CDs nanoprobe provides a dual response in the presence of OTC (quenching and bathochromic shifting), without obvious interference from other existing biomolecules and metal ions. Additionally, these NIR-CDs exhibit excellent photostability and multi-resistance under UV irradiation, exceptional pH stability (pH 6-12), reliable long-time exposure, and durability in ionic (NaCl) environments. Moreover, NIR-CDs and NIR-CDs@OTC are nontoxic and were successfully utilized for cell-imaging applications in normal (NIH3T3) and cancer cells (HeLa).
Collapse
Affiliation(s)
| | - Fengli Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Farid Ahmed
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Waheed Ullah Khan
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| | - Hai Xiong
- Institute for Advanced Study, Shenzhen University, Shenzhen, 518060, P. R. China.
| |
Collapse
|
27
|
Yan L, Zhang B, Zong Z, Zhou W, Shuang S, Shi L. Artificial intelligence-integrated smartphone-based handheld detection of fluoride ion by Al 3+-triggered aggregation-induced red-emssion enhanced carbon dots. J Colloid Interface Sci 2023; 651:59-67. [PMID: 37540930 DOI: 10.1016/j.jcis.2023.07.125] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/10/2023] [Accepted: 07/19/2023] [Indexed: 08/06/2023]
Abstract
Artificial intelligence (AI)-integrated smartphone-based handheld determination platform, based on 3D printed accessory, Al3+-triggered aggregation-induced red-emssion enhanced carbon dots (CDs) test strip, and smartphone with self-developed YOLO v3 AI algorithm-based application, proves the feasibility for intelligent real-time on-site quantitation of F- through tracking a consecutive fluorescence (FL) colour change. CDs, manifesting dual emission of moderate green emission at 512 nm and weak red one at 620 nm under 365 nm excitation, were synthesized hydrothermally from alizarin carmine and citric acid. CDs@Al3+, with distinct aggregation-induced red-emssion enhancement and green-emssion quenchment, were prepared by adding Al3+ to the CDs solution. Inspiringly, due to intrinsic ratiometric FL variation (I620/I512), CDs@Al3+ engender a successive FL colour variation from red to green in response to different concentrations of F- with low limit of detection of 7.998 μM and wide linear range of 150-1200 µM based on excellent linearity correlation between R/G value and F- concentration. Furthermore, F- content in tap water, toothpaste and milk could be intelligently, speedily, and straightforwardly analyzed through the AI-integrated smartphone-based handheld detection platform. It is fervently desired that our study will motivate a brand-new perspective for the promotion of efficacious detection strategy and the extension of practical application promise.
Collapse
Affiliation(s)
- Liru Yan
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Bianxiang Zhang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Zhiwei Zong
- School of Computer and Information Technology, Shanxi University, Taiyuan 030006, PR China
| | - Wei Zhou
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Shaomin Shuang
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China
| | - Lihong Shi
- College of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China.
| |
Collapse
|
28
|
Yang Z, Xu T, Li H, She M, Chen J, Wang Z, Zhang S, Li J. Zero-Dimensional Carbon Nanomaterials for Fluorescent Sensing and Imaging. Chem Rev 2023; 123:11047-11136. [PMID: 37677071 DOI: 10.1021/acs.chemrev.3c00186] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Advances in nanotechnology and nanomaterials have attracted considerable interest and play key roles in scientific innovations in diverse fields. In particular, increased attention has been focused on carbon-based nanomaterials exhibiting diverse extended structures and unique properties. Among these materials, zero-dimensional structures, including fullerenes, carbon nano-onions, carbon nanodiamonds, and carbon dots, possess excellent bioaffinities and superior fluorescence properties that make these structures suitable for application to environmental and biological sensing, imaging, and therapeutics. This review provides a systematic overview of the classification and structural properties, design principles and preparation methods, and optical properties and sensing applications of zero-dimensional carbon nanomaterials. Recent interesting breakthroughs in the sensitive and selective sensing and imaging of heavy metal pollutants, hazardous substances, and bioactive molecules as well as applications in information encryption, super-resolution and photoacoustic imaging, and phototherapy and nanomedicine delivery are the main focus of this review. Finally, future challenges and prospects of these materials are highlighted and envisaged. This review presents a comprehensive basis and directions for designing, developing, and applying fascinating fluorescent sensors fabricated based on zero-dimensional carbon nanomaterials for specific requirements in numerous research fields.
Collapse
Affiliation(s)
- Zheng Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Tiantian Xu
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Hui Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- College of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, P. R. China
| | - Mengyao She
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Jiao Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
- Ministry of Education Key Laboratory of Resource Biology and Modern Biotechnology in Western China, Provincial Key Laboratory of Biotechnology of Shaanxi, The College of Life Sciences, Northwest University, Xi'an 710069, P. R. China
| | - Zhaohui Wang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Shengyong Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| | - Jianli Li
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry & Materials Science, Northwest University, Xi'an 710127, P. R. China
| |
Collapse
|
29
|
Aggarwal M, Sahoo P, Saha S, Das P. Machine Learning-Mediated Ultrasensitive Detection of Citrinin and Associated Mycotoxins in Real Food Samples Discerned from a Photoluminescent Carbon Dot Barcode Array. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:12849-12858. [PMID: 37584518 DOI: 10.1021/acs.jafc.3c04846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Economically viable remote sensing of foodborne contaminants using minimalistic chemical reagents and simultaneous automation calls for a concrete integration of a chemical detection strategy with artificial intelligence. In a first of its kind, we report the ultrasensitive detection of citrinin and associated mycotoxins like aflatoxin B1 and ochratoxin A using an Alizarin Red S (ARS) and cystamine-derived carbon dot (CD) that aptly amalgamate with machine learning algorithms for automation. The photoluminescence response of the CD as a function of various solvents and pH is used to generate array channels that are further modulated in the presence of the mycotoxins whose digital images were acquired to determine pixelation, essentially creating a barcode. The barcode was fed to machine learning algorithms that actualize and intertwine convoluted databases, demonstrating Extreme Gradient Boosting (XGBoost) as the optimized model out of eight algorithms tested. Spiked samples of wheat, rice, gram, maize, coffee, and milk were used to evaluate the testing model where an exemplary accuracy of 100% even at 10 pmol of mycotoxin concentration was achieved. Most importantly, the coexistence of mycotoxins could also be detected through the CD array and XGBoost synergy hinting toward a broader scope of the developed methodology for smart detection of foodborne contaminants.
Collapse
Affiliation(s)
- Maansi Aggarwal
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Pranab Sahoo
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Sriparna Saha
- Department of Computer Science and Engineering, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| | - Prolay Das
- Department of Chemistry, Indian Institute of Technology Patna, Patna 801103, Bihar, India
| |
Collapse
|