1
|
Ochoa-Sánchez C, Rodríguez-León E, Iñiguez-Palomares R, Rodríguez-Beas C. Brief Comparison of the Efficacy of Cationic and Anionic Liposomes as Nonviral Delivery Systems. ACS OMEGA 2024; 9:46664-46678. [PMID: 39619565 PMCID: PMC11603276 DOI: 10.1021/acsomega.4c06714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/28/2024] [Accepted: 11/05/2024] [Indexed: 01/05/2025]
Abstract
In recent decades, the development and application of nonviral vectors, such as liposomes and lipidic nanoparticles, for gene therapy and drug delivery have seen substantial progress. The interest in the physicochemical properties and structures of the complexes liposome/DNA and liposome/RNA is due to their potential to substitute viruses as carriers of drugs or genetic material into cells with minimal cytotoxicity, which could lead to their use in gene therapy. Initially, cationic liposomes were utilized as nonviral DNA delivery vectors; subsequently, different molecules, such as polymers, were incorporated to enhance transfection efficiency. Additionally, liposome/protein complexes have been developed as nonviral vectors for the treatment of diseases. The most relevant internalization pathways of these vectors and the few transfection results obtained using targeted and nontargeted liposomes are discussed below. The high cytotoxicity of cationic liposomes represents a significant challenge for the development of gene therapy and drug delivery. Anionic liposomes offer a promising alternative to address the limitations of conventional cationic liposomes, including immune response, short circulation time, and low toxicity. This review will discuss the advantages of cationic liposomes and the novel anionic liposome-based systems that have emerged as a result. The advent of novel designs and manufacturing techniques has facilitated the development of innovative systems, designated as lipid nanoparticles (LNPs), which serve as highly efficacious regulators of the immune system.
Collapse
Affiliation(s)
- Carlos Ochoa-Sánchez
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - Ericka Rodríguez-León
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - Ramón Iñiguez-Palomares
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| | - César Rodríguez-Beas
- Physics Department, Universidad de Sonora. Rosales and Luis Encinas 8300, Hermosillo, Sonora 83000, México
| |
Collapse
|
2
|
Freko S, Nikić M, Mayer D, Weiß LJK, Simmel FC, Wolfrum B. Digital CRISPR-Powered Biosensor Concept without Target Amplification Using Single-Impact Electrochemistry. ACS Sens 2024; 9:6197-6206. [PMID: 39435883 PMCID: PMC11590096 DOI: 10.1021/acssensors.4c02060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/23/2024]
Abstract
The rapid and reliable detection and quantification of nucleic acids is crucial for various applications, including infectious disease and cancer diagnostics. While conventional methods, such as the quantitative polymerase chain reaction are widely used, they are limited to the laboratory environment due to their complexity and the requirement for sophisticated equipment. In this study, we present a novel amplification-free digital sensing strategy by combining the collateral cleavage activity of the Cas12a enzyme with single-impact electrochemistry. In doing so, we modified silver nanoparticles using a straightforward temperature-assisted cofunctionalization process to subsequently detect the collision events of particles released by the activated Cas12a as distinct current spikes on a microelectrode array. The functionalization resulted in stable DNA-AgNP conjugates, making them suitable for numerous biosensor applications. Thus, our study demonstrates the potential of clustered regularly interspaced short palindromic repeats-based diagnostics combined with impact-based digital sensing for a rapid and amplification-free quantification of nucleic acids.
Collapse
Affiliation(s)
- Sebastian Freko
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Marta Nikić
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| | - Dirk Mayer
- Institute
of Biological Information Processing, Bioelectronics (IBI-3), Forschungszentrum Jülich, 52425 Jülich, Germany
| | - Lennart J. K. Weiß
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Friedrich C. Simmel
- Department
of Bioscience, TUM School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
| | - Bernhard Wolfrum
- Neuroelectronics,
Munich Institute of Biomedical Engineering, Department of Electrical
Engineering, School of Computation, Information and Technology, Technical University of Munich, 85748 Garching, Germany
| |
Collapse
|
3
|
Huang G, Li C, Wu R, Xue G, Song Q, Lan L, Xue C, Xu L, Shen Z. Self-assembly of protein-DNA hybrids dedicated to an accelerated and self-primed strand displacement amplification for reinforced serum microRNA probing. Anal Chim Acta 2024; 1308:342667. [PMID: 38740453 DOI: 10.1016/j.aca.2024.342667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/18/2024] [Accepted: 04/29/2024] [Indexed: 05/16/2024]
Abstract
BACKGROUND High-efficiency and highly reliable analysis of microRNAs (miRNAs) in bodily fluids highlights its significance to be extensively utilized as candidates for non-invasive "liquid biopsy" approaches. DNA biosensors based on strand displacement amplification (SDA) methods have been successfully designed to detect miRNAs given the efficiently amplified and recycled of the target sequences. However, the unpredictable DNA framework and heavy reliance on free diffusion or random reactant collisions in existing approaches lead to delayed reaction kinetics and inadequate amplification. Thus, it is crucial to create a modular probe with a controlled structure, high local concentration, and ease of synthesis. RESULTS Inspired by the natural spatial-confinement effect based on a well-known streptavidin-biotin interaction, we constructed a protein-DNA hybrid, named protein-scaffolded DNA tetrads (PDT), which consists of four biotinylated Y-shaped DNA (Y-DNA) surrounding a streptavidin protein center via a streptavidin-biotin bridge. The streptavidin-biotin recognition system significantly increased the local concentration and intermolecular distance of the probes to achieve enhanced reaction efficiency and kinetics. The PDT-based assay starts with the target miRNA binding to Y-DNA, which disassembles the Y-DNA structures into three types of hairpin-shaped structures via self-primed strand displacement amplification (SPSDA) and generates remarkable fluorescence signal that is proportional to the miRNA concentration. Results demonstrated that PDT enabled a more efficient detection of miRNA-21 with a sensitivity of 1 fM. Moreover, it was proven reliable for the detection of clinical serum samples, suggesting great potential for advancing the development of rapid and robust signal amplification technologies for early diagnosis. SIGNIFICANCE This simple yet robust system contributes to the early diagnosis of miR-21 with satisfactory sensitivity and specificity, and display a significantly improved nuclease resistance owing to their unique structure. The results suggested that the strategy is expected to provide a promising potential platform for tumor diagnosis, prognosis and therapy.
Collapse
Affiliation(s)
- Guoqiao Huang
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China; Department of Laboratory Medicine, Jintang First People's Hospital, West China Hospital Sichuan University Jintang Hospital, Chengdu, Sichuan, 610400, PR China
| | - Chan Li
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Rong Wu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Guohui Xue
- Department of Clinical Laboratory, Jiujiang NO.1 People's Hospital, Jiujiang, Jiangxi, 332000, PR China
| | - Qiufeng Song
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Linwen Lan
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China
| | - Chang Xue
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Liang Xu
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| | - Zhifa Shen
- Key Laboratory of Laboratory Medicine, Ministry of Education of China, and Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, PR China.
| |
Collapse
|
4
|
Zhang JH, Song DM, Zhou YG. Impact electrochemistry for biosensing: advances and future directions. Analyst 2024; 149:2498-2506. [PMID: 38629127 DOI: 10.1039/d4an00170b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2024]
Abstract
Impact electrochemistry allows for the investigation of the properties of single entities, ranging from nanoparticles (NPs) to soft bio-particles. It has introduced a novel dimension in the field of biological analysis, enhancing researchers' ability to comprehend biological heterogeneity and offering a new avenue for developing novel diagnostic devices for quantifying biological analytes. This review aims to summarize the recent advancements in impact electrochemistry-based biosensing over the past two to three years and provide insights into the future directions of this field.
Collapse
Affiliation(s)
- Jian-Hua Zhang
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, Shandong 276005, China.
| | - Dian-Mei Song
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China.
- Greater Bay Area Institute for Innovation, Hunan University, Guangzhou, 511340, Guangdong Province, China
| |
Collapse
|
5
|
Chen Z, Sun Q, Yang Y, Nie X, Xiang W, Ren Y, Le T. Aptamer-based diagnostic and therapeutic approaches for animal viruses: A review. Int J Biol Macromol 2024; 257:128677. [PMID: 38072350 DOI: 10.1016/j.ijbiomac.2023.128677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 01/27/2024]
Abstract
Animal diseases often have significant consequences due to the unclear and time-consuming diagnosis process. Furthermore, the emergence of new viral infections and drug-resistant pathogens has further complicated the diagnosis and treatment of viral diseases. Aptamers, which are obtained through systematic evolution of ligands by exponential enrichment (SELEX) technology, provide a promising solution as they enable specific identification and binding to targets, facilitating pathogen detection and the development of novel therapeutics. This review presented an overview of aptasensors for animal virus detection, discussed the antiviral activity and mechanisms of aptamers, and highlighted advancements in aptamer-based antiviral research following the COVID-19 pandemic. Additionally, the challenges and prospects of aptamer-based virus diagnosis and treatment research were explored. Although this review was not exhaustive, it offered valuable insights into the progress of aptamer-based antiviral drug research, target mechanisms, as well as the development of novel antiviral drugs and biosensors.
Collapse
Affiliation(s)
- Zhuoer Chen
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Qi Sun
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Ying Yang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Xunqing Nie
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Wenyu Xiang
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Yueyang Ren
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China
| | - Tao Le
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, PR China.
| |
Collapse
|