1
|
Alamudi SH, Lee YA. Design strategies for organelle-selective fluorescent probes: where to start? RSC Adv 2025; 15:2115-2131. [PMID: 39845114 PMCID: PMC11752733 DOI: 10.1039/d4ra08032g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 01/15/2025] [Indexed: 01/24/2025] Open
Abstract
Monitoring physiological changes within cells is crucial for understanding their biological aspects and pathological activities. Fluorescent probes serve as powerful tools for this purpose, offering advantageous characteristics over genetically encoded probes. While numerous organelle-selective probes have been developed in the past decades, several challenges persist. This review explores the strategies and key factors contributing to the successful rationale design of these probes. We systematically discuss the typical mode of cellular uptake generally adopted by fluorescent probes and provide a detailed examination of the key factors to consider in design rationale from two perspectives: the properties of the target organelle and the physicochemical properties of the probe itself. Additionally, recent examples of organelle-targeted probes are presented, along with a discussion of the current challenges faced by fluorescent probes in the field.
Collapse
Affiliation(s)
- Samira Husen Alamudi
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Indonesia Depok Indonesia 16424 +6221-7270027
| | - Yong-An Lee
- Genome Institute of Singapore (GIS), Agency for Science, Technological, and Research (A*STAR) 60 Biopolis Street, Genome Singapore 138672
| |
Collapse
|
2
|
Jaeger S, Lanquaye H, Dwivedi SK, Arachchige DL, Xia J, Waters M, Bigari BL, Olowolagba AM, Agyemang P, Zhang Y, Zhang Y, Ata A, Kathuria I, Luck RL, Werner T, Liu H. Near-Infrared Visualization of NAD(P)H Dynamics in Live Cells and Drosophila melanogaster Larvae Using a Coumarin-Based Pyridinium Fluorescent Probe. ACS APPLIED BIO MATERIALS 2024; 7:8465-8478. [PMID: 39562316 PMCID: PMC11792162 DOI: 10.1021/acsabm.4c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
A near-infrared fluorescent probe, A, was designed by substituting the carbonyl group of the coumarin dye's lactone with a 4-cyano-1-methylpyridinium methylene group and then attaching an electron-withdrawing NADH-sensing methylquinolinium acceptor via a vinyl bond linkage to the coumarin dye at the 4-position. The probe exhibits primary absorption maxima at 603, 428, and 361 nm, and fluoresces weakly at 703 nm. The addition of NAD(P)H results in a significant blue shift in the fluorescence peak from 703 to 670 nm, accompanied by a substantial increase in fluorescence intensity. This spectral shift is attributed to the transformation from an A-π-A-π-D configuration to a D-π-A-π-D pyridinium platform in probe AH, owing to the addition of a hydride from NADH to the electron-accepting quinolinium acceptor producing the electron-contributing 1-methyl-1,4-dihydroquinoline donor in probe AH. This conclusion is supported by theoretical calculations. The probe was utilized to investigate NAD(P)H dynamics under various conditions. In HeLa cells, treatment with glucose or maltose resulted in a substantial elevation in near-infrared emission intensity, suggesting increased NAD(P)H levels. Chemotherapeutic agents including cisplatin and fludarabine at concentrations of 5, 10, and 20 μM brought about a dose-dependent increase in emission intensity, reflecting heightened NAD(P)H levels due to drug-induced stress and cellular damage. In vivo experiments with hatched, starved Drosophila melanogaster larvae were also conducted. The results showed a clear relationship between emission intensity and the levels of NADH, glucose, and oxaliplatin, confirming that the probe can detect variations in NAD(P)H levels in a living organism. Our investigation also demonstrates that NAD(P)H levels are significantly elevated in the cystic kidneys of ADPKD mouse models and human patients, indicating substantial metabolic alterations associated with the disease. This near-infrared emissive probe offers a highly sensitive and specific method for monitoring NAD(P)H levels across cellular, tissue and whole-organism systems. The ability to detect NAD(P)H variations in reaction to varying stimuli, including nutrient availability and chemotherapeutic stress, underscores its potential as a valuable resource for biomedical research and therapeutic monitoring.
Collapse
Affiliation(s)
- Sophia Jaeger
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Henry Lanquaye
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Sushil K Dwivedi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Dilka Liyana Arachchige
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - James Xia
- Woodbury high school, 2665 Woodlane Drive, Woodbury, Minnesota 55125, United States
| | - May Waters
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Bella Lyn Bigari
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Adenike Mary Olowolagba
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Peter Agyemang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yang Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yan Zhang
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Athar Ata
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Ishana Kathuria
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- Health Research Institute, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
3
|
Ma J, Sun R, Xia K, Xia Q, Liu Y, Zhang X. Design and Application of Fluorescent Probes to Detect Cellular Physical Microenvironments. Chem Rev 2024; 124:1738-1861. [PMID: 38354333 DOI: 10.1021/acs.chemrev.3c00573] [Citation(s) in RCA: 74] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
The microenvironment is indispensable for functionality of various biomacromolecules, subcellular compartments, living cells, and organisms. In particular, physical properties within the biological microenvironment could exert profound effects on both the cellular physiology and pathology, with parameters including the polarity, viscosity, pH, and other relevant factors. There is a significant demand to directly visualize and quantitatively measure the fluctuation in the cellular microenvironment with spatiotemporal resolution. To satisfy this need, analytical methods based on fluorescence probes offer great opportunities due to the facile, sensitive, and dynamic detection that these molecules could enable in varying biological settings from in vitro samples to live animal models. Herein, we focus on various types of small molecule fluorescent probes for the detection and measurement of physical parameters of the microenvironment, including pH, polarity, viscosity, mechanical force, temperature, and electron potential. For each parameter, we primarily describe the chemical mechanisms underlying how physical properties are correlated with changes of various fluorescent signals. This review provides both an overview and a perspective for the development of small molecule fluorescent probes to visualize the dynamic changes in the cellular environment, to expand the knowledge for biological process, and to enrich diagnostic tools for human diseases.
Collapse
Affiliation(s)
- Junbao Ma
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Rui Sun
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Kaifu Xia
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310030, Zhejiang Province, China
| | - Qiuxuan Xia
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- State Key Laboratory of Medical Proteomics, National Chromatographic R. & A. Center, Chinese Academy of Sciences Dalian Liaoning 116023, China
| | - Xin Zhang
- Department of Chemistry and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China
- Westlake Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| |
Collapse
|
4
|
Jiang J, Wang S, Wang S, Yang Y, Zhang X, Wang W, Zhu X, Fang M, Xu Y. In vivo bioimaging and detection of endogenous hypochlorous acid in lysosome using a near-infrared fluorescent probe. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:3188-3195. [PMID: 37340797 DOI: 10.1039/d3ay00338h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2023]
Abstract
The phagocyte's lysosome is the primary site of hypochlorous acid (HOCl) synthesis, and HOCl can be used as a biomarker for osteoarthritis diagnosis and treatment evaluation. Accurate detection of HOCl with high sensitivity and selectivity is required to understand its activities in healthy bio-systems and diseases. By integrating acceptable design principles and dye screening methodologies, we proposed and developed a novel near-infrared fluorescent HOCl sensing probe (FNIR-HOCl). The FNIR-HOCl probe has a quick reaction rate, high sensitivity (LOD = 70 nM), and excellent selectivity toward HOCl over other metal ions and reactive oxygen species. It has been successfully implemented to detect endogenous HOCl produced by RAW264.7 cells, as well as in vivo imaging towards mice with osteoarthritis. As a result, the probe FNIR-HOCl is extremely promising as a biological tool for revealing the roles of HOCl in various physiological and pathological contexts.
Collapse
Affiliation(s)
- Jian Jiang
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Shaocai Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Sai Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China.
| | - Yinshuang Yang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Xiuli Zhang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Wenjun Wang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Xu Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, P. R. China.
| | - Mingxi Fang
- School of Medical Imaging, Xuzhou Medical University, Xuzhou, Jiangsu 221006, P. R. China.
| | - Yaozeng Xu
- Department of Orthopaedics, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| |
Collapse
|
5
|
Alcay Y, Ozdemir E, Yildirim MS, Ertugral U, Yavuz O, Aribuga H, Ozkilic Y, Şenyurt Tuzun N, Ozdabak Sert AB, Kok FN, Yilmaz I. A methionine biomolecule-modified chromenylium-cyanine fluorescent probe for the analysis of Hg2+ in the environment and living cells. Talanta 2023; 259:124471. [PMID: 37001401 DOI: 10.1016/j.talanta.2023.124471] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/30/2023]
Abstract
The objective of the study is, for the first time, to construct a new near infrared (NIR) fluorophore, spectrophotometric, colorimetric, ratiometric, and turn-on probe (CSME) based on chromenylium cyanine platform decorated with methionine biomolecule to provide an efficient solution for critical shortcoming to be encountered for analysis of hazardous Hg2+ in environment and living cell. The CSME structure and its interaction with Hg2+ ion were evaluated by NMR, FTIR, MS, UV-Vis and fluorescence methods as well as Density Functional Theory (DFT) calculations. The none fluorescence CSME having spirolactam ring only interacted with Hg2+ in aqueous solution including competing ions. This interaction caused the fluorescence CSME with opened spirolactam form which exhibited spectral and colorimetric changes in the NIR region. The probe based on UV-Vis and fluorescence techniques respond in 90 s, has wide linear ranges (for UV-Vis: 6.29 × 10-8 - 1.86 × 10-4 M; for fluorescence: 9.49 × 10-9 - 1.13 × 10-5 M), and has a lower Limit of Detection (LOD) value (for fluorescence: 4.93 × 10-9 M, 0.99 ng/mL) than the value predicted by the US Environmental Protection Agency (EPA) organization. Hg2+ analysis was performed in drinking and tap water with low Relative Standard Deviation (RSD) values and high recovery. Smartphone and living cell applications were successfully performed for colorimetric sensing Hg2+ in real samples and 3T3 cells, respectively.
Collapse
|
6
|
Zhang S, Wang T, Wang X, Liao W, Wang X, Yuan Y, Chen G, Jia X. A novel aggregation-induced emission fluorescent probe with large Stokes shift for sensitive detection of pH changes in live cells. LUMINESCENCE 2022; 37:2139-2144. [PMID: 36367244 DOI: 10.1002/bio.4407] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 11/09/2022] [Indexed: 11/13/2022]
Abstract
The detection of intracellular pH is crucial for elucidating the pathological process of cancers, as well as for medical diagnostic applications. Here, we developed an aggregation-induced emission active pH-responsive fluorescent probe (TPE-DCP) for sensitively detecting cell pH changes. The probe shows obvious pH-sensing properties at ~615 nm, with a pKa value of 6.82 and a good linear pH response ranging from 8.5 to 4.5. TPE-DCP holds advantages such as excellent anti-interference performance, good photostability, and low cytotoxicity, and has been successfully used to image intracellular pH changes in cells.
Collapse
Affiliation(s)
- Shuwei Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Ting Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xuewen Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Wenyi Liao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Xinyao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Yu Yuan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| | - Gang Chen
- College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Xiaodong Jia
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, China
| |
Collapse
|
7
|
Han Z, Yu X, Sang Y, Xu Y, Zhao A, Lu X. Aromaticity-Enhanced pH-Responsive Electrochemiluminescence of Cyclopentadienols. Anal Chem 2022; 94:6036-6043. [PMID: 35384644 DOI: 10.1021/acs.analchem.2c00717] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Due to significantly tackling the problems of aggregation-caused quenching and water insolubility, aggregation-induced emission electrochemiluminescence (AIE-ECL) has emerged as a research highlight in aqueous detection and sensing. Herein, we reported a series of cyclopentadienols featuring excellent AIE-ECL properties on the basis of an enhanced aromaticity strategy. In detail, substituents profoundly determined ECL emission by affecting the characteristic absorption peak intensity ratio in UV-vis spectra and lowest unoccupied molecular orbital (LUMO)-highest occupied molecular orbital (HOMO) energies. It was found that 1,2,3,4,5-pentafluorophenyl cyclopentadienol (PFCD) containing an electron-withdrawing fluorine substituent, the maximum R/B band ratio, and a smaller LUMO-HOMO band gap demonstrated the best ECL performance. Meanwhile, such an AIE-ECL system displayed a wide response range toward pH (4-12) with a good linear relationship. Our research not only enriched polycyclic aromatic hydrocarbon-based AIE-ECL systems but also established an efficient pH sensor in the aqueous phase.
Collapse
Affiliation(s)
- Zhengang Han
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xinyao Yu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yuyang Sang
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Yanhong Xu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Aijuan Zhao
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| | - Xiaoquan Lu
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou 730070, People's Republic of China
| |
Collapse
|
8
|
Kniec K, Marciniak L. A ratiometric luminescence pH sensor based on YAG:V 3+,V 5+ nanoparticles. NEW J CHEM 2022. [DOI: 10.1039/d2nj01595a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new type of ratiometric luminescence-based pH sensor is described.
Collapse
Affiliation(s)
- K. Kniec
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| | - L. Marciniak
- Institute of Low Temperature and Structure Research, Polish Academy of Sciences, Okólna 2, 50-422 Wroclaw, Poland
| |
Collapse
|
9
|
Hu L, Zhang M, Dong J, Dong R, Yu C, Gong S, Yan Z. A neoteric dual-channel spectral sensor for wide-range pH detection based on variables in UV-vis peak and intensity. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5224-5230. [PMID: 34698732 DOI: 10.1039/d1ay01141c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A water-soluble 2',4',6'-trihydroxy phenylazo luminol dye (THPL) with a D-π-A conjugated structure was developed for the first time for the dual-channel spectral sensing of a wide-range of pH values in aqueous solutions, using phloroglucinol as the electron-donating group, heterocycle amide luminol as the electron-accepting one and -NN- as the π-conjugated bridge. Its UV-vis absorption spectrum, especially its spectral response to pH, was investigated in detail. The results confirmed that the proposed THPL exhibited superior UV-vis spectral properties, a strong molar absorption coefficient (εmax = 3.35 × 104 L mol-1 cm-1) and a small half-band width of ca. 126 nm. In particular, either the absorption intensity (Abs) or peak (λmax) changed linearly with pH values from 3.0 to 10.0 under the optimized conditions. Notably, THPL expressed an exclusive dual-channel spectral response to pH, i.e., Abs (a.u.) = 0.1316 + 0.0278 pH (R2 = 0.9921), λmax = 441.5 - 6.64 pH (R2 = 0.9968, pH = 3.0-6.0) and λmax = 359.6 + 7.38 pH (R2 = 0.9879, pH = 6.0-10.0). Under the optimized conditions, THPL was applied to detect pH values in some aqueous and fruit juice samples with satisfactory results. The reversible recognition mechanism was deduced by UV-vis titration, 1H NMR titration and theoretical calculation.
Collapse
Affiliation(s)
- Lei Hu
- School of Chemistry and Chemical Engineering & Shandong Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, China.
| | - Mengxin Zhang
- School of Chemistry and Chemical Engineering & Shandong Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, China.
| | - Junwei Dong
- School of Chemistry and Chemical Engineering & Shandong Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, China.
| | - Ran Dong
- School of Chemistry and Chemical Engineering & Shandong Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, China.
| | - Caili Yu
- School of Chemistry and Chemical Engineering & Shandong Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, China.
| | - Shijie Gong
- School of Chemistry and Chemical Engineering & Shandong Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, China.
| | - Zhengquan Yan
- School of Chemistry and Chemical Engineering & Shandong Key Laboratory of Life-Organic Analysis, Qufu Normal University, Qufu, 273165, China.
| |
Collapse
|
10
|
Yin J, Huang L, Wu L, Li J, James TD, Lin W. Small molecule based fluorescent chemosensors for imaging the microenvironment within specific cellular regions. Chem Soc Rev 2021; 50:12098-12150. [PMID: 34550134 DOI: 10.1039/d1cs00645b] [Citation(s) in RCA: 252] [Impact Index Per Article: 63.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The microenvironment (local environment), including viscosity, temperature, polarity, hypoxia, and acidic-basic status (pH), plays indispensable roles in cellular processes. Significantly, organelles require an appropriate microenvironment to perform their specific physiological functions, and disruption of the microenvironmental homeostasis could lead to malfunctions of organelles, resulting in disorder and disease development. Consequently, monitoring the microenvironment within specific organelles is vital to understand organelle-related physiopathology. Over the past few years, many fluorescent probes have been developed to help reveal variations in the microenvironment within specific cellular regions. Given that a comprehensive understanding of the microenvironment in a particular cellular region is of great significance for further exploration of life events, a thorough summary of this topic is urgently required. However, there has not been a comprehensive and critical review published recently on small-molecule fluorescent chemosensors for the cellular microenvironment. With this review, we summarize the recent progress since 2015 towards small-molecule based fluorescent probes for imaging the microenvironment within specific cellular regions, including the mitochondria, lysosomes, lipid drops, endoplasmic reticulum, golgi, nucleus, cytoplasmic matrix and cell membrane. Further classifications at the suborganelle level, according to detection of microenvironmental factors by probes, including polarity, viscosity, temperature, pH and hypoxia, are presented. Notably, in each category, design principles, chemical synthesis, recognition mechanism, fluorescent signals, and bio-imaging applications are summarized and compared. In addition, the limitations of the current microenvironment-sensitive probes are analyzed and the prospects for future developments are outlined. In a nutshell, this review comprehensively summarizes and highlights recent progress towards small molecule based fluorescent probes for sensing and imaging the microenvironment within specific cellular regions since 2015. We anticipate that this summary will facilitate a deeper understanding of the topic and encourage research directed towards the development of probes for the detection of cellular microenvironments.
Collapse
Affiliation(s)
- Junling Yin
- Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250000, Shandong, People's Republic of China
| | - Ling Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Luling Wu
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK.
| | - Jiangfeng Li
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| | - Tony D James
- Department of Chemistry, University of Bath, Bath, BA2 7AY, UK. .,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, People's Republic of China
| | - Weiying Lin
- Guangxi Key Laboratory of Electrochemical Energy Materials, Institute of Optical Materials and Chemical Biology, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi, 530004, People's Republic of China.
| |
Collapse
|
11
|
López-Espejel M, Gómez-Treviño A, Muñoz-Flores BM, Treto-Suarez MA, Schott E, Páez-Hernández D, Zarate X, Jiménez-Pérez VM. Organotin Schiff bases as halofluorochromic dyes: green synthesis, chemio-photophysical characterization, DFT, and their fluorescent bioimaging in vitro. J Mater Chem B 2021; 9:7698-7712. [PMID: 34586143 DOI: 10.1039/d1tb01405f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fluorescent bioimaging is an excellent tool in cellular biology, and it will be a powerful technique in modern medicine as a noninvasive imaging technology where tumoral and normal cells must be distinguished. One of the differences between normal and cancer cells is the intracellular pH. Therefore, the design and synthesis of pH-responsive fluorescent materials are required. Organotin Schiff bases showed halofluorochromic behavior in solution. Microwave-assisted synthesis showed better reaction times and chemical yields compared with conventional heating. All compounds were fully characterized by spectroscopic and spectrometric techniques. The halofluorochromism study showed that some molecules in acidic media have the maximum luminescence intensity due to protonation. All the fluorescent tin complexes showed cell staining on hepatocyte and MCF-7 cells by confocal microscopy. The theoretical study has enabled us to rationalize the optical properties and the halofluorochromism for compounds 1 and 2 synthesized in this work. Our results showed that the emission decrease, in the acid and basic media for compounds 1 and 2, respectively, is caused by intramolecular charge transfer (ICT) deactivation.
Collapse
Affiliation(s)
- Margarita López-Espejel
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n, C.P. 66451, Nuevo León, Mexico.
| | - Alberto Gómez-Treviño
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n, C.P. 66451, Nuevo León, Mexico.
| | - Blanca M Muñoz-Flores
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n, C.P. 66451, Nuevo León, Mexico.
| | - Manuel A Treto-Suarez
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.,ANID-Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process Towards Sustainable Chemistry (CSC), Chile
| | - Eduardo Schott
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Centro de Energía UC, Centro de Investigación en Nanotecnología y Materiales Avanzados CIEN-UC, Pontificia Universidad Católica de Chile, Avenida Vicuña Mackenna, 4860, Santiago, Chile.,ANID-Millennium Science Initiative Program-Millennium Nuclei on Catalytic Process Towards Sustainable Chemistry (CSC), Chile
| | - Dayán Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República #275, Santiago de Chile, Chile.,Center of Applied Nanosciences (CANS), Chile República #275, Santiago de Chile, Chile
| | - Ximena Zarate
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Santiago, Chile.
| | - Víctor M Jiménez-Pérez
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Químicas, Ciudad Universitaria, Av. Universidad s/n, C.P. 66451, Nuevo León, Mexico.
| |
Collapse
|
12
|
Wan S, Xia S, Medford J, Durocher E, Steenwinkel TE, Rule L, Zhang Y, Luck RL, Werner T, Liu H. A ratiometric near-infrared fluorescent probe based on a novel reactive cyanine platform for mitochondrial pH detection. J Mater Chem B 2021; 9:5150-5161. [PMID: 34132313 PMCID: PMC8265329 DOI: 10.1039/d1tb00643f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A near-infrared reactive cyanine platform (probe A) was prepared by condensation of 9-chloro-1,2,3,4-tetrahydro-10-methyl-acridinium iodide with Fisher's aldehyde. A near-infrared fluorescent probe (probe B) was prepared by modifying a reactive chlorine atom of probe A with tert-butyl(2-aminoethyl)carbamate through a substitution reaction. The deprotection of the Boc group of probe B was achieved under an acidic condition, affording an amine-functionalized cyanine dye (probe C). A near-infrared ratiometric fluorescent probe (probe D) for mitochondrial pH detection was synthesized by conjugating a FRET coumarin donor to a FRET cyanine acceptor (probe C) through an amide bond connection. Probe A shows low fluorescence of 2% due to an electron-withdrawing chlorine atom, while probes B-D display high fluorescence quantum yields of 60%, 32%, and 35% in aqueous solutions containing 10% ethanol, respectively. Probes B-D show strong fluorescence with push-pull molecular structures in neutral and basic pH conditions. However, protonation of the probe's second amine at the 9-position under acidic condition disrupts the push-pull feature of the probes, resulting in fluorescence quenching of the new cyanine fluorophores. The probes can selectively stain mitochondria, while probe D was employed to detect pH changes in HeLa cells and Drosophila melanogaster first-instar larvae.
Collapse
Affiliation(s)
- Shulin Wan
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Guria S, Ghosh A, Mishra T, Das MK, Adhikary A, Adhikari S. X-ray structurally characterized quinoline based fluorescent probes for pH sensing: Application in intracellular pH imaging; DFT calculations and fluorescent labelling. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.113074] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Mazi W, Yan Y, Zhang Y, Xia S, Wan S, Tajiri M, Luck RL, Liu H. A near-infrared fluorescent probe based on a hemicyanine dye with an oxazolidine switch for mitochondrial pH detection. J Mater Chem B 2021; 9:857-863. [PMID: 33367439 PMCID: PMC7855747 DOI: 10.1039/d0tb02181d] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A near-infrared fluorescent probe (AH+) has been prepared by incorporating an oxazolidine switch into a near-infrared hemicyanine dye. The probe shows fast and sensitive responses to pH from an oxazolidine switch to the hemicyanine dye upon pH decreases from 10.0 to 5.0. The probe shows good photostability, low cytotoxicity, and reversible fluorescence responses to pH changes with a pKa value of 7.6. It has been successfully used to determine pH changes in mitochondria.
Collapse
Affiliation(s)
- Wafa Mazi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | | | | | | | | | | | | | | |
Collapse
|
15
|
Ren J, Wang L, Guo R, Tang Y, Zhou H, Lin W. A Naphthalimide-Based Fluorescent Probe for Detecting Intracellular pH and Its Biological Imaging Application. ACTA CHIMICA SINICA 2021. [DOI: 10.6023/a20080399] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Abstract
Abstract
Transition metals such as zinc, copper and iron play vital roles in maintaining physiological functions and homeostasis of living systems. Molecular imaging, including two-photon imaging (TPI), bioluminescence imaging (BLI) and photoacoustic imaging (PAI), could act as non-invasive toolkits for capturing dynamic events in living cells, tissues and whole animals. Herein, we review the recent progress in the development of molecular probes for essential transition metals and their biological applications. We emphasize the contributions of metallostasis to health and disease, and discuss the future research directions about how to harness the great potential of metal sensors.
Graphic Abstract
Collapse
|
17
|
Karaoglu K. A new chromenylium-cyanine chemosensor for switch-ON near-infrared copper (II) sensing. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
18
|
Wu F, Luo X, Yang J, Ren M, Wei X, Yan Z. A Dual‐Mode Colorimetric/Fluorescent Sensor Comprising Rhodamine B and Piperazine: Response to Acidic pH Values and Investigation of Recognition Mechanism. ChemistrySelect 2020. [DOI: 10.1002/slct.202000140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Fang‐hui Wu
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Xiang‐rui Luo
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Jun‐qing Yang
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Mei‐juan Ren
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Xian‐wen Wei
- School of Chemistry and Chemical EngineeringAnhui University of Technology Maanshan 243002 China
| | - Zhengquan Yan
- School of Chemistry and Chemical EngineeringQufu Normal University Jining Shi, Qufu 273165 China
| |
Collapse
|
19
|
Xia S, Wang J, Zhang Y, Whisman N, Bi J, Steenwinkel TE, Wan S, Medford J, Tajiri M, Luck RL, Werner T, Liu H. Ratiometric fluorescent probes based on through-bond energy transfer of cyanine donors to near-infrared hemicyanine acceptors for mitochondrial pH detection and monitoring of mitophagy. J Mater Chem B 2020; 8:1603-1615. [PMID: 32055810 PMCID: PMC7058096 DOI: 10.1039/c9tb02302j] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Two ratiometric near-infrared fluorescent probes have been developed to selectively detect mitochondrial pH changes based on highly efficient through-bond energy transfer (TBET) from cyanine donors to near-infrared hemicyanine acceptors. The probes consist of identical cyanine donors connected to different hemicyanine acceptors with a spirolactam ring structure linked via a biphenyl linkage. At neutral or basic pH, the probes display only fluorescence of the cyanine donors when they are excited at 520 nm. However, acidic pH conditions trigger spirolactam ring opening, leading to increased π-conjugation of the hemicyanine acceptors, resulting in new near-infrared fluorescence peaks at 740 nm and 780 nm for probes A and B, respectively. This results in ratiometric fluorescence responses of the probes to pH changes indicated by decreases of the donor fluorescence and increases of the acceptor fluorescence under donor excitation at 520 nm due to a highly efficient TBET from the donors to the acceptors. The probes only show cyanine donor fluorescence in alkaline-pH mitochondria. However, the probes show moderate fluorescence decreases of the cyanine donor and considerable fluorescence increases of hemicyanine acceptors during the mitophagy process induced by nutrient starvation or under drug treatment. The probes display rapid, selective, and sensitive responses to pH changes over metal ions, good membrane penetration, good photostability, large pseudo-Stokes shifts, low cytotoxicity, mitochondria-targeting, and mitophagy-tracking capabilities.
Collapse
Affiliation(s)
- Shuai Xia
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jianbo Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA. and College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Yibin Zhang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Nick Whisman
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Tessa E Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | - Shulin Wan
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Jerry Medford
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Momoko Tajiri
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA.
| |
Collapse
|
20
|
Zhang Y, Zhao Y, Wu Y, Zhao B, Wang L, Song B. Hemicyanine based naked-eye ratiometric fluorescent probe for monitoring lysosomal pH and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 227:117767. [PMID: 31707017 DOI: 10.1016/j.saa.2019.117767] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/04/2019] [Accepted: 11/04/2019] [Indexed: 06/10/2023]
Abstract
Lysosome as the typical acidic organelle involved in many biological processes, the dysfunction of its pH would alter many diseases. Small-molecule fluorescent probe has been considered as vital tool for monitoring pH fluctuation in living cells. Herein, a hemicyanine based ratiometric fluorescent probe was synthesized, namely, 2,3-trimethy-3-[2-(dimethyl-amino-4-yl) vinyl]-3H-benzo[e]indole (BiDL), for rapidly detection pH under acidic conditions. BiDL exhibited ratio fluorescence emission (F534nm/F622nm) characteristic with pKa 4.25. BiDL showed good linearly response in pH 3.4-4.82, indicating that the probe can be used for quantitative detection pH. The probe also displayed large Stokes shift (112 nm/201 nm) under neutral and acidic conditions, respectively, which could effectively reduce the excitation interference. BiDL had excellent cell membrane permeability, good photo-stability and low toxicity in living cells. The dual-channel confocal fluorescent microscopic ratiometric imaging application of pH in HeLa cells and lysosome were achieved successfully, indicating that BiDL has good potential for investigating lysosome-relevant pathological and physiological processes.
Collapse
Affiliation(s)
- Yingying Zhang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Yanliang Zhao
- School of Physics and Optoelectronics Engineering, Ludong University, Yantai 264025, China
| | - Yingnan Wu
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Liyan Wang
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China
| | - Bo Song
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| |
Collapse
|
21
|
Meng F, Zhang C, Li D, Tian Y. Aggregation induced emission-active two-photon absorption zwitterionic chromophore for bioimaging application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 226:117571. [PMID: 31622830 DOI: 10.1016/j.saa.2019.117571] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 09/18/2019] [Accepted: 09/27/2019] [Indexed: 06/10/2023]
Abstract
The fabrication of two-photon absorption material is a versatile approach to achieve high resolution bioimaging with low phototoxicity yet remain sophisticated. Herein, a zwitterionic chromophore, MF, with D-π-A configuration has been rational designed and synthesized. Remarkably, MF exhibited enhanced one- and two-photon fluorescent in the aggregation states. Additionally, the obtained MFNPs encapsulated by Pluronic F-127, could be employed as a two-photon fluorescent probe for bioimaging. The results reveal that MFNPs could target mitochondria by using two-photon confocal microscopy and stimulated emission depletion nanoscopy methods.
Collapse
Affiliation(s)
- Fei Meng
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China; Department of Food and Environmental Engineering, Chuzhou Vocational and Technical College, Chuzhou, 239000, PR China
| | - Chengkai Zhang
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China
| | - Dandan Li
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China.
| | - Yupeng Tian
- Institute of Physics Science and Information Technology, College of Chemistry and Chemical Engineering, Key Laboratory of Functional Inorganic Materials Chemistry of Anhui Province, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, 230601, PR China.
| |
Collapse
|
22
|
Zhang Y, Xia S, Mikesell L, Whisman N, Fang M, Steenwinkel TE, Chen K, Luck RL, Werner T, Liu H. Near-Infrared Hybrid Rhodol Dyes with Spiropyran Switches for Sensitive Ratiometric Sensing of pH Changes in Mitochondria and Drosophila melanogaster First-Instar Larvae. ACS APPLIED BIO MATERIALS 2019; 2:4986-4997. [PMID: 31912007 PMCID: PMC6945768 DOI: 10.1021/acsabm.9b00710] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Near-infrared hybrid rhodol dyes (probes A and B) for sensitive ratiometric visualization of pH changes were prepared by incorporating hemicyanine dyes into traditional rhodol dyes. This approach was based on π-conjugation changes involving a rhodol hydroxyl group as a spiropyran switch upon pH changes. Electronic spectra of probes A-2 and B-2 contain sharp absorption peaks at 535 nm and fluorescence peaks at 558 nm with similar π-conjugation and a closed spiropyran form at a basic pH of 10.2. However, acidic pH conditions break down the hemiaminal ether groups, leading to indolenium moieties and significantly extending the π-conjugation within the rhodol fluorophores, resulting in additional near-infrared emissions for probes A-1 and B-1. As a result, probes A and B exhibit gradual decreases of the absorption peaks at 535 nm and gradual increases in absorption peaks at 609 and 622 nm upon transition from basic to acidic pH, respectively. Both probes display ratiometric fluorescence sensing responses to pH downgrades from 10.2 to 3.6 with visible fluorescence decreases at 558 nm, as well as corresponding increases of the near-infrared fluorescence peaks at 688 and 698 nm, respectively. They exhibit fast, sensitive, and selective fluorescence responses with clearly defined ratiometric features to pH changes and show low cytotoxicity and excellent cell permeability. Our probes were successfully applied to ratiometrically detect pH changes in mitochondria, D. melanogaster first-instar larvae, and to visualize the mitophagy process caused by either cell nutrient starvation or drug treatment.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Logan Mikesell
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Nick Whisman
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Tessa E. Steenwinkel
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Kai Chen
- Molecular Imaging Center, Department of Radiology, Keck School of Medicine, University of Southern California, Los Angeles, California 90033, United States
| | - Rudy L. Luck
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Thomas Werner
- Department of Biological Sciences, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
23
|
|
24
|
Mazi W, Adhikari R, Zhang Y, Xia S, Fang M, Luck RL, Tajiri M, Tiwari A, Tanasova M, Liu H. Fluorescent probes with high pKa values based on traditional, near-infrared rhodamine, and hemicyanine fluorophores for sensitive detection of lysosomal pH variations. Methods 2019; 168:40-50. [PMID: 31344405 PMCID: PMC6851477 DOI: 10.1016/j.ymeth.2019.07.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 01/15/2023] Open
Abstract
Sterically hindered fluorescent probes (A-C) have been developed by introducing 2-aminophenylboronic acid pinacol ester to a traditional, A, a near-infrared rhodamine dye, B, and a near-infrared hemicyanine dye, C, forming closed spirolactam ring structures. Probe A was non-fluorescent under basic pH conditions whereas probes B and C were moderately fluorescent with fluorescence quantum yields of 9% and 5% in pH 7.4 PBS buffer containing 1% ethanol, respectively. With all probes increasing acidity leads to significant increases in fluorescence at 580 nm, 644 and 744 nm for probes A, B and C with fluorescence quantum yields of 26%, 21% and 10% in pH 4.5 PBS buffer containing 1% ethanol, respectively. Probes A, B and C were calculated to have pKa values of 5.81, 5.45 and 6.97. The difference in fluorescence under basic conditions is ascribed to easier opening of the closed spirolactam ring configurations due to significant steric hindrance between the 2-aminophenylboronic acid pinacol ester residue and an adjacent H atom in the xanthene derivative moiety in probe B or C. The probes show fast, reversible, selective and sensitive fluorescence responses to pH changes, and are capable of sensing lysosomal pH variations in living cells.
Collapse
Affiliation(s)
- Wafa Mazi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States
| | - Rashmi Adhikari
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States
| | - Yibin Zhang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States.
| | - Momoko Tajiri
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States.
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States.
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, United States.
| |
Collapse
|
25
|
Xia S, Fang M, Wang J, Bi J, Mazi W, Zhang Y, Luck RL, Liu H. Near-infrared fluorescent probes with BODIPY donors and rhodamine and merocyanine acceptors for ratiometric determination of lysosomal pH variance. SENSORS AND ACTUATORS. B, CHEMICAL 2019; 294:1-13. [PMID: 31496551 PMCID: PMC6730546 DOI: 10.1016/j.snb.2019.05.005] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Three fluorescent probes have been developed by conjugating three different BODIPY donors to rhodamine and merocyanine acceptors for ratiometric determination of lysosomal pH variations. Probe A consists of a 1,3,5,7-tetramethyl-BODIPY donor and a near-infrared rhodamine acceptor bearing a lysosome-targeting morpholine residue. Probe B is composed of a 3,5-dimethyl-BODIPY donor and a near-infrared rhodamine acceptor modified with an o-phenylenediamine residue. Probe C contains a 3-styrene-functionalized BODIPY donor with longer wavelength emission and a near-infrared merocyanine acceptor containing a morpholine residue. Under neutral or basic pH conditions, the probes only show fluorescence from the BODIPY donors under BODIPY excitation because the rhodamine and merocyanine acceptors maintain closed spirolactam configurations. However, excitation at BODIPY absorption wavelengths concomitant with gradual pH decrease results in fluorescence decreases with the BODIPY donors and fluorescence increases from the rhodamine and merocyanine acceptors due to through-bond energy transfer from the donors to the acceptors. This is because the spirolactam ring opens under more acidic conditions and fluorescence of the acceptors results from significantly improved π-conjugation. These experimental results are substantiated with theoretical calculations on models of the different probes. The probes have all been used to determine lysosome pH variations in HeLa cells. Probe B was further utilized to successfully detect pH fluctuations in HeLa cells under oxidative stress and with treatment of NH4Cl and chloroquine.
Collapse
Affiliation(s)
- Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, United States
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, United States
| | - Jianbo Wang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, United States
- College of Biological Chemical Sciences and Engineering Jiaxing University, Jiaxing, 314001, China
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, United States
| | - Wafa Mazi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, United States
| | - Yibin Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, United States
| | - Rudy L. Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI, 49931, United States
| |
Collapse
|
26
|
Fang M, Xia S, Bi J, Wigstrom TP, Valenzano L, Wang J, Tanasova M, Luck RL, Liu H. Detecting Zn(II) Ions in Live Cells with Near-Infrared Fluorescent Probes. Molecules 2019; 24:E1592. [PMID: 31013675 PMCID: PMC6515227 DOI: 10.3390/molecules24081592] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 12/31/2022] Open
Abstract
Two near-infrared fluorescent probes (A and B) containing hemicyanine structures appended to dipicolylamine (DPA), and a dipicolylamine derivative where one pyridine was substituted with pyrazine, respectively, were synthesized and tested for the identification of Zn(II) ions in live cells. In both probes, an acetyl group is attached to the phenolic oxygen atom of the hemicyanine platform to decrease the probe fluorescence background. Probe A displays sensitive fluorescence responses and binds preferentially to Zn(II) ions over other metal ions such as Cd2+ ions with a low detection limit of 0.45 nM. In contrast, the emission spectra of probe B is not significantly affected if Zn(II) ions are added. Probe A possesses excellent membrane permeability and low cytotoxicity, allowing for sensitive imaging of both exogenously supplemented Zn(II) ions in live cells, and endogenously releases Zn(II) ions in cells after treatment of 2,2-dithiodipyridine.
Collapse
Affiliation(s)
- Mingxi Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Travis P Wigstrom
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Loredana Valenzano
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Jianbo Wang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China.
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
27
|
Zhang R, Niu G, Li X, Guo L, Zhang H, Yang R, Chen Y, Yu X, Tang BZ. Reaction-free and MMP-independent fluorescent probes for long-term mitochondria visualization and tracking. Chem Sci 2019; 10:1994-2000. [PMID: 30881628 PMCID: PMC6383331 DOI: 10.1039/c8sc05119d] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022] Open
Abstract
Visualizing and tracking mitochondrial dynamic changes is crucially important in the fields of physiology, pathology and pharmacology. Traditional electrostatic-attraction based mitochondrial probes fail to visualize and track the changes due to their leakage from mitochondria when mitochondrial membrane potential (MMP) decreases. Reaction-based MitoTracker probes can realize visualization and tracking of mitochondria changes independent of MMP changes. However, such probes impair mitochondrial proteins and exhibit high cytotoxicity. Therefore, it still remains challenging to explore reaction-free and highly biocompatible probes for visualizing and tracking mitochondrial dynamics independent of MMP fluctuations. Herein we synthesized two reaction-free fluorescent mitochondrial probes ECPI-12 and IVPI-12 bearing a long C12-alkyl chain. These cationic probes can firmly immobilize in the mitochondrial inner membrane by strong hydrophobic interaction between the C12-alkyl chain and lipid bilayer, resulting in high specificity and long-term mitochondrial staining regardless of MMP changes. They also exhibit large two-photon absorption cross-sections and show deep penetration in live tissues in two-photon microscopy. Furthermore, they display excellent biocompatibility and realize in situ and real-time mitophagy tracking in live cells. These excellent properties could make ECPI-12 and IVPI-12 the first selective tools for long-term visualization and tracking of mitochondrial dynamics.
Collapse
Affiliation(s)
- Ruoyao Zhang
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Guangle Niu
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Xuechen Li
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Lifang Guo
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Huamiao Zhang
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Rui Yang
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Yuncong Chen
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| | - Xiaoqiang Yu
- Center of Bio and Micro/Nano Functional Materials , State Key Laboratory of Crystal Materials , Shandong University , Jinan 250100 , China .
| | - Ben Zhong Tang
- Department of Chemistry , Hong Kong Branch of Chinese National Engineering Research Center for Tissue Resto-ration and Reconstruction , Institute for Advanced Study , Division of Biomedical Engineering and Division of Life Science , The Hong Kong University of Science and Technology , Clear Water Bay , Kowloon , Hong Kong 999077 , China .
| |
Collapse
|
28
|
Wang J, Xia S, Bi J, Zhang Y, Fang M, Luck RL, Zeng Y, Chen TH, Lee HM, Liu H. Near-infrared fluorescent probes based on TBET and FRET rhodamine acceptors with different p K a values for sensitive ratiometric visualization of pH changes in live cells. J Mater Chem B 2019; 7:198-209. [PMID: 31367383 PMCID: PMC6668629 DOI: 10.1039/c8tb01524d] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Three near-infrared ratiometric fluorescent probes (A-C) based on TBET and FRET near-infrared rhodamine acceptors with different pK a values were designed and synthesized to achieve sensitive ratiometric visualization of pH variations in lysosomes in visible and near-infrared channels. Tetraphenylethene (TPE) was bonded to near-infrared rhodamine dyes through short electrical π -conjugation linkers to prevent an aggregation-caused quenching (ACQ) effect and allow highly efficient energy transfer of up to 98.9% from TPE donors to rhodamine acceptors. Probes A-C respond to pH variation from 7.4 to 3.0 in both buffer solutions and live cells with significant decreases of donor fluorescence and concomitant extraordinary increases of rhodamine acceptor fluorescence because of highly efficient energy transfer. In addition, probe C is capable of determining pH fluctuations in live cells treated with chloroquine. The probes show good photostability, excellent cell membrane permeability, high selectivity to pH, and two well-resolved emission peaks to ensure accurately comparative and quantitative analyses of intracellular pH changes.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | - Yibin Zhang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| | - Yanbo Zeng
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Tzu-Ho Chen
- Institute of Chemistry, and Chemical Biology and Molecular Biophysics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan, Republic of China
| | - Hsien-Ming Lee
- Institute of Chemistry, and Chemical Biology and Molecular Biophysics, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931, USA
| |
Collapse
|
29
|
Liu F, Luo Y, Xu M. Viscosity measurements using a two-photon ratiometric fluorescent sensor with two rotors. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.11.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Zhang Y, Bi J, Xia S, Mazi W, Wan S, Mikesell L, Luck RL, Liu H. A Near-Infrared Fluorescent Probe Based on a FRET Rhodamine Donor Linked to a Cyanine Acceptor for Sensitive Detection of Intracellular pH Alternations. Molecules 2018; 23:E2679. [PMID: 30340334 PMCID: PMC6222743 DOI: 10.3390/molecules23102679] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 10/11/2018] [Accepted: 10/15/2018] [Indexed: 12/13/2022] Open
Abstract
A fluorescence resonance energy transfer (FRET)-based near-infrared fluorescent probe (B⁺) for double-checked sensitive detection of intracellular pH changes has been synthesized by binding a near-infrared rhodamine donor to a near-infrared cyanine acceptor through robust C-N bonds via a nucleophilic substitution reaction. To demonstrate the double-checked advantages of probe B⁺, a near-infrared probe (A) was also prepared by modification of a near-infrared rhodamine dye with ethylenediamine to produce a closed spirolactam residue. Under basic conditions, probe B⁺ shows only weak fluorescence from the cyanine acceptor while probe A displays nonfluorescence due to retention of the closed spirolactam form of the rhodamine moiety. Upon decrease in solution pH level, probe B⁺ exhibits a gradual fluorescence increase from rhodamine and cyanine constituents at 623 nm and 743 nm respectively, whereas probe A displays fluorescence increase at 623 nm on the rhodamine moiety as acidic conditions leads to the rupture of the probe spirolactam rings. Probes A and B⁺ have successfully been used to monitor intracellular pH alternations and possess pKa values of 5.15 and 7.80, respectively.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Wafa Mazi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Shulin Wan
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Logan Mikesell
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Rudy L Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| |
Collapse
|
31
|
Liao S, Huang X, Yang H, Chen X. Nitrogen-doped carbon quantum dots as a fluorescent probe to detect copper ions, glutathione, and intracellular pH. Anal Bioanal Chem 2018; 410:7701-7710. [PMID: 30269161 DOI: 10.1007/s00216-018-1387-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 09/07/2018] [Accepted: 09/17/2018] [Indexed: 11/24/2022]
Abstract
A facile one-step hydrothermal method was developed to synthesize nitrogen-doped carbon quantum dots (N-CQDs) by utilizing hexamethylenetetramine as the carbon and nitrogen source. The quantum yield (QY) of 21.7% was under the excitation wavelength of 420 nm with maximum emission at 508 nm. This N-CQD fluorescent probe has been successfully applied to selectively determine the concentration of copper ion (Cu2+) with a linear range of 0.1-40 μM and a limit of detection of 0.09 μM. In addition, the fluorescence of N-CQDs could be effectively quenched by Cu2+ and specifically recovered by glutathione (GSH), which render the N-CQDs as a premium fluorescent probe for GSH detection. This fluorescence "turn-on" protocol was applied to determine GSH with a linear range of 0.1-30 μM as well as a detection limit of 0.05 μM. For pH detection, there is good linearity in the pH range of 2.87-7.24. Furthermore, N-CQD is a promising and convenient fluorescent pH, Cu2+, and glutathione sensor with brilliant biocompatibility and low cytotoxicity in environmental monitoring and bioimaging applications.
Collapse
Affiliation(s)
- Sen Liao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Xueqian Huang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China.
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, Hunan, China. .,Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha, 410083, Hunan, China.
| |
Collapse
|
32
|
Chen TH, Zhang S, Jaishi M, Adhikari R, Bi J, Fang M, Xia S, Zhang Y, Luck RL, Pati R, Lee HM, Luo FT, Tiwari A, Liu H. New Near-infrared Fluorescent Probes with Single-photon Anti-Stokes-shift Fluorescence for Sensitive Determination of pH Variances in Lysosomes with a Double-Checked Capability. ACS APPLIED BIO MATERIALS 2018; 1:549-560. [PMID: 30906925 PMCID: PMC6426143 DOI: 10.1021/acsabm.8b00020] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Two near-infrared luminescent probes with Stokes-shift and single-photon anti-Stokes-shift fluorescence properties for sensitive determination of pH variance in lysosomes have been synthesized. A morpholine residue in probe A which serves as a targeting group for lysosomes in viable cells was attached to the fluorophores via a spirolactam moiety while a mannose residue was ligated to probe B resulting in increased biocompatibility and solubility in water. Probes A and B contain closed spirolactam moieties, and show no Stokes-shift or anti-Stokes-shift fluorescence under neutral or alkali conditions. However, the probes incrementally react to pH variance from 7.22 to 2.76 with measurable increases in both Stokes-shift and anti-Stokes-shift fluorescence at 699 nm and 693 nm under 645 nm and 800 nm excitation, respectively. This acid-activated fluorescence is produced by the breaking of the probe spirolactam moiety, which greatly increased overall π-conjugation in the probes. These probes possess upconversion near-infrared fluorescence imaging advantages including minimum cellular photo-damage, tissue penetration, and minimum biological fluorescence background. They display excellent photostability with low dye photobleaching and show good biocompatibility. They are selective and capable of detecting pH variances in lysosomes at excitation with two different wavelengths, i.e., 645 and 800 nm.
Collapse
Affiliation(s)
- Tzu-Ho Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
- Department of Chemistry, National Taiwan University, No. 1 Roosevelt Road Section 4, Taipei 10617, Taiwan, Republic of China
| | - Shuwei Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Meghnath Jaishi
- Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Rashmi Adhikari
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Yibin Zhang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
| | - Rudy L Luck
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
| | - Ranjit Pati
- Department of Physics, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA.
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
| | - Fen-Tair Luo
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China. and
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| |
Collapse
|
33
|
Xue Z, Wang S, Li J, Chen X, Han J, Han S. Bifunctional Super-resolution Imaging Probe with Acidity-Independent Lysosome-Retention Mechanism. Anal Chem 2018; 90:11393-11400. [DOI: 10.1021/acs.analchem.8b02365] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zhongwei Xue
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Siyu Wang
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Jian Li
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| | - Xin Chen
- State key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Jiahuai Han
- State key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Shoufa Han
- Department of Chemical Biology, College of Chemistry and Chemical Engineering, State Key Laboratory for Physical Chemistry of Solid Surfaces, the Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Innovation Center for Cell Signaling Network, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
34
|
Xia S, Wang J, Bi J, Wang X, Fang M, Phillips T, May A, Conner N, Tanasova M, Luo FT, Liu H. Fluorescent Probes Based on π-Conjugation Modulation between Hemicyanine and Coumarin Moieties for Ratiometric Detection of pH Changes in Live Cells with Visible and Near-infrared Channels. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 265:699-708. [PMID: 30319177 PMCID: PMC6178979 DOI: 10.1016/j.snb.2018.02.168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We report two ratiometric fluorescent probes based on π-conjugation modulation between coumarin and hemicyanine moieties for sensitive ratiometric detection of pH alterations in live cells by monitoring visible and near-infrared fluorescence changes. In a π-conjugation modulation strategy, a coumarin dye was conjugated to a near-infrared hemicyanine dye via a vinyl connection while lysosome-targeting morpholine ligand and o-phenylenediamine residue were introduced to the hemicyanine dye to form closed spirolactam ring structures in probes A and B, respectively. The probes show only visible fluorescence of the coumarin moiety under physiological and basic conditions because the hemicyanine moieties retain their closed spirolactam ring structures. However, decrease of pH to acidic condition causes spirolactam ring opening, and significantly enhances π-conjugation within the probes, thus generating new near-infrared fluorescence peaks of the hemicyanine at 755 nm and 740 nm for probes A and B, respectively. Moreover, the probes display ratiometric fluorescence response to pH with decreases of the coumarin fluorescence and increases of the hemicyanine fluorescence when pH changes from 7.4 to 2.5. The probes are fully capable of imaging pH changes in live cells with good ratiometric responses in visible and near-infrared channels, and effectively avoid fluorescence blind spots under neutral and basic pH conditions - an issue that typical intensity-based pH fluorescent probes run into. The probe design platform reported herein can be easily applied to prepare a variety of ratiometric fluorescent probes for detection of biological thiols, metal ions, reactive oxygen and nitrogen species by introducing appropriate functional groups to hemicyanine moiety.
Collapse
Affiliation(s)
- Shuai Xia
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jianbo Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Xiao Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Tyler Phillips
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Aslan May
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Nathan Conner
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Marina Tanasova
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Fen-Tair Luo
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|
35
|
Zhang Y, Xia S, Fang M, Mazi W, Zeng Y, Johnston T, Pap A, Luck R, Liu H. New near-infrared rhodamine dyes with large Stokes shifts for sensitive sensing of intracellular pH changes and fluctuations. Chem Commun (Camb) 2018; 54:7625-7628. [PMID: 29927444 PMCID: PMC6058674 DOI: 10.1039/c8cc03520b] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
New near-infrared rhodamine dyes with large Stokes shifts were developed and applied for sensitive detection of cellular pH changes and fluctuations by incorporating an additional amine group with fused rings into the rhodamine dyes to enhance the electron donating ability of amine groups and improve the spectroscopic properties of the dyes.
Collapse
Affiliation(s)
- Yibin Zhang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
- School of Chemistry and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Wafa Mazi
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Yanbo Zeng
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Taylor Johnston
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Adam Pap
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Rudy Luck
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, 1400 Townsend Drive, Houghton, MI 49931, USA. ;
| |
Collapse
|
36
|
Li K, Feng Q, Niu G, Zhang W, Li Y, Kang M, Xu K, He J, Hou H, Tang BZ. Benzothiazole-Based AIEgen with Tunable Excited-State Intramolecular Proton Transfer and Restricted Intramolecular Rotation Processes for Highly Sensitive Physiological pH Sensing. ACS Sens 2018; 3:920-928. [PMID: 29667395 DOI: 10.1021/acssensors.7b00820] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
In this work, a benzothiazole-based aggregation-induced emission luminogen (AIEgen) of 2-(5-(4-carboxyphenyl)-2-hydroxyphenyl)benzothiazole (3) was designed and synthesized, which exhibited multifluorescence emissions in different dispersed or aggregated states based on tunable excited-state intramolecular proton transfer (ESIPT) and restricted intramolecular rotation (RIR) processes. 3 was successfully used as a ratiometric fluorescent chemosensor for the detection of pH, which exhibited reversible acid/base-switched yellow/cyan emission transition. More importantly, the pH jump of 3 was very precipitous from 7.0 to 8.0 with a midpoint of 7.5, which was well matched with the physiological pH. This feature makes 3 very suitable for the highly sensitive detection of pH fluctuation in biosamples and neutral water samples. 3 was also successfully used as a ratiometric fluorescence chemosensor for the detection of acidic and basic organic vapors in test papers.
Collapse
Affiliation(s)
- Kai Li
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Qi Feng
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Guangle Niu
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Weijie Zhang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yuanyuan Li
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Henan 450001, P. R. China
| | - Miaomiao Kang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kui Xu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Juan He
- College of Chemistry, Chemical and Environmental Engineering, Henan University of Technology, Henan 450001, P. R. China
| | - Hongwei Hou
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Ben Zhong Tang
- Department of Chemistry and Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong, China
| |
Collapse
|
37
|
Wang J, Xia S, Bi J, Fang M, Mazi W, Zhang Y, Conner N, Luo FT, Lu HP, Liu H. Ratiometric Near-Infrared Fluorescent Probes Based On Through-Bond Energy Transfer and π-Conjugation Modulation between Tetraphenylethene and Hemicyanine Moieties for Sensitive Detection of pH Changes in Live Cells. Bioconjug Chem 2018; 29:1406-1418. [PMID: 29493223 PMCID: PMC5906192 DOI: 10.1021/acs.bioconjchem.8b00111] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In this paper, we present three ratiometric near-infrared fluorescent probes (A-C) for accurate, ratiometric detection of intracellular pH changes in live cells. Probe A consists of a tetraphenylethene (TPE) donor and near-infrared hemicyanine acceptor in a through-bond energy transfer (TBET) strategy, while probes B and C are composed of TPE and hemicyanine moieties through single and double sp2 carbon-carbon bond connections in a π-conjugation modulation strategy. The specific targeting of the probes to lysosomes in live cells was achieved by introducing morpholine residues to the hemicyanine moieties to form closed spirolactam ring structures. Probe A shows aggregation-induced emission (AIE) property at neutral or basic pH, while probes B and C lack AIE properties. At basic or neutral pH, the probes only show fluorescence of TPE moieties with closed spirolactam forms of hemicyanine moieties, and effectively avoid blind fluorescence imaging spots, an issue which typical intensity-based pH fluorescent probes encounter. Three probes show ratiometric fluorescence responses to pH changes from 7.0 to 3.0 with TPE fluorescence decreases and hemicyanine fluorescence increases, because acidic pH makes the spirolactam rings open to enhance π-conjugation of hemicyanine moieties. However, probe A shows much more sensitive ratiometric fluorescence responses to pH changes from 7.0 to 3.0 with remarkable ratio increase of TPE fluorescence to hemicyanine fluorescence up to 238-fold than probes B and C because of its high efficiency of energy transfer from TPE donor to the hemicyanine acceptor in the TBET strategy. The probe offers dual Stokes shifts with a large pseudo-Stokes shift of 361 nm and well-defined dual emissions, and allows for colocalization of the imaging readouts of visible and near-infrared fluorescence channels to achieve more precisely double-checked ratiometric fluorescence imaging. These platforms could be employed to develop a variety of novel ratiometric fluorescent probes for accurate detection of different analytes in applications of chemical and biological sensing, imaging, and diagnostics by introducing appropriate sensing ligands to hemicyanine moieties to form on-off spirolactam switches.
Collapse
Affiliation(s)
- Jianbo Wang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, China
| | - Shuai Xia
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Wafa Mazi
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Yibin Zhang
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Nathan Conner
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| | - Fen-Tair Luo
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - H. Peter Lu
- Center for Photochemical Sciences, Department of Chemistry, Bowling Green State University, Bowling Green, Ohio 43403, United States
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, Michigan 49931, United States
| |
Collapse
|
38
|
Dong Z, Han Q, Mou Z, Li G, Liu W. A reversible frequency upconversion probe for real-time intracellular lysosome-pH detection and subcellular imaging. J Mater Chem B 2018; 6:1322-1327. [DOI: 10.1039/c7tb03089d] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The probe NRH-Lyso shows an FUCL response to acidic pH and is a promising candidate for lysosome imaging in living cells.
Collapse
Affiliation(s)
- Zhe Dong
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Qingxin Han
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Zuolin Mou
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Ge Li
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| | - Weisheng Liu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province and State Key Laboratory of Applied Organic Chemistry
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- P. R. China
| |
Collapse
|
39
|
Fang M, Adhikari R, Bi J, Mazi W, Dorh N, Wang J, Conner N, Ainsley J, Karabencheva-Christova TG, Luo FT, Tiwari A, Liu H. Fluorescent Probes for Sensitive and Selective Detection of pH Changes in Live Cells in Visible and Near-infrared Channels. J Mater Chem B 2017; 5:9579-9590. [PMID: 29607047 PMCID: PMC5875989 DOI: 10.1039/c7tb02583a] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report five fluorescent probes based on coumarin-hybridized fluorescent dyes with spirolactam ring structures (A-E) to detect pH changes in live cell by monitoring visible and near-infrared fluorescence changes. Under physiological or basic conditions, the fluorescent probes A, B, C, D and E preserve their spirolactam ring-closed forms and only display fluorescent peaks in the visible region corresponding to coumarin moieties at 497, 483, 498, 497 and 482 nm, respectively. However, at acidic pH, the rings of the spirolactam forms of the fluorescent probes A, B, C, D and E open up, generating new near-infrared fluorescence peaks at 711, 696, 707, 715, and 697 nm, respectively, through significantly extended π-conjugation to coumarin moieties of the fluorophores. The fluorescent probes B and E can be applied to visualize pH changes by monitoring visible as well as near-infrared fluorescence changes. This helps avoid fluorescence imaging blind spots at neutral or basic pH, which typical pH fluorescent probes encounter. The probes exhibit high sensitivity to pH changes, excellent photostability, low auto-fluorescence background and good cell membrane permeability.
Collapse
Affiliation(s)
- Mingxi Fang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Rashmi Adhikari
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jianheng Bi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Wafa Mazi
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Nethaniah Dorh
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jianbo Wang
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Nathan Conner
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Jon Ainsley
- Department of Applied Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK
| | | | - Fen-Tair Luo
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan 11529, Republic of China
| | - Ashutosh Tiwari
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| | - Haiying Liu
- Department of Chemistry, Michigan Technological University, Houghton, MI 49931
| |
Collapse
|