1
|
Oh H, Samineni L, Vogler RJ, Yao C, Behera H, Dhiman R, Horner A, Kumar M. Approaching Ideal Selectivity with Bioinspired and Biomimetic Membranes. ACS NANO 2025; 19:31-53. [PMID: 39718215 DOI: 10.1021/acsnano.4c09699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The applications of polymeric membranes have grown rapidly compared to traditional separation technologies due to their energy efficiency and smaller footprint. However, their potential is not fully realized due, in part, to their heterogeneity, which results in a "permeability-selectivity" trade-off for most membrane applications. Inspired by the intricate architecture and excellent homogeneity of biological membranes, bioinspired and biomimetic membranes (BBMs) aim to emulate biological membranes for practical applications. This Review highlights the potential of BBMs to overcome the limitations of polymeric membranes by utilizing the "division of labor" between well-defined permeable pores and impermeable matrix molecules seen in biological membranes. We explore the exceptional performance of membranes in biological organisms, focusing on their two major components: membrane proteins (biological channels) and lipid matrix molecules. We then discuss how these natural materials can be replaced with artificial mimics for enhanced properties and how macro-scale BBMs are developed. We highlight key demonstrations in the field of BBMs that draw upon the factors responsible for transport through biological membranes. Additionally, current state-of-the-art methods for fabrication of BBMs are reviewed with potential challenges and prospects for future applications. Finally, we provide considerations for future research that could enable BBMs to progress toward scale-up and enhanced applicability.
Collapse
Affiliation(s)
- Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Laxmicharan Samineni
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
| | - Ronald J Vogler
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Chenhao Yao
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Harekrushna Behera
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Raman Dhiman
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andreas Horner
- Institute of Biophysics, Johannes Kepler University Linz, Gruberstraße 40, 4020 Linz, Austria
| | - Manish Kumar
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas 78712, United States
- Maseeh Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Mehrafrooz B, Yu L, Pandey L, Siwy ZS, Wanunu M, Aksimentiev A. Electro-osmotic Flow Generation via a Sticky Ion Action. ACS NANO 2024; 18:17521-17533. [PMID: 38832758 PMCID: PMC11233251 DOI: 10.1021/acsnano.4c00829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Laxmi Pandey
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
| | - Zuzanna S Siwy
- Department of Physics, University of California at Irvine, Irvine, California 92697, United States
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Mehrafrooz B, Yu L, Siwy Z, Wanunu M, Aksimentiev A. Electro-Osmotic Flow Generation via a Sticky Ion Action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.14.571673. [PMID: 38168277 PMCID: PMC10760089 DOI: 10.1101/2023.12.14.571673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Selective transport of ions through nanometer-sized pores is fundamental to cell biology and central to many technological processes such as water desalination and electrical energy storage. Conventional methods for generating ion selectivity include placement of fixed electrical charges at the inner surface of a nanopore through either point mutations in a protein pore or chemical treatment of a solid-state nanopore surface, with each nanopore type requiring a custom approach. Here, we describe a general method for transforming a nanoscale pore into a highly selective, anion-conducting channel capable of generating a giant electro-osmotic effect. Our molecular dynamics simulations and reverse potential measurements show that exposure of a biological nanopore to high concentrations of guanidinium chloride renders the nanopore surface positively charged due to transient binding of guanidinium cations to the protein surface. A comparison of four biological nanopores reveals the relationship between ion selectivity, nanopore shape, composition of the nanopore surface, and electro-osmotic flow. Remarkably, guanidinium ions are also found to produce anion selectivity and a giant electro-osmotic flow in solid-state nanopores via the same mechanism. Our sticky-ion approach to generate electro-osmotic flow can have numerous applications in controlling molecular transport at the nanoscale and for detection, identification, and sequencing of individual proteins.
Collapse
Affiliation(s)
- Behzad Mehrafrooz
- Center for Biophysics and Quantitative Biology
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Luning Yu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
| | - Zuzanna Siwy
- Department of Physics, University of California at Irvine, Irvine, CA 92697, USA
| | - Meni Wanunu
- Department of Physics, Northeastern University, Boston, MA 02115 USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - Aleksei Aksimentiev
- Center for Biophysics and Quantitative Biology
- Beckman Institute for Advanced Science and Technology
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
4
|
Dhar R, Bowman AM, Hatungimana B, Sg Slusky J. Evolutionary Engineering a Larger Porin Using a Loop-to-Hairpin Mechanism. J Mol Biol 2023; 435:168292. [PMID: 37769963 PMCID: PMC11215794 DOI: 10.1016/j.jmb.2023.168292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane β-barrels, duplication is visible with β-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane β-barrels. Specifically, the topology of some 16- and 18-stranded β-barrels appear to have evolved through a loop to β-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded β-barrel and an evolutionarily related 16-stranded β-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane β-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to β-hairpin transition.
Collapse
Affiliation(s)
- Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA. https://twitter.com/Rik_Skywalker
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Brunojoel Hatungimana
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA
| | - Joanna Sg Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence, KS 66045, USA; Computational Biology Program, The University of Kansas, Lawrence, KS 66047, USA.
| |
Collapse
|
5
|
Dhar R, Bowman AM, Hatungimana B, Slusky JS. Evolutionary engineering a larger porin using a loop-to-hairpin mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544993. [PMID: 37398247 PMCID: PMC10312768 DOI: 10.1101/2023.06.14.544993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In protein evolution, diversification is generally driven by genetic duplication. The hallmarks of this mechanism are visible in the repeating topology of various proteins. In outer membrane β-barrels, duplication is visible with β-hairpins as the repeating unit of the barrel. In contrast to the overall use of duplication in diversification, a computational study hypothesized evolutionary mechanisms other than hairpin duplications leading to increases in the number of strands in outer membrane β-barrels. Specifically, the topology of some 16- and 18-stranded β-barrels appear to have evolved through a loop to β-hairpin transition. Here we test this novel evolutionary mechanism by creating a chimeric protein from an 18-stranded β-barrel and an evolutionarily related 16-stranded β-barrel. The chimeric combination of the two was created by replacing loop L3 of the 16-stranded barrel with the sequentially matched transmembrane β-hairpin region of the 18-stranded barrel. We find the resulting chimeric protein is stable and has characteristics of increased strand number. This study provides the first experimental evidence supporting the evolution through a loop to β-hairpin transition. Highlights We find evidence supporting a novel diversification mechanism in membrane β-barrelsThe mechanism is the conversion of an extracellular loop to transmembrane β-hairpinA chimeric protein modeling this mechanism folds stably in the membraneThe chimera has more β-structure and a larger pore, consistent with a loop-to-hairpin transition.
Collapse
Affiliation(s)
- Rik Dhar
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
| | - Alexander M Bowman
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
| | | | - Joanna Sg Slusky
- Department of Molecular Biosciences, The University of Kansas, Lawrence KS 66045
- Computational Biology Program, The University of Kansas, Lawrence KS 66047
| |
Collapse
|
6
|
Liu Z, Chen S, Wu J. Advances in ultrahigh-throughput screening technologies for protein evolution. Trends Biotechnol 2023; 41:1168-1181. [PMID: 37088569 DOI: 10.1016/j.tibtech.2023.03.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/28/2023] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Inspired by natural evolution, directed evolution randomly mutates the gene of interest through artificial evolution conditions with variants being screened for the required properties. Directed evolution is vital to the enhancement of protein properties and comprises the construction of libraries with considerable diversity as well as screening methods with sufficient efficiency as key steps. Owing to the various characteristics of proteins, specific methods are urgently needed for library screening, which is one of the main limiting factors in accelerating evolution. This review initially organizes the principles of ultrahigh-throughput screening from the perspective of protein properties. It then provides a comprehensive introduction to the latest progress and future trends in ultrahigh-throughput screening technologies for directed evolution.
Collapse
Affiliation(s)
- Zhanzhi Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Sheng Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China
| | - Jing Wu
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China; International Joint Laboratory on Food Safety, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu Province, China.
| |
Collapse
|
7
|
Samineni L, Acharya B, Behera H, Oh H, Kumar M, Chowdhury R. Protein engineering of pores for separation, sensing, and sequencing. Cell Syst 2023; 14:676-691. [PMID: 37591205 DOI: 10.1016/j.cels.2023.07.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/13/2023] [Accepted: 07/19/2023] [Indexed: 08/19/2023]
Abstract
Proteins are critical to cellular function and survival. They are complex molecules with precise structures and chemistries, which allow them to serve diverse functions for maintaining overall cell homeostasis. Since the discovery of the first enzyme in 1833, a gamut of advanced experimental and computational tools has been developed and deployed for understanding protein structure and function. Recent studies have demonstrated the ability to redesign/alter natural proteins for applications in industrial processes of interest and to make customized, novel synthetic proteins in the laboratory through protein engineering. We comprehensively review the successes in engineering pore-forming proteins and correlate the amino acid-level biochemistry of different pore modification strategies to the intended applications limited to nucleotide/peptide sequencing, single-molecule sensing, and precise molecular separations.
Collapse
Affiliation(s)
- Laxmicharan Samineni
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Bibek Acharya
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
| | - Harekrushna Behera
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Hyeonji Oh
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Manish Kumar
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX 78712, USA; McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX 78712, USA
| | - Ratul Chowdhury
- Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
8
|
Sauer DF, Markel U, Schiffels J, Okuda J, Schwaneberg U. FhuA: From Iron-Transporting Transmembrane Protein to Versatile Scaffolds through Protein Engineering. Acc Chem Res 2023. [PMID: 37191525 DOI: 10.1021/acs.accounts.3c00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
ConspectusProtein engineering has emerged as a powerful methodology to tailor the properties of proteins. It empowers the design of biohybrid catalysts and materials, thereby enabling the convergence of materials science, chemistry, and medicine. The choice of a protein scaffold is an important factor for performance and potential applications. In the past two decades, we utilized the ferric hydroxamate uptake protein FhuA. FhuA is, from our point of view, a versatile scaffold due to its comparably large cavity and robustness toward temperature as well as organic cosolvents. FhuA is a natural iron transporter located in the outer membrane of Escherichia coli (E. coli). Wild-type FhuA consists of 714 amino acids and has a β-barrel structure composed of 22 antiparallel β-sheets, closed by an internal globular "cork" domain (amino acids 1-160). FhuA is robust in a broad pH range and toward organic cosolvents; therefore, we envisioned FhuA to be a suitable platform for various applications in (i) biocatalysis, (ii) materials science, and (iii) the construction of artificial metalloenzymes.(i) Applications in biocatalysis were achieved by removing the globular cork domain (FhuA_Δ1-160), thereby creating a large pore for the passive transport of otherwise difficult-to-import molecules through diffusion. Introducing this FhuA variant into the outer membrane of E. coli facilitates the uptake of substrates for downstream biocatalytic conversion. Furthermore, removing the globular "cork" domain without structural collapse of the ß-barrel protein allowed the use of FhuA as a membrane filter, exhibiting a preference for d-arginine over l-arginine.(ii) FhuA is a transmembrane protein, which makes it attractive to be used for applications in non-natural polymeric membranes. Inserting FhuA into polymer vesicles yielded so-called synthosomes (i.e., catalytic synthetic vesicles in which the transmembrane protein acted as a switchable gate or filter). Our work in this direction enables polymersomes to be used in biocatalysis, DNA recovery, and the controlled (triggered) release of molecules. Furthermore, FhuA can be used as a building block to create protein-polymer conjugates to generate membranes.(iii) Artificial metalloenzymes (ArMs) are formed by incorporating a non-native metal ion or metal complex into a protein. This combines the best of two worlds: the vast reaction and substrate scope of chemocatalysis and the selectivity and evolvability of enzymes. With its large inner diameter, FhuA can harbor (bulky) metal catalysts. Among others, we covalently attached a Grubbs-Hoveyda-type catalyst for olefin metathesis to FhuA. This artificial metathease was then used in various chemical transformations, ranging from polymerizations (ring-opening metathesis polymerization) to enzymatic cascades involving cross-metathesis. Ultimately, we generated a catalytically active membrane by copolymerizing FhuA and pyrrole. The resulting biohybrid material was then equipped with the Grubbs-Hoveyda-type catalyst and used in ring-closing metathesis.The number of reports on FhuA and its various applications indicates that it is a versatile building block to generate hybrid catalysts and materials. We hope that our research will inspire future research efforts at the interface of biotechnology, catalysis, and material science in order to create biohybrid systems that offer smart solutions for current challenges in catalysis, material science, and medicine.
Collapse
Affiliation(s)
- Daniel F Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Ulrich Markel
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Johannes Schiffels
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Jun Okuda
- Institute of Inorganic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstr. 50, D-52056, Aachen, Germany
| |
Collapse
|
9
|
Tosaka T, Kamiya K. Function Investigations and Applications of Membrane Proteins on Artificial Lipid Membranes. Int J Mol Sci 2023; 24:ijms24087231. [PMID: 37108393 PMCID: PMC10138308 DOI: 10.3390/ijms24087231] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 04/05/2023] [Accepted: 04/11/2023] [Indexed: 04/29/2023] Open
Abstract
Membrane proteins play an important role in key cellular functions, such as signal transduction, apoptosis, and metabolism. Therefore, structural and functional studies of these proteins are essential in fields such as fundamental biology, medical science, pharmacology, biotechnology, and bioengineering. However, observing the precise elemental reactions and structures of membrane proteins is difficult, despite their functioning through interactions with various biomolecules in living cells. To investigate these properties, methodologies have been developed to study the functions of membrane proteins that have been purified from biological cells. In this paper, we introduce various methods for creating liposomes or lipid vesicles, from conventional to recent approaches, as well as techniques for reconstituting membrane proteins into artificial membranes. We also cover the different types of artificial membranes that can be used to observe the functions of reconstituted membrane proteins, including their structure, number of transmembrane domains, and functional type. Finally, we discuss the reconstitution of membrane proteins using a cell-free synthesis system and the reconstitution and function of multiple membrane proteins.
Collapse
Affiliation(s)
- Toshiyuki Tosaka
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Gunma 376-8515, Japan
| |
Collapse
|
10
|
Acharya A, Ghai I, Piselli C, Prajapati JD, Benz R, Winterhalter M, Kleinekathöfer U. Conformational Dynamics of Loop L3 in OmpF: Implications toward Antibiotic Translocation and Voltage Gating. J Chem Inf Model 2023; 63:910-927. [PMID: 36525563 DOI: 10.1021/acs.jcim.2c01108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In the present work, we delineate the molecular mechanism of a bulky antibiotic permeating through a bacterial channel and uncover the role of conformational dynamics of the constriction loop in this process. Using the temperature accelerated sliced sampling approach, we shed light onto the dynamics of the L3 loop, in particular the F118 to S125 segment, at the constriction regions of the OmpF porin. We complement the findings with single channel electrophysiology experiments and applied-field simulations, and we demonstrate the role of hydrogen-bond stabilization in the conformational dynamics of the L3 loop. A molecular mechanism of permeation is put forward wherein charged antibiotics perturb the network of stabilizing hydrogen-bond interactions and induce conformational changes in the L3 segment, thereby aiding the accommodation and permeation of bulky antibiotic molecules across the constriction region. We complement the findings with single channel electrophysiology experiments and demonstrate the importance of the hydrogen-bond stabilization in the conformational dynamics of the L3 loop. The generality of the present observations and experimental results regarding the L3 dynamics enables us to identify this L3 segment as the source of gating. We propose a mechanism of OmpF gating that is in agreement with previous experimental data that showed the noninfluence of cysteine double mutants that tethered the L3 tip to the barrel wall on the OmpF gating behavior. The presence of similar loop stabilization networks in porins of other clinically relevant pathogens suggests that the conformational dynamics of the constriction loop is possibly of general importance in the context of antibiotic permeation through porins.
Collapse
Affiliation(s)
- Abhishek Acharya
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen 28759, Germany
| | - Ishan Ghai
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| | - Claudio Piselli
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| | | | - Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen 28759, Germany
| | - Ulrich Kleinekathöfer
- Department of Physics and Earth Sciences, Jacobs University Bremen, Bremen 28759, Germany
| |
Collapse
|
11
|
Biophysical quantification of unitary solute and solvent permeabilities to enable translation to membrane science. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
12
|
Weber W, Roeder M, Probanowski T, Yang J, Abujubara H, Koeppl H, Tietze A, Stein V. Functional Nanopore Screen: A Versatile High-Throughput Assay to Study and Engineer Protein Nanopores in Escherichia coli. ACS Synth Biol 2022; 11:2070-2079. [PMID: 35604782 DOI: 10.1021/acssynbio.1c00635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanopores comprise a versatile class of membrane proteins that carry out a range of key physiological functions and are increasingly developed for different biotechnological applications. Yet, a capacity to study and engineer protein nanopores by combinatorial means has so far been hampered by a lack of suitable assays that combine sufficient experimental resolution with throughput. Addressing this technological gap, the functional nanopore (FuN) screen now provides a quantitative and dynamic readout of nanopore assembly and function in the context of the inner membrane of Escherichia coli. The assay is based on genetically encoded fluorescent protein sensors that resolve the nanopore-dependent influx of Ca2+ across the inner membrane of E. coli. Illustrating its versatile capacity, the FuN screen is first applied to dissect the molecular features that underlie the assembly and stability of nanopores formed by the S2168 holin. In a subsequent step, nanopores are engineered by recombining the transmembrane module of S2168 with different ring-shaped oligomeric protein structures that feature defined hexa-, hepta-, and octameric geometries. Library screening highlights substantial plasticity in the ability of the S2168 transmembrane module to oligomerize in alternative geometries, while the functional properties of the resultant nanopores can be fine-tuned through the identity of the connecting linkers. Overall, the FuN screen is anticipated to facilitate both fundamental studies and complex nanopore engineering endeavors with many potential applications in biomedicine, biotechnology, and synthetic biology.
Collapse
Affiliation(s)
- Wadim Weber
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| | - Markus Roeder
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany
| | - Tobias Probanowski
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| | - Jie Yang
- Wallenberg Centre, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Helal Abujubara
- Wallenberg Centre, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Heinz Koeppl
- Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
- Department of Electrical Engineering and Information Technology, TU Darmstadt, 64283 Darmstadt, Germany
| | - Alesia Tietze
- Wallenberg Centre, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Viktor Stein
- Department of Biology, TU Darmstadt, 64287 Darmstadt, Germany
- Centre for Synthetic Biology, TU Darmstadt, 64283 Darmstadt, Germany
| |
Collapse
|
13
|
Kamiya K. Formation and function of OmpG or OmpA-incorporated liposomes using an in vitro translation system. Sci Rep 2022; 12:2376. [PMID: 35149747 PMCID: PMC8837779 DOI: 10.1038/s41598-022-06314-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/28/2022] [Indexed: 02/08/2023] Open
Abstract
Outer membrane proteins (OMPs), located on the outer membrane of gram-negative bacteria, have a β-strand structure and form nanopores, which allow passage of ions, sugars, and small molecules. Recently, OMPs have been used as sensing elements to detect biological molecules. OMPs are normally expressed and purified from Escherichia coli (E. coli). Although the cell-free synthesis of OMPs, such as OmpA and OmpG, is achieved in the presence of liposomes and periplasmic chaperones, the amount of OmpA and OmpG incorporated into the nano-sized liposomes is not clear. In this study, after in vitro translation, the incorporation of OmpG into purified nano-sized liposomes with various lipid compositions was investigated. Liposomes containing the synthesized OmpG were purified using a stepwise sucrose density gradient. We report that liposomes prepared with the E. coli lipid extract (PE/PG) had the highest amount of OmpG incorporated compared to liposomes with other lipid compositions, as detected by recording the current across the OmpG containing liposomes using the patch clamp technique. This study reveals some of the requirements for the insertion and refolding of OMPs synthesized by the in vitro translation system into lipid membranes, which plays a role in the biological sensing of various molecules.
Collapse
Affiliation(s)
- Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
14
|
Meyer N, Abrao-Nemeir I, Janot JM, Torrent J, Lepoitevin M, Balme S. Solid-state and polymer nanopores for protein sensing: A review. Adv Colloid Interface Sci 2021; 298:102561. [PMID: 34768135 DOI: 10.1016/j.cis.2021.102561] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/29/2021] [Accepted: 10/31/2021] [Indexed: 01/15/2023]
Abstract
In two decades, the solid state and polymer nanopores became attractive method for the protein sensing with high specificity and sensitivity. They also allow the characterization of conformational changes, unfolding, assembly and aggregation as well the following of enzymatic reaction. This review aims to provide an overview of the protein sensing regarding the technique of detection: the resistive pulse and ionic diodes. For each strategy, we report the most significant achievement regarding the detection of peptides and protein as well as the conformational change, protein-protein assembly and aggregation process. We discuss the limitations and the recent strategies to improve the nanopore resolution and accuracy. A focus is done about concomitant problematic such as protein adsorption and nanopore lifetime.
Collapse
|
15
|
Schwieters MS, Mathieu-Gaedke M, Westphal M, Dalpke R, Dirksen M, Qi D, Grull M, Bick T, Taßler S, Sauer DF, Bonn M, Wendler P, Hellweg T, Beyer A, Gölzhäuser A, Schwaneberg U, Glebe U, Böker A. Protein Nanopore Membranes Prepared by a Simple Langmuir-Schaefer Approach. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102975. [PMID: 34643032 DOI: 10.1002/smll.202102975] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Filtration through membranes with nanopores is typically associated with high transmembrane pressures and high energy consumption. This problem can be addressed by reducing the respective membrane thickness. Here, a simple procedure is described to prepare ultrathin membranes based on protein nanopores, which exhibit excellent water permeance, two orders of magnitude superior to comparable, industrially applied membranes. Furthermore, incorporation of either closed or open protein nanopores allows tailoring the membrane's ion permeability. To form such membranes, the transmembrane protein ferric hydroxamate uptake protein component A (FhuA) or its open-pore variant are assembled at the air-water interface of a Langmuir trough, compressed to a dense film, crosslinked by glutaraldehyde, and transferred to various support materials. This approach allows to prepare monolayer or multilayer membranes with a very high density of protein nanopores. Freestanding membranes covering holes up to 5 μm in diameter are visualized by atomic force microscopy (AFM), helium ion microscopy, and transmission electron microscopy. AFM PeakForce quantitative nanomechanical property mapping (PeakForce QNM) demonstrates remarkable mechanical stability and elastic properties of freestanding monolayer membranes with a thickness of only 5 nm. The new protein membrane can pave the way to energy-efficient nanofiltration.
Collapse
Affiliation(s)
- Magnus S Schwieters
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Polymer Engineering/Polymer Physics, Berlin Institute of Technology (TU Berlin), Ernst-Reuter-Platz 1, 10587, Berlin, Germany
| | - Maria Mathieu-Gaedke
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Michael Westphal
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Raphael Dalpke
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Maxim Dirksen
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Daizong Qi
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Marco Grull
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Thomas Bick
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Stephanie Taßler
- Synchrotron SOLEIL, L'Orme des Merisiers, BP48, Gif-Sur-Yvette, Saint-Aubin, 91192, France
| | - Daniel F Sauer
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
| | - Mischa Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Petra Wendler
- Department of Biochemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| | - Thomas Hellweg
- Department of Physical and Biophysical Chemistry, Faculty of Chemistry, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - André Beyer
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Armin Gölzhäuser
- Physics of Supramolecular Systems and Surfaces, Faculty of Physics, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology, RWTH Aachen University, Worringer Weg 3, 52074, Aachen, Germany
- DWI - Leibniz Institute for Interactive Materials e.V., Forckenbeckstr. 50, 52056, Aachen, Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP, Geiselbergstr. 69, 14476, Potsdam-Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
| |
Collapse
|
16
|
Ohnishi S, Kamiya K. Formation of Giant Lipid Vesicle Containing Dual Functions Facilitates Outer Membrane Phospholipase. ACS Synth Biol 2021; 10:1837-1846. [PMID: 34258991 DOI: 10.1021/acssynbio.0c00468] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Giant lipid vesicles are used to study artificial cell models, as well as the encapsulation of biomolecules, and the reconstitution of membrane proteins on these vesicles. Recently, complex reactions in giant vesicles have been controlled by reconstituting numerous kinds of biomolecules. However, it is challenging to generate giant lipid vesicles containing a diverse set of proteins at concentrations sufficient to ensure proper functioning. Here, we describe an artificial cell model showing dual functions of small molecule transportation and small vesicle budding, using a dual functional membrane protein (transportation and phosphatase activity) called the outer membrane phospholipase (OmpLA). To the best of our knowledge, we have revealed for the first time the transportation of ions or small molecules through OmpLA on the charged lipid bilayer. The lipid composition controlled the orientation of OmpLA through proteinase K digestion. Finally, OmpLA enzyme activity of phospholipid hydrolysis caused the budding of small vesicles.
Collapse
Affiliation(s)
- Seren Ohnishi
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan
| |
Collapse
|
17
|
Li Y, Han Y, Zeng Z, Li W, Feng S, Cao W. Discovery and Bioactivity of the Novel Lasso Peptide Microcin Y. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8758-8767. [PMID: 34314160 DOI: 10.1021/acs.jafc.1c02659] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Lasso peptides, a class of ribosomally synthesized and post-translationally modified peptides (RiPPs) secreted by bacteria, have antimicrobial activity. Here, a novel lasso peptide, microcin Y (MccY), was discovered and characterized. The gene cluster for MccY synthesis was cloned for expression in Escherichia coli. This peptide was purified by HPLC and characterized by Q-TOF. MIC assays showed that some Bacillus, Staphylococcus, Pseudomonas, Shigella, and Salmonella strains were sensitive to MccY. Interestingly, Salmonellatyphimurium and Salmonella infantis were efficiently inhibited by MccY, while they were not affected by MccJ25, a lasso peptide that has antibacterial effects on many Salmonella strains. Furthermore, MccY-resistant strains of S. typhimurium were screened, and mutations were found in FhuA and SbmA, indicating the importance of these transporters for MccY absorption. This novel peptide can greatly broaden the antimicrobial spectrum of MccJ25 in Salmonella and is expected to be used in food preservation and animal feed additive areas.
Collapse
Affiliation(s)
- Yu Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Yu Han
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Zhiwei Zeng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Wenjing Li
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Saixiang Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, People's Republic of China
| | - Weisheng Cao
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Key Laboratory of Zoonosis Prevention and Control of Guangdong Province, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, People's Republic of China
- Key Laboratory of Veterinary Vaccine Innovation of the Ministry of Agriculture, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, People's Republic of China
- National and Regional Joint Engineering Laboratory for Medicament of Zoonosis Prevention and Control, South China Agricultural University, Guangzhou 510642, People's Republic of China
| |
Collapse
|
18
|
Outer membrane protein evolution. Curr Opin Struct Biol 2021; 68:122-128. [PMID: 33493965 DOI: 10.1016/j.sbi.2021.01.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/16/2020] [Accepted: 01/02/2021] [Indexed: 01/31/2023]
Abstract
Outer membrane proteins have remarkably homogeneous structure. They are all up down β-barrels. Up down barrels themselves are composed of repeated sets of β-hairpins. The consistency of the usage of the β-hairpin throughout the outer membrane milieu allows for interrogation of the evolution of these repetitive structures. Here we describe recent investigations of outer membrane protein evolution and how evolutionary precepts have been used for novel outer membrane protein design.
Collapse
|
19
|
|
20
|
Thakur AK, Movileanu L. Single-Molecule Protein Detection in a Biofluid Using a Quantitative Nanopore Sensor. ACS Sens 2019; 4:2320-2326. [PMID: 31397162 DOI: 10.1021/acssensors.9b00848] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Protein detection in complex biological fluids has wide-ranging significance across proteomics and molecular medicine. Existing detectors cannot readily distinguish between specific and nonspecific interactions in a heterogeneous solution. Here, we show that this daunting shortcoming can be overcome by using a protein bait-containing biological nanopore in mammalian serum. The capture and release events of a protein analyte by the tethered protein bait occur outside the nanopore and are accompanied by uniform current openings. Conversely, nonspecific pore penetrations by nontarget components of serum, which take place inside the nanopore, are featured by irregular current blockades. As a result of this unique peculiarity of the readout between specific protein captures and nonspecific pore penetration events, our selective sensor can quantitatively sample proteins at single-molecule precision in a manner distinctive from those employed by prevailing methods. Because our sensor can be integrated into nanofluidic devices and coupled with high-throughput technologies, our approach will have a transformative impact in protein identification and quantification in clinical isolates for disease prognostics and diagnostics.
Collapse
Affiliation(s)
- Avinash Kumar Thakur
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, United States
| | - Liviu Movileanu
- Department of Physics, Syracuse University, 201 Physics Building, Syracuse, New York 13244-1130, United States
- Structural Biology, Biochemistry, and Biophysics Program, Syracuse University, 111 College Place, Syracuse, New York 13244-4100, United States
- Department of Biomedical and Chemical Engineering, Syracuse University, 329 Link Hall, Syracuse, New York 13244, United States
| |
Collapse
|
21
|
Mirzaei Garakani T, Liu Z, Glebe U, Gehrmann J, Lazar J, Mertens MAS, Möller M, Hamzelui N, Zhu L, Schnakenberg U, Böker A, Schwaneberg U. In Situ Monitoring of Membrane Protein Insertion into Block Copolymer Vesicle Membranes and Their Spreading via Potential-Assisted Approach. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29276-29289. [PMID: 31329408 DOI: 10.1021/acsami.9b09302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthosomes are polymer vesicles with transmembrane proteins incorporated into block copolymer membranes. They have been used for selective transport in or out of the vesicles as well as catalysis inside the compartments. However, both the insertion process of the membrane protein, forming nanopores, and the spreading of the vesicles on planar substrates to form solid-supported biomimetic membranes have been rarely studied yet. Herein, we address these two points and, first, shed light on the real-time monitoring of protein insertion via isothermal titration calorimetry. Second, the spreading process on different solid supports, namely, SiO2, glass, and gold, via different techniques like spin- and dip-coating as well as a completely new approach of potential-assisted spreading on gold surfaces was studied. While inhomogeneous layers occur via traditional methods, our proposed potential-assisted strategy to induce adsorption of positively charged vesicles by applying negative potential on the electrode leads to remarkable vesicle spreading and their further fusion to form more homogeneous planar copolymer films on gold. The polymer vesicles in our study are formed from amphiphilic copolymers poly(2-methyl oxazoline)-block-poly(dimethylsiloxane)-block-poly(2-methyl oxazoline) (PMOXA-b-PDMS-b-PMOXA). Engineered variants of the transmembrane protein ferric hydroxamate uptake protein component A (FhuA), one of the largest β-barrel channel proteins, are used as model nanopores. The incorporation of FhuA Δ1-160 is shown to facilitate the vesicle spreading process further. Moreover, high accessibility of cysteine inside the channel was proven by linkage of a fluorescent dye inside the engineered variant FhuA ΔCVFtev and hence preserved functionality of the channels after spreading. The porosity and functionality of the spread synthosomes on the gold plates have been examined by studying the passive ion transport response in the presence of Li+ and ClO4- ions and electrochemical impedance spectroscopy analysis. Our approach to form solid-supported biomimetic membranes via the potential-assisted strategy could be important for the development of new (bio-) sensors and membranes.
Collapse
Affiliation(s)
- Tayebeh Mirzaei Garakani
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 , Aachen , Germany
| | - Zhanzhi Liu
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstraße 69 , 14476 Potsdam -Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam -Golm, Germany
| | - Julia Gehrmann
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Jaroslav Lazar
- Institute of Materials in Electrical Engineering 1 , RWTH Aachen University , Sommerfeldstraße 24 , 52074 Aachen , Germany
| | | | - Mieke Möller
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Niloofar Hamzelui
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Leilei Zhu
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
| | - Uwe Schnakenberg
- Institute of Materials in Electrical Engineering 1 , RWTH Aachen University , Sommerfeldstraße 24 , 52074 Aachen , Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP , Geiselbergstraße 69 , 14476 Potsdam -Golm, Germany
- Chair of Polymer Materials and Polymer Technologies, Institute of Chemistry , University of Potsdam , Karl-Liebknecht-Str. 24-25 , 14476 Potsdam -Golm, Germany
| | - Ulrich Schwaneberg
- Institute of Biotechnology , RWTH Aachen University , Worringer Weg 3 , D-52074 Aachen , Germany
- DWI - Leibniz Institute for Interactive Materials , Forckenbeckstraße 50 , D-52074 , Aachen , Germany
| |
Collapse
|
22
|
Schmitt C, Bafna JA, Schmid B, Klingl S, Baier S, Hemmis B, Wagner R, Winterhalter M, Voll LM. Manipulation of charge distribution in the arginine and glutamate clusters of the OmpG pore alters sugar specificity and ion selectivity. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2019; 1861:183021. [PMID: 31306626 DOI: 10.1016/j.bbamem.2019.07.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 07/02/2019] [Accepted: 07/09/2019] [Indexed: 01/08/2023]
Abstract
OmpG is a general diffusion pore in the E. coli outer membrane with a molecular architecture comprising a 14-stranded β-barrel scaffold and unique structural features. In contrast to other non-specific porins, OmpG lacks a central constriction zone and has an exceptionally wide pore diameter of about 13 Å. The equatorial plane of OmpG harbors an annulus of four alternating basic and acidic patches whose function is only poorly characterized. We have investigated the role of charge distribution for ion selectivity and sugar transport with the help of OmpG variants mutated in the annulus. Substituting the glutamate residues of the annulus for histidines or alanines led to a strong reduction in cation selectivity. Replacement of the glutamates in the annulus by histidine residues also disfavored the passage of pentoses and hexoses relative to disaccharides. Our results demonstrate that despite the wide pore diameter, an annulus only consisting of two opposing basic patches confers reduced cation and monosaccharide transport compared to OmpG wild type. Furthermore, randomization of charged residues in the annulus had the potential to abolish pH-dependency of sugar transport. Our results indicate that E15, E31, R92, R111 and R211 in the annulus form electrostatic interactions with R228, E229 and D232 in loop L6 that influence pH-dependency of sugar transport.
Collapse
Affiliation(s)
- Christine Schmitt
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany; Department Biology, Division of Plant Physiology, Philipps-University Marburg, D-35043 Marburg, Germany.
| | - Jayesh Arun Bafna
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany.
| | - Benedikt Schmid
- Division of Biotechnology and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
| | - Stefan Klingl
- Division of Biotechnology and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany.
| | - Steffen Baier
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany
| | - Birgit Hemmis
- Department of Biology and Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany
| | - Richard Wagner
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany; Department of Biology and Chemistry, University of Osnabrück, D-49069 Osnabrück, Germany.
| | - Mathias Winterhalter
- Department of Life Sciences and Chemistry, Jacobs University Bremen, D-28719 Bremen, Germany.
| | - Lars M Voll
- Division of Biochemistry and Applied Protein Center Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, D-91058 Erlangen, Germany; Department Biology, Division of Plant Physiology, Philipps-University Marburg, D-35043 Marburg, Germany.
| |
Collapse
|
23
|
Wolfe AJ, Gugel JF, Chen M, Movileanu L. Kinetics of Membrane Protein-Detergent Interactions Depend on Protein Electrostatics. J Phys Chem B 2018; 122:9471-9481. [PMID: 30251852 DOI: 10.1021/acs.jpcb.8b07889] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Interactions of a membrane protein with a detergent micelle represent a fundamental process with practical implications in structural and chemical biology. Quantitative assessment of the kinetics of protein-detergent complex (PDC) interactions has always been challenged by complicated behavior of both membrane proteins and solubilizing detergents in aqueous phase. Here, we show the kinetic reads of the desorption of maltoside-containing detergents from β-barrel membrane proteins. Using steady-state fluorescence polarization (FP) anisotropy measurements, we recorded real-time, specific signatures of the PDC interactions. The results of these measurements were used to infer the model-dependent rate constants of association and dissociation of the proteomicelles. Remarkably, the kinetics of the PDC interactions depend on the overall protein charge despite the nonionic nature of the detergent monomers. In the future, this approach might be employed for high-throughput screening of kinetic fingerprints of different membrane proteins stabilized in micelles that contain mixtures of various detergents.
Collapse
Affiliation(s)
- Aaron J Wolfe
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States.,Structural Biology, Biochemistry, and Biophysics Program , Syracuse University , 111 College Place , Syracuse , New York 13244-4100 , United States
| | - Jack F Gugel
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States
| | - Min Chen
- Department of Chemistry , University of Massachusetts , 820 LGRT, 710 North Pleasant Street , Amherst , Massachusetts 01003-9336 , United States
| | - Liviu Movileanu
- Department of Physics , Syracuse University , 201 Physics Building , Syracuse , New York 13244-1130 , United States.,Structural Biology, Biochemistry, and Biophysics Program , Syracuse University , 111 College Place , Syracuse , New York 13244-4100 , United States.,Department of Biomedical and Chemical Engineering , Syracuse University , 223 Link Hall , Syracuse , New York 13244 , United States
| |
Collapse
|
24
|
Chowdhury R, Ren T, Shankla M, Decker K, Grisewood M, Prabhakar J, Baker C, Golbeck JH, Aksimentiev A, Kumar M, Maranas CD. PoreDesigner for tuning solute selectivity in a robust and highly permeable outer membrane pore. Nat Commun 2018; 9:3661. [PMID: 30202038 PMCID: PMC6131167 DOI: 10.1038/s41467-018-06097-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 07/17/2018] [Indexed: 11/30/2022] Open
Abstract
Monodispersed angstrom-size pores embedded in a suitable matrix are promising for highly selective membrane-based separations. They can provide substantial energy savings in water treatment and small molecule bioseparations. Such pores present as membrane proteins (chiefly aquaporin-based) are commonplace in biological membranes but difficult to implement in synthetic industrial membranes and have modest selectivity without tunable selectivity. Here we present PoreDesigner, a design workflow to redesign the robust beta-barrel Outer Membrane Protein F as a scaffold to access three specific pore designs that exclude solutes larger than sucrose (>360 Da), glucose (>180 Da), and salt (>58 Da) respectively. PoreDesigner also enables us to design any specified pore size (spanning 3-10 Å), engineer its pore profile, and chemistry. These redesigned pores may be ideal for conducting sub-nm aqueous separations with permeabilities exceeding those of classical biological water channels, aquaporins, by more than an order of magnitude at over 10 billion water molecules per channel per second.
Collapse
Affiliation(s)
- Ratul Chowdhury
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Tingwei Ren
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Manish Shankla
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karl Decker
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Matthew Grisewood
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Jeevan Prabhakar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Carol Baker
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Department of Chemistry, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Aleksei Aksimentiev
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Manish Kumar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
25
|
Abstract
Collective antibiotic drug resistance is a global threat, especially with respect to Gram-negative bacteria. The low permeability of the bacterial outer cell wall has been identified as a challenging barrier that prevents a sufficient antibiotic effect to be attained at low doses of the antibiotic. The Gram-negative bacterial cell envelope comprises an outer membrane that delimits the periplasm from the exterior milieu. The crucial mechanisms of antibiotic entry via outer membrane includes general diffusion porins (Omps) responsible for hydrophilic antibiotics and lipid-mediated pathway for hydrophobic antibiotics. The protein and lipid arrangements of the outer membrane have had a strong impact on the understanding of bacteria and their resistance to many types of antibiotics. Thus, one of the current challenges is effective interpretation at the molecular basis of the outer membrane permeability. This review attempts to develop a state of knowledge pertinent to Omps and their effective role in solute influx. Moreover, it aims toward further understanding and exploration of prospects to improve our knowledge of physicochemical limitations that direct the translocation of antibiotics via bacterial outer membrane.
Collapse
Affiliation(s)
- Ishan Ghai
- School of Engineering and Life Sciences, Jacobs University, Bremen, Germany.,Consultation Division, RSGBIOGEN, New Delhi, India
| | | |
Collapse
|