1
|
Mendonsa AA, Cash KJ. Oxygen-Sensitive Optical Nanosensors: Current Advances and Future Perspectives. ACS Sens 2025. [PMID: 40272943 DOI: 10.1021/acssensors.5c00180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Oxygen sensing is essential across a wide range of fields, from understanding cellular metabolism and disease mechanisms to optimizing industrial and environmental processes. In this Perspective, we highlight key developments in optical architectures (at the nanometer to sub-micrometer scale), including their transduction methods and applications to in vitro, in vivo/in situ, and nonbiological systems. We also discuss future directions for the field in the domain of expanding extra/intracellular and nonbiological sensing. We address improving accessibility for nonexpert users through the need for standardized protocols and scalable production methods. Furthermore, we advocate for fostering interdisciplinary collaborations through academic incubators, conference networking, and strategic citation practices to bridge gaps between fundamental research and applied science to expand the impact of these tools to researchers outside the sensing field. Addressing these challenges will help drive the development of more versatile and widely accessible oxygen sensors, thus advancing innovation across diverse disciplines.
Collapse
Affiliation(s)
- Adrian A Mendonsa
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Kevin J Cash
- Chemical and Biological Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
- Quantitative Biosciences and Engineering, Colorado School of Mines, Golden, Colorado 80401, United States
| |
Collapse
|
2
|
Gooding JJ. Some of Our Favorite Papers from the First 10 Years of ACS Sensors. ACS Sens 2025; 10:1-3. [PMID: 39849956 DOI: 10.1021/acssensors.4c03746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Affiliation(s)
- J Justin Gooding
- The University of New South Wales, Sydney, New South Wales 2033, Australia
| |
Collapse
|
3
|
Chen L, Khan A, Dai S, Bermak A, Li W. Metallic Micro-Nano Network-Based Soft Transparent Electrodes: Materials, Processes, and Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302858. [PMID: 37890452 PMCID: PMC10724424 DOI: 10.1002/advs.202302858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/29/2023] [Indexed: 10/29/2023]
Abstract
Soft transparent electrodes (TEs) have received tremendous interest from academia and industry due to the rapid development of lightweight, transparent soft electronics. Metallic micro-nano networks (MMNNs) are a class of promising soft TEs that exhibit excellent optical and electrical properties, including low sheet resistance and high optical transmittance, as well as superior mechanical properties such as softness, robustness, and desirable stability. They are genuinely interesting alternatives to conventional conductive metal oxides, which are expensive to fabricate and have limited flexibility on soft surfaces. This review summarizes state-of-the-art research developments in MMNN-based soft TEs in terms of performance specifications, fabrication methods, and application areas. The review describes the implementation of MMNN-based soft TEs in optoelectronics, bioelectronics, tactile sensors, energy storage devices, and other applications. Finally, it presents a perspective on the technical difficulties and potential future possibilities for MMNN-based TE development.
Collapse
Affiliation(s)
- Liyang Chen
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Department of Information Technology and Electrical EngineeringETH ZurichZurich8092Switzerland
| | - Arshad Khan
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Shuqin Dai
- Department School of Electrical and Electronic EngineeringNanyang Technological UniversitySingapore639798Singapore
| | - Amine Bermak
- Division of Information and Computing TechnologyCollege of Science and EngineeringHamad Bin Khalifa UniversityDoha34110Qatar
| | - Wen‐Di Li
- Department of Mechanical EngineeringUniversity of Hong KongHong Kong00000China
| |
Collapse
|
4
|
Nithianandam P, Tzu-li L, Chen S, Yizhen J, Dong Y, Saul M, Tedeschi A, Wenjing S, Jinghua L. Flexible, Miniaturized Sensing Probes Inspired by Biofuel Cells for Monitoring Synaptically Released Glutamate in the Mouse Brain. Angew Chem Int Ed Engl 2023; 62:e202310245. [PMID: 37632702 PMCID: PMC10592105 DOI: 10.1002/anie.202310245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/20/2023] [Accepted: 08/24/2023] [Indexed: 08/28/2023]
Abstract
Chemical biomarkers in the central nervous system can provide valuable quantitative measures to gain insight into the etiology and pathogenesis of neurological diseases. Glutamate, one of the most important excitatory neurotransmitters in the brain, has been found to be upregulated in various neurological disorders, such as traumatic brain injury, Alzheimer's disease, stroke, epilepsy, chronic pain, and migraines. However, quantitatively monitoring glutamate release in situ has been challenging. This work presents a novel class of flexible, miniaturized probes inspired by biofuel cells for monitoring synaptically released glutamate in the nervous system. The resulting sensors, with dimensions as low as 50 by 50 μm, can detect real-time changes in glutamate within the biologically relevant concentration range. Experiments exploiting the hippocampal circuit in mice models demonstrate the capability of the sensors in monitoring glutamate release via electrical stimulation using acute brain slices. These advances could aid in basic neuroscience studies and translational engineering, as the sensors provide a diagnostic tool for neurological disorders. Additionally, adapting the biofuel cell design to other neurotransmitters can potentially enable the detailed study of the effect of neurotransmitter dysregulation on neuronal cell signaling pathways and revolutionize neuroscience.
Collapse
Affiliation(s)
- Prasad Nithianandam
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Liu Tzu-li
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Shulin Chen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Jia Yizhen
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Yan Dong
- Department of Materials Science and Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Morgan Saul
- Department of Neuroscience, The Ohio State University College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - Andrea Tedeschi
- Department of Neuroscience, The Ohio State University College of Medicine, Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| | - Sun Wenjing
- Department of Neuroscience, The Ohio State University College of Medicine, Columbus, OH 43210, USA
| | - Li Jinghua
- Department of Materials Science and Engineering, Chronic Brain Injury Program, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
5
|
Batool S, Nabipour H, Ramakrishna S, Mozafari M. Nanotechnology and quantum science enabled advances in neurological medical applications: diagnostics and treatments. Med Biol Eng Comput 2022; 60:3341-3356. [DOI: 10.1007/s11517-022-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 09/12/2022] [Indexed: 11/11/2022]
|
6
|
Kavand H, Nasiri R, Herland A. Advanced Materials and Sensors for Microphysiological Systems: Focus on Electronic and Electrooptical Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107876. [PMID: 34913206 DOI: 10.1002/adma.202107876] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Advanced in vitro cell culture systems or microphysiological systems (MPSs), including microfluidic organ-on-a-chip (OoC), are breakthrough technologies in biomedicine. These systems recapitulate features of human tissues outside of the body. They are increasingly being used to study the functionality of different organs for applications such as drug evolutions, disease modeling, and precision medicine. Currently, developers and endpoint users of these in vitro models promote how they can replace animal models or even be a better ethically neutral and humanized alternative to study pathology, physiology, and pharmacology. Although reported models show a remarkable physiological structure and function compared to the conventional 2D cell culture, they are almost exclusively based on standard passive polymers or glass with none or minimal real-time stimuli and readout capacity. The next technology leap in reproducing in vivo-like functionality and real-time monitoring of tissue function could be realized with advanced functional materials and devices. This review describes the currently reported electronic and optical advanced materials for sensing and stimulation of MPS models. In addition, an overview of multi-sensing for Body-on-Chip platforms is given. Finally, one gives the perspective on how advanced functional materials could be integrated into in vitro systems to precisely mimic human physiology.
Collapse
Affiliation(s)
- Hanie Kavand
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
| | - Rohollah Nasiri
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| | - Anna Herland
- Division of Micro- and Nanosystems, Department of Intelligent Systems, KTH Royal Institute of Technology, Malvinas Väg 10 pl 5, Stockholm, 100 44, Sweden
- AIMES, Center for the Advancement of Integrated Medical and Engineering Sciences, Department of Neuroscience, Karolinska Institute, Solnavägen 9/B8, Solna, 171 65, Sweden
- Division of Nanobiotechnology, Department of Protein Science, KTH Royal Institute of Technology, Tomtebodavägen 23a, Solna, 171 65, Sweden
| |
Collapse
|
7
|
Fan W, Fang C, Yang Y, Zhang C. Comparison of clinical characteristics between cluster and isolated seizures associated with benign convulsions with mild gastroenteritis. Eur J Paediatr Neurol 2022; 36:26-29. [PMID: 34823071 DOI: 10.1016/j.ejpn.2021.11.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/03/2021] [Accepted: 11/16/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND AND PURPOSE Cluster seizures have not been specifically reported in benign convulsions with mild gastroenteritis (CWG), which are usually considered to have serious outcomes. We aimed to identify the differences between cluster and isolated seizures associated with CWG. METHOD We retrospectively analyzed the medical data of children hospitalized and diagnosed with CWG from May 2018 to December 2020. A case-control study approach was adopted and patients who met the inclusion criteria were divided into a cluster seizures group and an isolated seizures group. Then, the clinical characteristics of the patients in the two groups were compared. RESULTS 30 patients(36.6%) were in the cluster seizures group while 52 patients (63.4%) were in the isolated seizures group. The highest incidence of CWG occurs between 12 and 24 months of age. While serum sodium and calcium were within the normal range for both groups, they were lower in the cluster seizures group compared to the isolated seizures group (136.74 ± 2.78 vs 134.65 ± 2.85, P = 0.002; 2.43 ± 0.13 vs 2.37 ± 0.14, P = 0.04). A total of 123 seizures was recorded during the research period and 25 were treated with anticonvulsant drugs. The outcome of anticonvulsant therapy and the prognosis showed no differences between the two groups. CONCLUSION Clinicians need to be highly alert to the possibility of cluster seizures in CWG patients who have reduced sodium and calcium. Besides, CWG patients with cluster seizures do not require excessive investigations, overuse of anticonvulsant therapy compared to those with isolated seizures.
Collapse
Affiliation(s)
- Wei Fan
- Department of Pediatrics, Liyang People's Hospital, Liyang, China.
| | - Cuiyun Fang
- Department of Surgery, Liyang People's Hospital Hospital, China
| | - Yi Yang
- Department of Pediatrics, Liyang People's Hospital, Liyang, China
| | - Chunsheng Zhang
- Department of Pediatrics, Liyang People's Hospital, Liyang, China
| |
Collapse
|
8
|
Pitsalidis C, Pappa AM, Boys AJ, Fu Y, Moysidou CM, van Niekerk D, Saez J, Savva A, Iandolo D, Owens RM. Organic Bioelectronics for In Vitro Systems. Chem Rev 2021; 122:4700-4790. [PMID: 34910876 DOI: 10.1021/acs.chemrev.1c00539] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Bioelectronics have made strides in improving clinical diagnostics and precision medicine. The potential of bioelectronics for bidirectional interfacing with biology through continuous, label-free monitoring on one side and precise control of biological activity on the other has extended their application scope to in vitro systems. The advent of microfluidics and the considerable advances in reliability and complexity of in vitro models promise to eventually significantly reduce or replace animal studies, currently the gold standard in drug discovery and toxicology testing. Bioelectronics are anticipated to play a major role in this transition offering a much needed technology to push forward the drug discovery paradigm. Organic electronic materials, notably conjugated polymers, having demonstrated technological maturity in fields such as solar cells and light emitting diodes given their outstanding characteristics and versatility in processing, are the obvious route forward for bioelectronics due to their biomimetic nature, among other merits. This review highlights the advances in conjugated polymers for interfacing with biological tissue in vitro, aiming ultimately to develop next generation in vitro systems. We showcase in vitro interfacing across multiple length scales, involving biological models of varying complexity, from cell components to complex 3D cell cultures. The state of the art, the possibilities, and the challenges of conjugated polymers toward clinical translation of in vitro systems are also discussed throughout.
Collapse
Affiliation(s)
- Charalampos Pitsalidis
- Department of Physics, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE.,Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Anna-Maria Pappa
- Department of Biomedical Engineering, Khalifa University of Science and Technology, P.O. Box 127788, Abu Dhabi 127788, UAE
| | - Alexander J Boys
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Ying Fu
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Department of Pure and Applied Chemistry, Technology and Innovation Centre, University of Strathclyde, Glasgow G1 1RD, U.K
| | - Chrysanthi-Maria Moysidou
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Douglas van Niekerk
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Janire Saez
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K.,Microfluidics Cluster UPV/EHU, BIOMICs Microfluidics Group, Lascaray Research Center, University of the Basque Country UPV/EHU, Avenida Miguel de Unamuno, 3, 01006 Vitoria-Gasteiz, Spain.,Ikerbasque, Basque Foundation for Science, E-48011 Bilbao, Spain
| | - Achilleas Savva
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| | - Donata Iandolo
- INSERM, U1059 Sainbiose, Université Jean Monnet, Mines Saint-Étienne, Université de Lyon, 42023 Saint-Étienne, France
| | - Róisín M Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge Philippa Fawcett Drive, Cambridge CB3 0AS, U.K
| |
Collapse
|
9
|
Oishi R, Maki K, Mizuta T, Sueyoshi K, Endo T, Hisamoto H. Enzyme-responsive fluorescent nanoemulsion based on lipophilic dye liquid. Analyst 2021; 146:4121-4124. [PMID: 34075944 DOI: 10.1039/d1an00447f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An enzyme-responsive fluorescent nanoemulsion (NE) based on lipophilic dye liquid (LDL) was developed for alkaline phosphatase (ALP). The response mechanism of the NE involved enzymatic reactions and simultaneous extraction of anions. The LDL-based NE exhibited 3.8 times higher sensitivity than plasticizer-based conventional NE. Detection limit and response range were 2.7 (U L-1) and 5-50 (U L-1), respectively. The response time was reduced to less than half that of the LDL-based membrane.
Collapse
Affiliation(s)
- Ryoutarou Oishi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Kaho Maki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Tatsumi Mizuta
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Kenji Sueyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan. and Japan Science and Technology Agency (JST), Precursory Research for Embryonic Science and Technology (PRESTO), 5-3 Yonban-cho, Chiyoda, Tokyo 102-8666, Japan
| | - Tatsuro Endo
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| | - Hideaki Hisamoto
- Department of Applied Chemistry, Graduate School of Engineering, Osaka Prefecture University, 1-1 Gakuencho, Nakaku, Sakai, Osaka 599-8531, Japan.
| |
Collapse
|
10
|
Azizgolshani H, Coppeta JR, Vedula EM, Marr EE, Cain BP, Luu RJ, Lech MP, Kann SH, Mulhern TJ, Tandon V, Tan K, Haroutunian NJ, Keegan P, Rogers M, Gard AL, Baldwin KB, de Souza JC, Hoefler BC, Bale SS, Kratchman LB, Zorn A, Patterson A, Kim ES, Petrie TA, Wiellette EL, Williams C, Isenberg BC, Charest JL. High-throughput organ-on-chip platform with integrated programmable fluid flow and real-time sensing for complex tissue models in drug development workflows. LAB ON A CHIP 2021; 21:1454-1474. [PMID: 33881130 DOI: 10.1039/d1lc00067e] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro, therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening.
Collapse
Affiliation(s)
- H Azizgolshani
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J R Coppeta
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E M Vedula
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E E Marr
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B P Cain
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - R J Luu
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - M P Lech
- Pfizer, Inc., 1 Portland Street, Cambridge, MA 02139, USA
| | - S H Kann
- Draper, 555 Technology Square, Cambridge, MA 02139, USA. and Department of Mechanical Engineering, Boston University, 110 Cummington Mall, Boston, MA 02215, USA
| | - T J Mulhern
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - V Tandon
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - K Tan
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | | | - P Keegan
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - M Rogers
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A L Gard
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - K B Baldwin
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J C de Souza
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B C Hoefler
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - S S Bale
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - L B Kratchman
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A Zorn
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - A Patterson
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E S Kim
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - T A Petrie
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - E L Wiellette
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - C Williams
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - B C Isenberg
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| | - J L Charest
- Draper, 555 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
11
|
Di W, Clark HA. Optical Nanosensors for in vivo Physiological Chloride Detection for Monitoring Cystic Fibrosis Treatment. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:1441-1448. [PMID: 32226484 PMCID: PMC7100910 DOI: 10.1039/c9ay02717c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Personalized approaches for continuous monitoring of chloride levels are potentially valuable for evaluating the efficacy of new treatments of genetic disorders such as cystic fibrosis. In this report, we validated optode-based nanosensors for real-time chloride monitoring in the interstitial fluid of living animals. These nanosensors take advantage of a ratiometric sensing scheme which demonstrates reversible and selective chloride detection in the physiological range. We further investigate how skin pigmentation affects the sensor performance during in vivo fluorescence imaging. We successfully monitored endogenous chloride changes using nanosensors during pharmacological treatment in a cystic fibrosis mouse model. We believe this platform is a valuable tool for chloride detection which could assess the efficacy of new treatments for cystic fibrosis.
Collapse
Affiliation(s)
- Wenjun Di
- Department of Pharmaceutical Sciences, Northeastern University, Boston, Massachusetts 02115, United States
| | - Heather A Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, United States
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, United States
| |
Collapse
|
12
|
Real-time particle-by-particle detection of erythrocyte-camouflaged microsensor with extended circulation time in the bloodstream. Proc Natl Acad Sci U S A 2020; 117:3509-3517. [PMID: 32019879 DOI: 10.1073/pnas.1914913117] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Personalized medicine offers great potential benefits for disease management but requires continuous monitoring of drugs and drug targets. For instance, the therapeutic window for lithium therapy of bipolar disorder is very narrow, and more frequent monitoring of sodium levels could avoid toxicity. In this work, we developed and validated a platform for long-term, continuous monitoring of systemic analyte concentrations in vivo. First, we developed sodium microsensors that circulate directly in the bloodstream. We used "red blood cell mimicry" to achieve long sensor circulation times of up to 2 wk, while being stable, reversible, and sensitive to sodium over physiologically relevant concentration ranges. Second, we developed an external optical reader to detect and quantify the fluorescence activity of the sensors directly in circulation without having to draw blood samples and correlate the measurement with a phantom calibration curve to measure in vivo sodium. The reader design is inherently scalable to larger limbs, species, and potentially even humans. In combination, this platform represents a paradigm for in vivo drug monitoring that we anticipate will have many applications in the future.
Collapse
|
13
|
Lochman L, Machacek M, Miletin M, Uhlířová Š, Lang K, Kirakci K, Zimcik P, Novakova V. Red-Emitting Fluorescence Sensors for Metal Cations: The Role of Counteranions and Sensing of SCN - in Biological Materials. ACS Sens 2019; 4:1552-1559. [PMID: 31094188 DOI: 10.1021/acssensors.9b00081] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The spatiotemporal sensing of specific cationic and anionic species is crucial for understanding the processes occurring in living systems. Herein, we developed new fluorescence sensors derived from tetrapyrazinoporphyrazines (TPyzPzs) with a recognition moiety that consists of an aza-crown and supporting substituents. Their sensitivity and selectivity were compared by fluorescence titration experiments with the properties of known TPyzPzs (with either one aza-crown moiety or two of these moieties in a tweezer arrangement). Method of standard addition was employed for analyte quantification in saliva. For K+ recognition, the new derivatives had comparable or larger association constants with larger fluorescence enhancement factors compared to that with one aza-crown. Their fluorescence quantum yields in the ON state were 18× higher than that of TPyzPzs with a tweezer arrangement. Importantly, the sensitivity toward cations was strongly dependent on counteranions and increased as follows: NO3- < Br- < CF3SO3- < ClO4- ≪ SCN-. This trend resembles the chaotropic ability expressed by the Hofmeister series. The high selectivity toward KSCN was explained by synergic association of both K+ and SCN- with TPyzPz sensors. The sensing of SCN- was further exploited in a proof of concept study to quantify SCN- levels in the saliva of a smoker and to demonstrate the sensing ability of TPyzPzs under in vitro conditions.
Collapse
Affiliation(s)
- Lukas Lochman
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Miloslav Machacek
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Miroslav Miletin
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Štěpánka Uhlířová
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Kamil Lang
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Kaplan Kirakci
- Institute of Inorganic Chemistry of the Czech Academy of Sciences, 250 68 Husinec-Řež, Czech Republic
| | - Petr Zimcik
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| | - Veronika Novakova
- Faculty of Pharmacy in Hradec Kralove, Charles University, Akademika Heyrovskeho 1203, 500 05, Hradec Kralove, Czech Republic
| |
Collapse
|
14
|
Rong G, Tuttle EE, Neal Reilly A, Clark HA. Recent Developments in Nanosensors for Imaging Applications in Biological Systems. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:109-128. [PMID: 30857408 PMCID: PMC6958676 DOI: 10.1146/annurev-anchem-061417-125747] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Sensors are key tools for monitoring the dynamic changes of biomolecules and biofunctions that encode valuable information that helps us understand underlying biological processes of fundamental importance. Because of their distinctive size-dependent physicochemical properties, materials with nanometer scales have recently emerged as promising candidates for biological sensing applications by offering unique insights into real-time changes of key physiological parameters. This review focuses on recent advances in imaging-based nanosensor developments and applications categorized by their signal transduction mechanisms, namely, fluorescence, plasmonics, MRI, and photoacoustics. We further discuss the synergy created by multimodal nanosensors in which sensor components work based on two or more signal transduction mechanisms.
Collapse
Affiliation(s)
- Guoxin Rong
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Erin E Tuttle
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| | - Ashlyn Neal Reilly
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
| | - Heather A Clark
- Department of Bioengineering, Northeastern University, Boston, Massachusetts 02115, USA;
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts 02115, USA
| |
Collapse
|