1
|
Aydin F, Abelson A, Weitzner SE, Fornasiero F, Pham TA, Meshot ER, Buchsbaum SF. Mechanisms and effects of gas intercalation into ionic liquids confined within charged nanoscale volumes. NANOSCALE 2025; 17:7813-7824. [PMID: 39996457 DOI: 10.1039/d4nr05409a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/26/2025]
Abstract
Understanding the behavior of gas within confined ionic liquids (ILs) is important for a wide range of emerging energy, separation, and sensing technologies. However, the mechanisms governing gas solubility and molecular structure within these systems remain largely unknown. Here, we investigate the factors that dictate the intercalation and arrangement of CO2, N2 and O2, in a commonly used IL (1-butyl-3-methylimidazolium hexafluorophosphate, [BMIM+][PF6-]) confined within neutral and charged 2.1 nm diameter carbon nanotubes (CNTs) via molecular dynamics simulations and enhanced free energy sampling methods. Our simulations show that the gas selectivity in these systems can be explained by a competitive complex interplay between confinement, charge state of CNTs, and IL properties. We then experimentally validate a subset of these predictions using a novel device consisting of electrically addressable, IL-infilled CNTs which we expose to CO2 and O2 in a N2 background. Our findings help to disentangle the relative importance of tuning gas solubility and preferential proximity to the CNT wall for maximizing measurable changes of electrochemical signals. These insights provide a foundation for engineering future electrochemical systems utilized in gas sensing or separation applications.
Collapse
Affiliation(s)
- Fikret Aydin
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Alex Abelson
- Engineering, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Stephen E Weitzner
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Francesco Fornasiero
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Tuan Anh Pham
- Physical and Life Sciences, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Eric R Meshot
- Engineering, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Steven F Buchsbaum
- Engineering, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
2
|
Brothers MC, Sim D, Sant'Anna G, Giordano AN, Rao RS, Bedford NM, Kim SS. Mechanistic Analysis of Peptide Affinity to Single-Walled Carbon Nanotubes and Volatile Organic Compounds Using Chemiresistors. ACS APPLIED MATERIALS & INTERFACES 2025; 17:235-246. [PMID: 39722536 DOI: 10.1021/acsami.4c14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
Peptides, due to their diverse and controllable properties, are used as both liquid and gas phase recognition elements for both biological and chemical targets. While it is well understood how binding of a peptide to a biomolecule can be converted into a sensing event, there is not the same mechanistic level of understanding with regard to how peptides modulate the selectivity of semiconductor/conductor-based gas sensors. Notably, a rational, mechanistic study has not yet been performed to correlate peptide properties to the sensor response for volatile organic compounds (VOCs) as a function of chemical properties. Here, we have designed a peptide that has (1) two amino acid residues that bind the sensor surface, (2) two flexible linkers (GG) that eliminate steric strain, and (3) a five amino-acid repeat that can bind the analyte of interest either by formation of a binding pocket (such as from peptides selected by phage display) or by forming a semiselective adsorption layer. The nine peptide sequences containing both a six amino acid constant sequence (WGGWGG) and a five amino acid variable sequence (XXXXX) were synthesized, and their impact on the selectivity and sensitivity of carbon nanotube (CNT) gas sensors was explored. The response of each sensor to the following VOCs with diverse chemical properties: isopropyl alcohol (polar protic), acetone (polar aprotic), isoprene (nonpolar, linear hydrocarbon), and toluene (nonpolar aromatic), was then recorded and analyzed. This study revealed multiple key factors that influence the response of peptides on CNTs to select VOCs. First, the stability of the CNT-peptide aqueous dispersion correlated to the aromaphilicity of the side chain, strongly suggesting that the side chains of peptides are interfacing with the CNT, and not the peptide backbone. Second, the sensing response profile cannot solely be explained by peptides adsorbing to the gas molecules with similar polarities/dielectrics and may instead be due to analyte displacement of the peptide side chain on the CNT surface as measured by changes in the peptide bond orientation using near-edge X-ray absorption fine structure spectroscopy (NEXAFS). These two observations create a new paradigm to explain how peptides confer selectivity to semiconductor-/conductor-based gas sensors and can provide insights into future design and implementation of peptide-coated solid state sensors for gas targets.
Collapse
Affiliation(s)
- Michael C Brothers
- Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States
- Integrative Health & Performance Technologies Division, BlueHalo, Dayton, Ohio 45432, United States
| | - Daniel Sim
- Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States
- Integrative Health & Performance Technologies Division, BlueHalo, Dayton, Ohio 45432, United States
| | - Gustavo Sant'Anna
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
| | - Andrea N Giordano
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States
- National Research Council, the National Academies of Sciences, Washington, D.C. 20001, United States
| | - Rahul S Rao
- Air Force Research Laboratory, Materials and Manufacturing Directorate, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States
| | - Nicholas M Bedford
- School of Chemical Engineering, University of New South Wales, Kensington, NSW 2052, Australia
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80023, United States
| | - Steve S Kim
- Air Force Research Laboratory, 711th Human Performance Wing, Wright-Patterson Air Force Base, Wright-Patterson AFB, Ohio 45433, United States
| |
Collapse
|
3
|
Xiong H, Zhang X, Sun J, Xue Y, Yu W, Mou S, Hsia KJ, Wan H, Wang P. Recent advances in biosensors detecting biomarkers from exhaled breath and saliva for respiratory disease diagnosis. Biosens Bioelectron 2025; 267:116820. [PMID: 39374569 DOI: 10.1016/j.bios.2024.116820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 09/06/2024] [Accepted: 09/28/2024] [Indexed: 10/09/2024]
Abstract
The global demand for rapid and non-invasive diagnostic methods for respiratory diseases has significantly intensified due to the wide spread of respiratory infectious diseases. Recent advancements in respiratory disease diagnosis through the analysis of exhaled breath and saliva has attracted great attention all over the world. Among various analytical methods, biosensors can offer non-invasive, efficient, and cost-effective diagnostic capabilities, emerging as promising tools in this area. This review intends to provide a comprehensive overview of various biosensors for the detection of respiratory disease related biomarkers in exhaled breath and saliva. Firstly, the characteristics of exhaled breath and saliva, including their generation, composition, and relevant biomarkers are introduced. Subsequently, the design and application of various biosensors for detecting these biomarkers are presented, along with the innovative materials employed as sensitive components. Different types of biosensors are reviewed, including electrochemical, optical, piezoelectric, semiconductor, and other novel biosensors. At last, the challenges, limitations, and future trends of these biosensors are discussed. It is anticipated that biosensors will play a significant role in respiratory disease diagnosis in the future.
Collapse
Affiliation(s)
- Hangming Xiong
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Xiaojing Zhang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Jiaying Sun
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yingying Xue
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - Weijie Yu
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Shimeng Mou
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China
| | - K Jimmy Hsia
- Schools of Chemical & Biomedical Engineering, Nanyang Technological University, Singapore 639798, Singapore
| | - Hao Wan
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Binjiang Institute of Zhejiang University, Hangzhou 310053, China.
| | - Ping Wang
- Biosensor National Special Laboratory, Key Laboratory of Biomedical Engineering of Education Ministry, Department of Biomedical Engineering, Zhejiang University, Hangzhou 310027, China; Cancer Center, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Zong B, Wu S, Yang Y, Li Q, Tao T, Mao S. Smart Gas Sensors: Recent Developments and Future Prospective. NANO-MICRO LETTERS 2024; 17:54. [PMID: 39489808 PMCID: PMC11532330 DOI: 10.1007/s40820-024-01543-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/23/2024] [Indexed: 11/05/2024]
Abstract
Gas sensor is an indispensable part of modern society with wide applications in environmental monitoring, healthcare, food industry, public safety, etc. With the development of sensor technology, wireless communication, smart monitoring terminal, cloud storage/computing technology, and artificial intelligence, smart gas sensors represent the future of gas sensing due to their merits of real-time multifunctional monitoring, early warning function, and intelligent and automated feature. Various electronic and optoelectronic gas sensors have been developed for high-performance smart gas analysis. With the development of smart terminals and the maturity of integrated technology, flexible and wearable gas sensors play an increasing role in gas analysis. This review highlights recent advances of smart gas sensors in diverse applications. The structural components and fundamental principles of electronic and optoelectronic gas sensors are described, and flexible and wearable gas sensor devices are highlighted. Moreover, sensor array with artificial intelligence algorithms and smart gas sensors in "Internet of Things" paradigm are introduced. Finally, the challenges and perspectives of smart gas sensors are discussed regarding the future need of gas sensors for smart city and healthy living.
Collapse
Affiliation(s)
- Boyang Zong
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shufang Wu
- Microbiome Medicine Center, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, People's Republic of China
| | - Yuehong Yang
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Qiuju Li
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| | - Tian Tao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China
| | - Shun Mao
- College of Environmental Science and Engineering, Biomedical Multidisciplinary Innovation Research Institute, Shanghai East Hospital, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, People's Republic of China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, People's Republic of China.
| |
Collapse
|
5
|
Ilyas F, Fazal H, Ahmed M, Iqbal A, Ishaq M, Jabeen M, Butt M, Farid S. Advances in ionic liquids as fluorescent sensors. CHEMOSPHERE 2024; 352:141434. [PMID: 38401867 DOI: 10.1016/j.chemosphere.2024.141434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 02/08/2024] [Accepted: 02/08/2024] [Indexed: 02/26/2024]
Abstract
Ionic liquids (ILs) are a class of liquid salts with characteristics such as a low melting point, an ionic nature, non-volatility, and tunable properties. Because of their adaptability, they have a significant influence in the field of fluorescence. This paper reviews the primary literature on the use of ILs in fluorescence sensing technologies. The kind of target material is utilized to classify the fluorescence sensors made with the use of ILs. They include using ILs as probes for metals, nitro explosives, small organic compounds, anions, and gases. The efficacy of an IL-based fluorescence sensor depends on the precise design to guarantee specificity, sensitivity, and a consistent reaction to the desired analyte. The precise method can differ depending on the chemical properties of the IL, the choice of fluorophore, and the interactions with the analyte. Overall, the viability of the aforementioned materials for chemical analysis is evaluated, and prospective possibilities for further development are identified.
Collapse
Affiliation(s)
- Farva Ilyas
- Department of Materials Science and Engineering, College of Transportation Engineering, Dalian Maritime University, Dalian, 116026, China; Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Hira Fazal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Muhktiar Ahmed
- Chemistry of Interfaces, Luleå University of Technology, SE-97 187, Luleå, Sweden
| | - Asma Iqbal
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | | | - Maher Jabeen
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Madiha Butt
- Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sumbal Farid
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
6
|
Park J, Lee Y, Cho S, Choe A, Yeom J, Ro YG, Kim J, Kang DH, Lee S, Ko H. Soft Sensors and Actuators for Wearable Human-Machine Interfaces. Chem Rev 2024; 124:1464-1534. [PMID: 38314694 DOI: 10.1021/acs.chemrev.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Haptic human-machine interfaces (HHMIs) combine tactile sensation and haptic feedback to allow humans to interact closely with machines and robots, providing immersive experiences and convenient lifestyles. Significant progress has been made in developing wearable sensors that accurately detect physical and electrophysiological stimuli with improved softness, functionality, reliability, and selectivity. In addition, soft actuating systems have been developed to provide high-quality haptic feedback by precisely controlling force, displacement, frequency, and spatial resolution. In this Review, we discuss the latest technological advances of soft sensors and actuators for the demonstration of wearable HHMIs. We particularly focus on highlighting material and structural approaches that enable desired sensing and feedback properties necessary for effective wearable HHMIs. Furthermore, promising practical applications of current HHMI technology in various areas such as the metaverse, robotics, and user-interactive devices are discussed in detail. Finally, this Review further concludes by discussing the outlook for next-generation HHMI technology.
Collapse
Affiliation(s)
- Jonghwa Park
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Youngoh Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungse Cho
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Ayoung Choe
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jeonghee Yeom
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Yun Goo Ro
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Jinyoung Kim
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Dong-Hee Kang
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Seungjae Lee
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| | - Hyunhyub Ko
- School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan Metropolitan City 44919, Republic of Korea
| |
Collapse
|
7
|
Chen SS, Chen XX, Yang TY, Chen L, Guo Z, Huang XJ. Temperature-modulated sensing characteristics of ultrafine Au nanoparticle-loaded porous ZnO nanobelts for identification and determination of BTEX. JOURNAL OF HAZARDOUS MATERIALS 2024; 463:132940. [PMID: 37951172 DOI: 10.1016/j.jhazmat.2023.132940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/03/2023] [Accepted: 11/04/2023] [Indexed: 11/13/2023]
Abstract
The identification and determination of benzene, toluene, ethylbenzene, and xylene (BTEX) has always been a formidable challenge for chemiresistive metal oxide sensors owing to their structural similarity and low reactivity, as well as the intrinsic cross sensitivity of metal oxides. In this paper, a temperature-modulated sensing strategy is proposed for the identification and determination of BTEX using a high-performance chemiresistive sensor. Ultrafine Au nanoparticle-loaded porous ZnO nanobelts as sensing materials were synthesized through an exchange reaction followed by thermal oxidation, which exhibited high response toward BTEX. Under dynamic modulation of working temperature, the distinguishable characteristic curves were demonstrated for each BTEX compound. By employing the linear discrimination and convolutional neural network analyses, highly effective BTEX identification was achieved among all investigated volatile organic compounds, which is difficult to realize for single chemiresistive sensors at constant working temperatures. Furthermore, quantitative analysis of BTEX concentrations was accomplished by establishing the relationship between concentration and response at specific points on their response curves. This developed strategy is expected to pave a new way for constructing highly sensitive gas sensors for the identification and analysis of hazardous gases, thereby enhancing their applicability in environmental monitoring.
Collapse
Affiliation(s)
- Shun-Shun Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Xu-Xiu Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Tian-Yu Yang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China
| | - Li Chen
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China.
| | - Zheng Guo
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, PR China.
| | - Xing-Jiu Huang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, PR China; Key Laboratory of Environmental Optics and Technology, And Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei, 230031, PR China
| |
Collapse
|
8
|
Sim D, Huang T, Kim SS. Peptide-Functionalized Carbon Nanotube Chemiresistors: The Effect of Nanotube Density on Gas Sensing. SENSORS (BASEL, SWITZERLAND) 2023; 23:8469. [PMID: 37896562 PMCID: PMC10611220 DOI: 10.3390/s23208469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/03/2023] [Accepted: 10/10/2023] [Indexed: 10/29/2023]
Abstract
Biorecognition element (BRE)-based carbon nanotube (CNT) chemiresistors have tremendous potential to serve as highly sensitive, selective, and power-efficient volatile organic compound (VOC) sensors. While many research groups have studied BRE-functionalized CNTs in material science and device development, little attention has been paid to optimizing CNT density to improve chemiresistor performance. To probe the effect of CNT density on VOC detection, we present the chemiresistor-based sensing results from two peptide-based CNT devices counting more than 60 different individual measurements. We find that a lower CNT density shows a significantly higher noise level and device-to-device variation while exhibiting mildly better sensitivity. Further investigation with SEM images suggests that moderately high CNT density with a stable connection of the nanotube network is desirable to achieve the best signal-to-noise ratio. Our results show an essential design guideline for tuning the nanotube density to provide sensitive and stable chemiresistors.
Collapse
Affiliation(s)
- Daniel Sim
- Air Force Research Laboratory (AFRL), 711th Human Performance Wing, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (D.S.); (T.H.)
- Integrative Health & Performance Sciences Division, UES Inc., Dayton, OH 45432, USA
| | - Tiffany Huang
- Air Force Research Laboratory (AFRL), 711th Human Performance Wing, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (D.S.); (T.H.)
| | - Steve S. Kim
- Air Force Research Laboratory (AFRL), 711th Human Performance Wing, Wright-Patterson Air Force Base, Dayton, OH 45433, USA; (D.S.); (T.H.)
| |
Collapse
|
9
|
Huang X, Li Y, Witherspoon E, He R, Petruncio G, Paige M, Li M, Liu T, Amine K, Wang Z, Li Q, Dong P. Species-Selective Detection of Volatile Organic Compounds by Ionic Liquid-Based Electrolyte Using Electrochemical Methods. ACS Sens 2023; 8:3389-3399. [PMID: 37589910 DOI: 10.1021/acssensors.3c00578] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023]
Abstract
The detection of volatile organic compounds (VOCs) is an important topic for environmental safety and public health. However, the current commercial VOC detectors suffer from cross-sensitivity and low reproducibility. In this work, we present species-selective detection for VOCs using an electrochemical cell based on ionic liquid (IL) electrolytes with features of high selectivity and reliability. The voltammograms measured with the IL-based electrolyte absorbing different VOCs exhibited species-selective features that were extracted and classified by linear discriminant analysis (LDA). The detection system could identify as many as four types of VOCs, including methanol, ethanol, acetone, formaldehyde, and additional water. A mixture of methanol and formaldehyde was detected as well. The sample required for the VOCs classification system was 50 μL, or 1.164 mmol, on average. The response time for each VOC measurement is as fast as 24 s. The volume of VOCs such as formaldehyde in solution could also be quantified by LDA and electrochemical impedance spectroscopy techniques, respectively. The system showed a tunable detection range for 1.6 and 16% (w/v) CH2O solution by adjusting the composition of the electrolyte. The limit of detection was as low as 1 μL. For the 1.6% CH2O solution, the linearity calibration range was determined to be from 5.30 to 53.00 μmol with a limit of detection at 0.53 μmol. The mechanisms for VOCs determination and quantification are also thoroughly discussed. It is expected that this work could provide a new insight into the concept of electrochemical detection of VOCs with machine learning analysis and be applied to both VOCs gas monitoring and fluid detection.
Collapse
Affiliation(s)
- Xiaozhou Huang
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia 22030 United States
- Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Yaonian Li
- Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030 United States
| | - Erin Witherspoon
- Department of Chemistry, Oakland University, Rochester Hills, Michigan 48309 United States
| | - Rui He
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia 22030 United States
| | - Greg Petruncio
- Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Mikell Paige
- Department of Chemistry & Biochemistry, George Mason University, Manassas, Virginia 20110, United States
| | - Matthew Li
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Tongchao Liu
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Khalil Amine
- Chemical Sciences and Engineering Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
- Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University (IAU), Dammam 34221, Saudi Arabia
| | - Zhe Wang
- Department of Chemistry, Oakland University, Rochester Hills, Michigan 48309 United States
| | - Qiliang Li
- Department of Electrical and Computer Engineering, George Mason University, Fairfax, Virginia 22030 United States
| | - Pei Dong
- Department of Mechanical Engineering, George Mason University, Fairfax, Virginia 22030 United States
| |
Collapse
|
10
|
Ungkulpasvich U, Hatakeyama H, Hirotsu T, di Luccio E. Pancreatic Cancer and Detection Methods. Biomedicines 2023; 11:2557. [PMID: 37760999 PMCID: PMC10526344 DOI: 10.3390/biomedicines11092557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/05/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023] Open
Abstract
The pancreas is a vital organ with exocrine and endocrine functions. Pancreatitis is an inflammation of the pancreas caused by alcohol consumption and gallstones. This condition can heighten the risk of pancreatic cancer (PC), a challenging disease with a high mortality rate. Genetic and epigenetic factors contribute significantly to PC development, along with other risk factors. Early detection is crucial for improving PC outcomes. Diagnostic methods, including imagining modalities and tissue biopsy, aid in the detection and analysis of PC. In contrast, liquid biopsy (LB) shows promise in early tumor detection by assessing biomarkers in bodily fluids. Understanding the function of the pancreas, associated diseases, risk factors, and available diagnostic methods is essential for effective management and early PC detection. The current clinical examination of PC is challenging due to its asymptomatic early stages and limitations of highly precise diagnostics. Screening is recommended for high-risk populations and individuals with potential benign tumors. Among various PC screening methods, the N-NOSE plus pancreas test stands out with its high AUC of 0.865. Compared to other commercial products, the N-NOSE plus pancreas test offers a cost-effective solution for early detection. However, additional diagnostic tests are required for confirmation. Further research, validation, and the development of non-invasive screening methods and standardized scoring systems are crucial to enhance PC detection and improve patient outcomes. This review outlines the context of pancreatic cancer and the challenges for early detection.
Collapse
Affiliation(s)
| | | | | | - Eric di Luccio
- Hirotsu Bioscience Inc., 22F The New Otani Garden Court, 4-1 Kioi-cho, Chiyoda-ku, Tokyo 102-0094, Japan; (U.U.); (H.H.); (T.H.)
| |
Collapse
|
11
|
Zhang M, Ma N, Dai Z, Song X, Ji Q, Li L, An R. Immobilizing Ionic Liquids onto Functionalized Surfaces for Sensing Volatile Organic Compounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14550-14562. [PMID: 36399765 DOI: 10.1021/acs.langmuir.2c01720] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Herein, a highly sensitive volatile organic compound (VOC) gas sensor is demonstrated using immobilized ionic liquid (IL), 1-butyl-3-methylimidazolium hexafluorophosphate, onto surfaces functionalized by the quaternary ammonium group -N+R, -COOH, and -NH2, i.e., N+-IL, COOH-IL, and NH2-IL, respectively. These functional groups ensure highly tunable interactions between the IL and surfaces, efficiently modulating the electrical resistance of the immobilized IL upon exposure to acetone and toluene. The immobilized IL to both acetone and toluene displays significant electronic resistance changes at a concentration of 150 ppm, falling in the order NH2-IL > N+-IL > COOH-IL for acetone while COOH-IL > NH2-IL > N+-IL for toluene. A better gaseous sensing ability is achieved in COOH-IL for toluene than acetone, while this does not hold in the case of NH2-IL and N+-IL surfaces because of the completely different ion structuring of the IL at these functionalized surfaces. The accelerated ion mobility in the IL that is immobilized onto functionalized surfaces is also responsible for the strong gaseous sensing response, which is demonstrated further by the atomic force microscopy-measured smaller friction coefficient. This is highly encouraging and suggests that ILs can be immobilized by a network formed by surface functionalization to easily and cheaply detect VOCs at ppm concentrations.
Collapse
Affiliation(s)
- Mengjie Zhang
- School of Materials Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing210094, China
| | - Na Ma
- Innovation Research Center of Lignocellulosic Functional Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Zhongyang Dai
- High Performance Computing Department, National Supercomputing Center in Shenzhen, Shenzhen518055, China
| | - Xiufeng Song
- School of Materials Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing210094, China
| | - Qingmin Ji
- School of Materials Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing210094, China
| | - Licheng Li
- Innovation Research Center of Lignocellulosic Functional Materials, College of Chemical Engineering, Nanjing Forestry University, Nanjing210037, China
| | - Rong An
- School of Materials Science and Engineering, Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing210094, China
| |
Collapse
|
12
|
Freddi S, Sangaletti L. Trends in the Development of Electronic Noses Based on Carbon Nanotubes Chemiresistors for Breathomics. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12172992. [PMID: 36080029 PMCID: PMC9458156 DOI: 10.3390/nano12172992] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/21/2022] [Accepted: 08/25/2022] [Indexed: 06/12/2023]
Abstract
The remarkable potential of breath analysis in medical care and diagnosis, and the consequent development of electronic noses, is currently attracting the interest of the research community. This is mainly due to the possibility of applying the technique for early diagnosis, screening campaigns, or tracking the effectiveness of treatment. Carbon nanotubes (CNTs) are known to be good candidates for gas sensing, and they have been recently considered for the development of electronic noses. The present work has the aim of reviewing the available literature on the development of CNTs-based electronic noses for breath analysis applications, detailing the functionalization procedure used to prepare the sensors, the breath sampling techniques, the statistical analysis methods, the diseases under investigation, and the population studied. The review is divided in two main sections: one focusing on the e-noses completely based on CNTs and one reporting on the e-noses that feature sensors based on CNTs, along with sensors based on other materials. Finally, a classification is presented among studies that report on the e-nose capability to discriminate biomarkers, simulated breath, and animal or human breath.
Collapse
|
13
|
Singh S, Deb J, Sarkar U, Sharma S. MoSe 2/multiwalled carbon nanotube composite for ammonia sensing in natural humid environment. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128821. [PMID: 35468389 DOI: 10.1016/j.jhazmat.2022.128821] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 06/14/2023]
Abstract
Herein, we report ammonia sensing in a natural highly humid environment using MoSe2/multi-walled carbon nanotube (MWCNT) composite as sensing platform. The composite synthesis involved two steps, in the first step, MWCNTs were treated in an acidic medium to obtain -COOH group functionalized MWCNTs. In the second step, functionalized MWCNTs were probe sonicated with MoSe2 to obtain MoSe2/MWCNT composite. Proposed device exhibited superior sensing properties at a temperature down to 16∘ C and relative humidity of 80%. Under these extreme natural environmental conditions, the device exhibited a relative response of 21% for 0.5 ppm of ammonia and superior noise free signal further suggests their use even below this concentration. Composite based device has also displayed better adsorption selectivity towards NH3 as compared with other reducing and oxidizing gas molecules. Density functional theory simulations were further employed to understand the underlying adsorption process and selectivity behavior of the composite. Simulations predicted lowest negative adsorption energy for ammonia, implying physisorption (-0.387 eV) type exothermic adsorption process. Present results indicate that a composite with the rightly engineered MoSe2 and MWCNTs weight ratio may serve as a potential candidate for ammonia sensing in a highly humid environment.
Collapse
Affiliation(s)
- Sukhwinder Singh
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Jyotirmoy Deb
- Department of Physics, Assam University, Silchar 788011, India
| | - Utpal Sarkar
- Department of Physics, Assam University, Silchar 788011, India.
| | - Sandeep Sharma
- Department of Physics, Guru Nanak Dev University, Amritsar, Punjab 143005, India.
| |
Collapse
|
14
|
Yin Y, Guo C, Li H, Yang H, Xiong F, Chen D. The Progress of Research into Flexible Sensors in the Field of Smart Wearables. SENSORS (BASEL, SWITZERLAND) 2022; 22:5089. [PMID: 35890768 PMCID: PMC9319532 DOI: 10.3390/s22145089] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 07/02/2022] [Accepted: 07/03/2022] [Indexed: 05/14/2023]
Abstract
In modern society, technology associated with smart sensors made from flexible materials is rapidly evolving. As a core component in the field of wearable smart devices (or 'smart wearables'), flexible sensors have the advantages of excellent flexibility, ductility, free folding properties, and more. When choosing materials for the development of sensors, reduced weight, elasticity, and wearer's convenience are considered as advantages, and are suitable for electronic skin, monitoring of health-related issues, biomedicine, human-computer interactions, and other fields of biotechnology. The idea behind wearable sensory devices is to enable their easy integration into everyday life. This review discusses the concepts of sensory mechanism, detected object, and contact form of flexible sensors, and expounds the preparation materials and their applicability. This is with the purpose of providing a reference for the further development of flexible sensors suitable for wearable devices.
Collapse
Affiliation(s)
- Yunlei Yin
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Cheng Guo
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Hong Li
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Hongying Yang
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
- Henan Province Collaborative Innovation Center of Textile and Garment Industry, Zhengzhou 450007, China
| | - Fan Xiong
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
| | - Dongyi Chen
- College of Textile, Zhongyuan University of Technology, Zhengzhou 450007, China; (C.G.); (H.L.); (H.Y.); (F.X.); (D.C.)
- College of Automation Engineering, University of Electronic Science and Technology, Chengdu 611731, China
| |
Collapse
|
15
|
Dai B, Zhou R, Ping J, Ying Y, Xie L. Recent advances in carbon nanotube-based biosensors for biomolecular detection. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
16
|
Determination of tuberculosis-related volatile organic biomarker methyl nicotinate in vapor using fluorescent assay based on quantum dots and cobalt-containing porphyrin nanosheets. Mikrochim Acta 2022; 189:108. [PMID: 35171382 DOI: 10.1007/s00604-022-05212-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 01/31/2022] [Indexed: 10/19/2022]
Abstract
Methyl nicotinate (MN) is a representative and typical volatile organic marker of Mycobacterium tuberculosis, and the specific detection of MN in human breath facilitates non-invasive, rapid, and accurate epidemic screening of tuberculosis infection. Herein, we constructed a fluorescent assay consisted of CdTe quantum dots (QD) and cobalt-metalized tetrakis(4-carboxyphenyl) porphyrin (CoTCPP) nanosheets to determine methyl nicotinate (MN) in vapor samples. Red-emission QD (λex=370 nm, λem=658 nm) acts as signal switches whose fluorescence signals can be effectively quenched by CoTCPP nanosheets but restored in the presence of MN. The strategy relied on the distinct binding affinity of cobalt ion and MN. MN restored the fluorescence of QD quenched by CoTCPP in a concentration-dependent manner, which exhibited a well-linear relationship in the range 1-100 μM, and a limit of detection of 0.59 μM. The proposed platform showed sensitivity and selectivity to detect MN in vapor samples with satisfactory RSD below 3.33%. The method is cheap, simple, and relatively rapid (detected within 4 min), which suggests a potential in tuberculosis diagnosis in resource- and professional-lacked areas.
Collapse
|
17
|
Moon HG, Jung Y, Shin B, Lee D, Kim K, Woo DH, Lee S, Kim S, Kang CY, Lee T, Kim C. Identification of Chemical Vapor Mixture Assisted by Artificially Extended Database for Environmental Monitoring. SENSORS (BASEL, SWITZERLAND) 2022; 22:s22031169. [PMID: 35161915 PMCID: PMC8840270 DOI: 10.3390/s22031169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/30/2022] [Indexed: 05/06/2023]
Abstract
A fully integrated sensor array assisted by pattern recognition algorithm has been a primary candidate for the assessment of complex vapor mixtures based on their chemical fingerprints. Diverse prototypes of electronic nose systems consisting of a multisensory device and a post processing engine have been developed. However, their precision and validity in recognizing chemical vapors are often limited by the collected database and applied classifiers. Here, we present a novel way of preparing the database and distinguishing chemical vapor mixtures with small data acquisition for chemical vapors and their mixtures of interest. The database for individual vapor analytes is expanded and the one for their mixtures is prepared in the first-order approximation. Recognition of individual target vapors of NO2, HCHO, and NH3 and their mixtures was evaluated by applying the support vector machine (SVM) classifier in different conditions of temperature and humidity. The suggested method demonstrated the recognition accuracy of 95.24%. The suggested method can pave a way to analyze gas mixtures in a variety of industrial and safety applications.
Collapse
Affiliation(s)
- Hi Gyu Moon
- Center for Ecological Risk Assessment, Korea Institute of Toxicology (KIT), Jinju 52834, Korea; (H.G.M.); (S.K.)
| | - Youngmo Jung
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Beomju Shin
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Donggeun Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Kayoung Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Deok Ha Woo
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Seok Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
| | - Sooyeon Kim
- Center for Ecological Risk Assessment, Korea Institute of Toxicology (KIT), Jinju 52834, Korea; (H.G.M.); (S.K.)
| | - Chong-Yun Kang
- Center for Electronic Materials, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea;
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Korea
| | - Taikjin Lee
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
- Correspondence: (T.L.); (C.K.)
| | - Chulki Kim
- Sensor System Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea; (Y.J.); (B.S.); (D.L.); (K.K.); (D.H.W.); (S.L.)
- Correspondence: (T.L.); (C.K.)
| |
Collapse
|
18
|
Yan M, Chen J, Wang B, Xu W, Cao H, Fu Y, He Q, Cheng J. High-Sensitivity Sensor Array Base on Molecular Design and Machine Learning for amine differentiation in exhaled vapor. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2022.100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
19
|
Zhu A, Luo X. Detection of Covid-19 through a Heptanal Biomarker Using Transition Metal Doped Graphene. J Phys Chem B 2022; 126:151-160. [PMID: 34982559 PMCID: PMC8751021 DOI: 10.1021/acs.jpcb.1c09580] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/12/2021] [Indexed: 12/18/2022]
Abstract
A rapid and noninvasive way to monitor the spread of COVID-19 is the detection of SARS-CoV-2 biomarkers from exhaled breath. Heptanal was identified as a key biomarker which was significantly elevated in the breath of SARS-CoV-2 patients. In this study, the adsorption behaviors of heptanal on pristine and transition metal (Pd, Pt, and Ag) doped graphene were studied based on density functional theory. The results indicated that heptanal was weakly adsorbed on pristine graphene with an adsorption energy of -0.015 eV while it was strongly adsorbed on Pd-, Pt-, and Ag-doped graphene with adsorption energies of -0.404, - 0.356, and -0.755 eV, respectively. Also, the electronic properties of Pd-, Pt-, and Ag-doped graphene changed more dramatically after heptanal adsorption than pristine graphene. The recovery times were estimated to be 6.13 × 10-6, 9.57 × 10-7, and 4.83 s for Pd-, Pt-, and Ag-doped graphene, respectively, showing that Pd-, Pt-, and Ag-doped graphene are suitable as reversible sensors. Our results conclude that Pd-, Pt-, and Ag-doped graphene are potential candidates as gas sensors for heptanal detection, and Ag-doped graphene is the most promising one.
Collapse
Affiliation(s)
- Anthony Zhu
- National Graphene
Research
and Development Center, Springfield, Virginia 22151, United States
| | - Xuan Luo
- National Graphene
Research
and Development Center, Springfield, Virginia 22151, United States
| |
Collapse
|
20
|
Wang Z, Dai J, Wang J, Li X, Pei C, Liu Y, Yan J, Wang L, Li S, Li H, Wang X, Huang X, Huang W. Realization of Oriented and Nanoporous Bismuth Chalcogenide Layers via Topochemical Heteroepitaxy for Flexible Gas Sensors. RESEARCH (WASHINGTON, D.C.) 2022; 2022:9767651. [PMID: 35935140 PMCID: PMC9275095 DOI: 10.34133/2022/9767651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/24/2022] [Indexed: 11/06/2022]
Abstract
Most van der Waals two-dimensional (2D) materials without surface dangling bonds show limited surface activities except for their edge sites. Ultrathin Bi2Se3, a topological insulator that behaves metal-like under ambient conditions, has been overlooked on its surface activities. Herein, through a topochemical conversion process, ultrathin nanoporous Bi2Se3 layers were epitaxially deposited on BiOCl nanosheets with strong electronic coupling, leading to hybrid electronic states with further bandgap narrowing. Such oriented nanoporous Bi2Se3 layers possessed largely exposed active edge sites, along with improved surface roughness and film forming ability even on inkjet-printed flexible electrodes. Superior room-temperature NO2 sensing performance was achieved compared to other 2D materials under bent conditions. Our work demonstrates that creating nanoscale features in 2D materials through topochemical heteroepitaxy is promising to achieve both favorable electronic properties and surface activity toward practical applications.
Collapse
Affiliation(s)
- Zhiwei Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Jie Dai
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jian Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xinzhe Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Chengjie Pei
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yanlei Liu
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Jiaxu Yan
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Lin Wang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Shaozhou Li
- Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Hai Li
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Xiaoshan Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
- Key Laboratory for Organic Electronic & Information Displays (KLOEID) and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
21
|
Liu L, Fei T, Guan X, Zhao H, Zhang T. Highly sensitive and chemically stable NH 3 sensors based on an organic acid-sensitized cross-linked hydrogel for exhaled breath analysis. Biosens Bioelectron 2021; 191:113459. [PMID: 34175649 DOI: 10.1016/j.bios.2021.113459] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/19/2021] [Indexed: 12/18/2022]
Abstract
Due to interference by the high moisture content and complicated compositions of human exhaled breath, the trace-level detection of ammonia (NH3) with desirable selectivity and stability is a large challenge for exhaled breath analysis. Carboxyl-sensitized hydrogels can be activated by moisture to exhibit a significant response and excellent selectivity to NH3. However, the high activity of carboxyl groups in hydrogels is a double-edged sword, resulting in poor chemical stability during NH3 detection. Herein, organic acids were embedded into a cross-linked poly(ethylene glycol) diacrylate (PEGDA) hydrogel via thiol-ene photochemistry to form stable hydrogels for NH3 detection in a humid atmosphere. As a result, under high humidity conditions (80% RH), the optimal sensors exhibited superior selectivity to NH3 among various interfering gas species, a remarkably high NH3 response (Za/Zg=6.20) towards 20 ppm NH3, and an extremely low actual detection limit (50 ppb) at room temperature. Moreover, the sensors exhibited excellent chemical stability due to the moderate equilibrium water content of the hydrogel composites and acid dissociation constant of the acid groups. The moisture-activated NH3 sensing mechanism was thoroughly investigated by complex impedance spectroscopy (CIS), quartz crystal microbalance (QCM) measurements, Fourier transform infrared (FT-IR) spectroscopy and X-ray photoelectron spectroscopy (XPS). To explore the application prospects of cross-linked hydrogel sensors for detecting NH3 in exhaled breath, a simulated exhaled breath test was also performed.
Collapse
Affiliation(s)
- Lichao Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China; State Key Laboratory of Transducer Technology, Shanghai, 200050, PR China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China; State Key Laboratory of Transducer Technology, Shanghai, 200050, PR China
| | - Xin Guan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China
| | - Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
22
|
Ranjan P, Yadav S, Sadique MA, Khan R, Chaurasia JP, Srivastava AK. Functional Ionic Liquids Decorated Carbon Hybrid Nanomaterials for the Electrochemical Biosensors. BIOSENSORS 2021; 11:414. [PMID: 34821629 PMCID: PMC8615372 DOI: 10.3390/bios11110414] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 05/27/2023]
Abstract
Ionic liquids are gaining high attention due to their extremely unique physiochemical properties and are being utilized in numerous applications in the field of electrochemistry and bio-nanotechnology. The excellent ionic conductivity and the wide electrochemical window open a new avenue in the construction of electrochemical devices. On the other hand, carbon nanomaterials, such as graphene (GR), graphene oxide (GO), carbon dots (CDs), and carbon nanotubes (CNTs), are highly utilized in electrochemical applications. Since they have a large surface area, high conductivity, stability, and functionality, they are promising in biosensor applications. Nevertheless, the combination of ionic liquids (ILs) and carbon nanomaterials (CNMs) results in the functional ILs-CNMs hybrid nanocomposites with considerably improved surface chemistry and electrochemical properties. Moreover, the high functionality and biocompatibility of ILs favor the high loading of biomolecules on the electrode surface. They extremely enhance the sensitivity of the biosensor that reaches the ability of ultra-low detection limit. This review aims to provide the studies of the synthesis, properties, and bonding of functional ILs-CNMs. Further, their electrochemical sensors and biosensor applications for the detection of numerous analytes are also discussed.
Collapse
Affiliation(s)
- Pushpesh Ranjan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shalu Yadav
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohd Abubakar Sadique
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
| | - Raju Khan
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jamana Prasad Chaurasia
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Avanish Kumar Srivastava
- CSIR—Advanced Materials and Processes Research Institute (AMPRI), Hoshangabad Road, Bhopal 462026, India; (P.R.); (S.Y.); (M.A.S.); (J.P.C.); (A.K.S.)
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
23
|
Li D, Shao Y, Zhang Q, Qu M, Ping J, Fu Y, Xie J. A flexible virtual sensor array based on laser-induced graphene and MXene for detecting volatile organic compounds in human breath. Analyst 2021; 146:5704-5713. [PMID: 34515697 DOI: 10.1039/d1an01059j] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Detecting volatile organic compounds (VOCs) in human breath is critical for the early diagnosis of diseases. Good selectivity of VOC sensors is crucial for the accurate analysis of VOC biomarkers in human breath, which consists of more than 200 types of VOCs. In this paper, a flexible virtual sensor array (FVSA) was proposed based on a sensing layer of MXene and laser-induced graphene interdigital electrodes (LIG-IDEs) for detecting VOCs in exhaled human breath. The fabrication of LIG-IDEs avoids the costly and complicated procedures required for the preparation of traditional IDEs. The FVSA's responses of multiple parameters help build a unique fingerprint for each VOC, without a need for changing the temperature of the sensing element, which is commonly used in the VSA of semiconductor VOC sensors. Based on machine learning algorithms, we have achieved highly precise recognition of different VOCs and mixtures and accurate prediction (accuracy of 89.1%) of the objective VOC's concentration in variable backgrounds using this proposed FVSA. Moreover, a blind analysis validates the capacity of the FVSA to identify alcohol content in human breath with an accuracy of 88.9% using breath samples from volunteers before and after alcohol consumption. These results show that the proposed FVSA is promising for the detection of VOC biomarkers in human exhaled breath and early diagnosis of diseases.
Collapse
Affiliation(s)
- Dongsheng Li
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Yuzhou Shao
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Qian Zhang
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Mengjiao Qu
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, School of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - YongQing Fu
- Faculty of Engineering and Environment, University of Northumbria, Newcastle upon Tyne NE1 8ST, UK
| | - Jin Xie
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou, Zhejiang 310027, China.
| |
Collapse
|
24
|
Drera G, Freddi S, Emelianov AV, Bobrinetskiy II, Chiesa M, Zanotti M, Pagliara S, Fedorov FS, Nasibulin AG, Montuschi P, Sangaletti L. Exploring the performance of a functionalized CNT-based sensor array for breathomics through clustering and classification algorithms: from gas sensing of selective biomarkers to discrimination of chronic obstructive pulmonary disease. RSC Adv 2021; 11:30270-30282. [PMID: 35480252 PMCID: PMC9041100 DOI: 10.1039/d1ra03337a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 08/27/2021] [Indexed: 12/18/2022] Open
Abstract
An array of carbon nanotube (CNT)-based sensors was produced for sensing selective biomarkers and evaluating breathomics applications with the aid of clustering and classification algorithms. We assessed the sensor array performance in identifying target volatiles and we explored the combination of various classification algorithms to analyse the results obtained from a limited dataset of exhaled breath samples. The sensor array was exposed to ammonia (NH3), nitrogen dioxide (NO2), hydrogen sulphide (H2S), and benzene (C6H6). Among them, ammonia (NH3) and nitrogen dioxide (NO2) are known biomarkers of chronic obstructive pulmonary disease (COPD). Calibration curves for individual sensors in the array were obtained following exposure to the four target molecules. A remarkable response to ammonia (NH3) and nitrogen dioxide (NO2), according to benchmarking with available data in the literature, was observed. Sensor array responses were analyzed through principal component analysis (PCA), thus assessing the array selectivity and its capability to discriminate the four different target volatile molecules. The sensor array was then exposed to exhaled breath samples from patients affected by COPD and healthy control volunteers. A combination of PCA, supported vector machine (SVM), and linear discrimination analysis (LDA) shows that the sensor array can be trained to accurately discriminate healthy from COPD subjects, in spite of the limited dataset. Extensive application of clustering and classification algorithms shows the potential of a CNT-based sensor array in breathomics.![]()
Collapse
Affiliation(s)
- Giovanni Drera
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy
| | - Sonia Freddi
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy.,Department of Chemistry, Division of Molecular Imaging and Photonics, KU Leuven Celestijnenlaan 200F 3001 Leuven Belgium
| | - Aleksei V Emelianov
- National Research University of Electronic Technology Zelenograd Moscow 124498 Russia.,P. N. Lebedev Physical Institute of the Russian Academy of Sciences Moscow 119991 Russia
| | - Ivan I Bobrinetskiy
- National Research University of Electronic Technology Zelenograd Moscow 124498 Russia.,BioSense Institute - Research and Development Institute for Information Technologies in Biosystems, University of Novi Sad Dr Zorana Djindjica 1a 21000 Novi Sad Serbia
| | - Maria Chiesa
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy
| | - Michele Zanotti
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy
| | - Stefania Pagliara
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy
| | - Fedor S Fedorov
- Skolkovo Institute of Science and Technology Moscow 121205 Russia
| | - Albert G Nasibulin
- Skolkovo Institute of Science and Technology Moscow 121205 Russia.,Aalto University, Department of Chemistry and Materials Science FI-00076 Espoo Finland
| | - Paolo Montuschi
- Department of Pharmacology, Faculty of Medicine, Catholic University of the Sacred Heart Largo Francesco Vito, 1 00168 Roma Italy
| | - Luigi Sangaletti
- Department of Mathematics and Physics, Università Cattolica del Sacro Cuore via dei Musei 41 25121 Brescia Italy .,Surface Science and Spectroscopy Lab @ I-Lamp, Università Cattolica del Sacro Cuore, Brescia Campus Italy
| |
Collapse
|
25
|
Giordano GF, Freitas VMS, Schleder GR, Santhiago M, Gobbi AL, Lima RS. Bifunctional Metal Meshes Acting as a Semipermeable Membrane and Electrode for Sensitive Electrochemical Determination of Volatile Compounds. ACS APPLIED MATERIALS & INTERFACES 2021; 13:35914-35923. [PMID: 34309352 DOI: 10.1021/acsami.1c07874] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The monitoring of toxic inorganic gases and volatile organic compounds has brought the development of field-deployable, sensitive, and scalable sensors into focus. Here, we attempted to meet these requirements by using concurrently microhole-structured meshes as (i) a membrane for the gas diffusion extraction of an analyte from a donor sample and (ii) an electrode for the sensitive electrochemical determination of this target with the receptor electrolyte at rest. We used two types of meshes with complementary benefits, i.e., Ni mesh fabricated by robust, scalable, and well-established methods for manufacturing specific designs and stainless steel wire mesh (SSWM), which is commercially available at a low cost. The diffusion of gas (from a donor) was conducted in headspace mode, thus minimizing issues related to mesh fouling. When compared with the conventional polytetrafluoroethylene (PTFE) membrane, both the meshes (40 μm hole diameter) led to a higher amount of vapor collected into the electrolyte for subsequent detection. This inedited fashion produced a kind of reverse diffusion of the analyte dissolved into the electrolyte (receptor), i.e., from the electrode to bulk, which further enabled highly sensitive analyses. Using Ni mesh coated with Ni(OH)2 nanoparticles, the limit of detection reached for ethanol was 24-fold lower than the data attained by a platform with a PTFE membrane and placement of the electrode into electrolyte bulk. This system was applied in the determination of ethanol in complex samples related to the production of ethanol biofuel. It is noteworthy that a simple equation fitted by machine learning was able to provide accurate assays (accuracies from 97 to 102%) by overcoming matrix effect-related interferences on detection performance. Furthermore, preliminary measurements demonstrated the successful coating of the meshes with gold films as an alternative raw electrode material and the monitoring of HCl utilizing Au-coated SSWMs. These strategies extend the applicability of the platform that may help to develop valuable volatile sensing solutions.
Collapse
Affiliation(s)
- Gabriela F Giordano
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
| | - Vitoria M S Freitas
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Faculty of Chemical Engineering, University of Campinas, Campinas, São Paulo 13083-970, Brazil
| | - Gabriel R Schleder
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Murilo Santhiago
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Angelo L Gobbi
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
| | - Renato S Lima
- Brazilian Center for Research in Energy and Materials, Brazilian Nanotechnology National Laboratory, Campinas, São Paulo 13083-970, Brazil
- Institute of Chemistry, University of Campinas, Campinas, São Paulo 13083-970, Brazil
- São Carlos Institute of Chemistry, University of São Paulo, São Carlos, São Paulo 09210-580, Brazil
- Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
26
|
Chen Z, Gao N, Chu Y, He Y, Wang Y. Ionic Network Based on Dynamic Ionic Liquids for Electronic Tattoo Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:33557-33565. [PMID: 34250798 DOI: 10.1021/acsami.1c09278] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electronic tattoos as an emerging epidermal electronic are alluring in the field of wearable electronics for their lightweight and noninvasive properties. However, the combination of flexibility, skin biocompatibility, adhesion, repairability, and erasability remains a challenge for fabricating electronic tattoos. Hence, a dynamic ionic liquid is prepared which is ideally suited for making an electronic tattoo with these challenging features at the same time. Such an intrinsically flexible electronic tattoo can be firmly attached to human skin with negligible irritation. More importantly, the existence of dynamic covalent chemistry provides the electronic tattoo with healing and erasable abilities under mild redox conditions. Owing to the high ionic conductivity of ionic liquids, the electronic tattoo exhibits excellent sensing performance in response to the temperature variation and tensile strain, which can intelligently monitor body temperature, pulse, and movement. As an extension of the application, a specially designed quadrilateral electronic tattoo can sense and distinguish multiple signals simultaneously. This concept of electronic tattoo based on the dynamic ionic liquid shows great potentials in the applications of intelligent wearable electronics.
Collapse
Affiliation(s)
- Zhiwu Chen
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Naiwei Gao
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yanji Chu
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yonglin He
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| | - Yapei Wang
- Department of Chemistry, Renmin University of China, Beijing 100872, China
| |
Collapse
|
27
|
White DL, Day BA, Zeng Z, Schulte ZM, Borland NR, Rosi NL, Wilmer CE, Star A. Size Discrimination of Carbohydrates via Conductive Carbon Nanotube@Metal Organic Framework Composites. J Am Chem Soc 2021; 143:8022-8033. [PMID: 34003001 DOI: 10.1021/jacs.1c01673] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Traditional chemical sensing methodologies have typically relied on the specific chemistry of the analyte for detection. Modifications to the local environment surrounding the sensor represent an alternative pathway to impart selective differentiation. Here, we present the hybridization of a 2-D metal organic framework (Cu3(HHTP)2) with single-walled carbon nanotubes (SWCNTs) as a methodology for size discrimination of carbohydrates. Synthesis and the resulting conductive performance are modulated by both mass loading of SWCNTs and their relative oxidation. Liquid gated field-effect transistor (FET) devices demonstrate improved on/off characteristics and differentiation of carbohydrates based on molecular size. Glucose molecule detection is limited to the single micromolar concentration range. Molecular Dynamics (MD) calculations on model systems revealed decreases in ion diffusivity in the presence of different sugars as well as packing differences based on the size of a given carbohydrate molecule. The proposed sensing mechanism is a reduction in gate capacitance initiated by the filling of the pores with carbohydrate molecules. Restricting diffusion around a sensor in combination with FET measurements represents a new type of sensing mechanism for chemically similar analytes.
Collapse
Affiliation(s)
- David L White
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Brian A Day
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zidao Zeng
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zachary M Schulte
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Noah R Borland
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Nathaniel L Rosi
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Christopher E Wilmer
- Department of Chemical & Petroleum Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Electrical & Computer Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States.,Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
28
|
Yaqoob U, Younis MI. Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning-A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:2877. [PMID: 33923937 PMCID: PMC8073537 DOI: 10.3390/s21082877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
Nowadays, there is increasing interest in fast, accurate, and highly sensitive smart gas sensors with excellent selectivity boosted by the high demand for environmental safety and healthcare applications. Significant research has been conducted to develop sensors based on novel highly sensitive and selective materials. Computational and experimental studies have been explored in order to identify the key factors in providing the maximum active location for gas molecule adsorption including bandgap tuning through nanostructures, metal/metal oxide catalytic reactions, and nano junction formations. However, there are still great challenges, specifically in terms of selectivity, which raises the need for combining interdisciplinary fields to build smarter and high-performance gas/chemical sensing devices. This review discusses current major gas sensing performance-enhancing methods, their advantages, and limitations, especially in terms of selectivity and long-term stability. The discussion then establishes a case for the use of smart machine learning techniques, which offer effective data processing approaches, for the development of highly selective smart gas sensors. We highlight the effectiveness of static, dynamic, and frequency domain feature extraction techniques. Additionally, cross-validation methods are also covered; in particular, the manipulation of the k-fold cross-validation is discussed to accurately train a model according to the available datasets. We summarize different chemresistive and FET gas sensors and highlight their shortcomings, and then propose the potential of machine learning as a possible and feasible option. The review concludes that machine learning can be very promising in terms of building the future generation of smart, sensitive, and selective sensors.
Collapse
Affiliation(s)
| | - Mohammad I. Younis
- Department of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
29
|
Cavallo G, Abate A, Rosati M, Paolo Venuti G, Pilati T, Terraneo G, Resnati G, Metrangolo P. Tuning of Ionic Liquid Crystal Properties by Combining Halogen Bonding and Fluorous Effect. Chempluschem 2021; 86:469-474. [PMID: 33704927 DOI: 10.1002/cplu.202100046] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/02/2021] [Indexed: 01/08/2023]
Abstract
We report halogen-bonded complexes between 1-polyfluoroalkyl-3-alkylimidazolium iodides and mono-iodoperfluoroalkanes of different chain lengths or di-iodoperfluorooctane. 19 F NMR analyses revealed that the preferred stoichiometry between the donors and acceptors is 1 : 1 in the cases of the mono-iodoperfluoroalkanes, and 2 : 1 with di-iodoperfluorooctane, as a result of the monodentate behavior of the iodide anion (halogen bond acceptor). Single crystal X-ray diffraction analyses showed the presence of a perfluorinated superanion, which interdigitates with the cation fluorinated chains, favoring the formation of lamellar structures. All of the obtained supramolecular complexes exhibit enantiotropic liquid crystalline phases over a broad range of temperatures. Most of the obtained complexes show melting points lower than 100 °C, two of them being liquid at room temperature, thus representing a new family of fluorinated ionic liquid crystals.
Collapse
Affiliation(s)
- Gabriella Cavallo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Antonio Abate
- Helmholtz-Zentrum Berlin für Materialien und Energie, Kekuléstraße 5, 12489, Berlin, Germany
| | - Marta Rosati
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Giovanni Paolo Venuti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Tullio Pilati
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Giancarlo Terraneo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Giuseppe Resnati
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| | - Pierangelo Metrangolo
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Via L. Mancinelli 7, 20131, Milano, Italy
| |
Collapse
|
30
|
Sheikhpour M, Naghinejad M, Kasaeian A, Lohrasbi A, Shahraeini SS, Zomorodbakhsh S. The Applications of Carbon Nanotubes in the Diagnosis and Treatment of Lung Cancer: A Critical Review. Int J Nanomedicine 2020; 15:7063-7078. [PMID: 33061368 PMCID: PMC7522408 DOI: 10.2147/ijn.s263238] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The importance of timely diagnosis and the complete treatment of lung cancer for many people with this deadly disease daily increases due to its high mortality. Diagnosis and treatment with helping the nanoparticles are useful, although they have reasonable harms. This article points out that the side effects of using carbon nanotube (CNT) in this disease treatment process such as inflammation, fibrosis, and carcinogenesis are very problematic. Toxicity can reduce to some extent using the techniques such as functionalizing to proper dimensions as a longer length, more width, and greater curvature. The targeted CNT sensors can be connected to various modified vapors. In this regard, with helping this method, screening makes non-invasive diagnosis possible. Researchers have also found that nanoparticles such as CNTs could be used as carriers to direct drug delivery, especially with chemotherapy drugs. Most of these carriers were multi-wall carbon nanotubes (MWCNT) used for cancerous cell targeting. The results of laboratory and animal researches in the field of diagnosis and treatment became very desirable and hopeful. The collection of researches summarized has highlighted the requirement for a detailed assessment which includes CNT dose, duration, method of induction, etc., to achieve the most controlled conditions for animal and human studies. In the discussion section, 4 contradictory issues are discussed which are invited researchers to do more research to get clearer results.
Collapse
Affiliation(s)
- Mojgan Sheikhpour
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Maryam Naghinejad
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Alibakhsh Kasaeian
- Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Armaghan Lohrasbi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Sadegh Shahraeini
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran.,Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shahab Zomorodbakhsh
- Department of Chemistry, Mahshahr Branch, Islamic Azad University, Mahshahr, Iran
| |
Collapse
|
31
|
Rudolph M, Schneider S, Fischer C, Terfort A. Simple electrochemical method for the quantification of chlorite in aqueous and non-aqueous media. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
32
|
Lee JH, Heo JS, Kim YJ, Eom J, Jung HJ, Kim JW, Kim I, Park HH, Mo HS, Kim YH, Park SK. A Behavior-Learned Cross-Reactive Sensor Matrix for Intelligent Skin Perception. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2000969. [PMID: 32310332 DOI: 10.1002/adma.202000969] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/12/2020] [Accepted: 03/23/2020] [Indexed: 05/07/2023]
Abstract
Mimicking human skin sensation such as spontaneous multimodal perception and identification/discrimination of intermixed stimuli is severely hindered by the difficulty of efficient integration of complex cutaneous receptor-emulating circuitry and the lack of an appropriate protocol to discern the intermixed signals. Here, a highly stretchable cross-reactive sensor matrix is demonstrated, which can detect, classify, and discriminate various intermixed tactile and thermal stimuli using a machine-learning approach. Particularly, the multimodal perception ability is achieved by utilizing a learning algorithm based on the bag-of-words (BoW) model, where, by learning and recognizing the stimulus-dependent 2D output image patterns, the discrimination of each stimulus in various multimodal stimuli environments is possible. In addition, the single sensor device integrated in the cross-reactive sensor matrix exhibits multimodal detection of strain, flexion, pressure, and temperature. It is hoped that his proof-of-concept device with machine-learning-based approach will provide a versatile route to simplify the electronic skin systems with reduced architecture complexity and adaptability to various environments beyond the limitation of conventional "lock and key" approaches.
Collapse
Affiliation(s)
- Jun Ho Lee
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06980, Korea
| | - Jae Sang Heo
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06980, Korea
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Yoon-Jeong Kim
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06980, Korea
| | - Jimi Eom
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Hong Jun Jung
- School of Electrical Engineering, Kookmin University, Seoul, 02707, Korea
| | - Jong-Woong Kim
- School of Advanced Materials Engineering, Chonbuk National University, Deokjin-Dong, 664-14, Jeonju, 54896, Korea
| | - Insoo Kim
- Department of Medicine, University of Connecticut School of Medicine, Farmington, CT, 06030, USA
| | - Ho-Hyun Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06980, Korea
| | - Hyun Sun Mo
- School of Electrical Engineering, Kookmin University, Seoul, 02707, Korea
| | - Yong-Hoon Kim
- School of Advanced Materials Science and Engineering, Sungkyunkwan University, Suwon, 16419, Korea
| | - Sung Kyu Park
- School of Electrical and Electronics Engineering, Chung-Ang University, Seoul, 06980, Korea
| |
Collapse
|
33
|
Freddi S, Emelianov AV, Bobrinetskiy II, Drera G, Pagliara S, Kopylova DS, Chiesa M, Santini G, Mores N, Moscato U, Nasibulin AG, Montuschi P, Sangaletti L. Development of a Sensing Array for Human Breath Analysis Based on SWCNT Layers Functionalized with Semiconductor Organic Molecules. Adv Healthc Mater 2020; 9:e2000377. [PMID: 32378358 DOI: 10.1002/adhm.202000377] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 04/09/2020] [Indexed: 02/04/2023]
Abstract
A sensor array based on heterojunctions between semiconducting organic layers and single walled carbon nanotube (SWCNT) films is produced to explore applications in breathomics, the molecular analysis of exhaled breath. The array is exposed to gas/volatiles relevant to specific diseases (ammonia, ethanol, acetone, 2-propanol, sodium hypochlorite, benzene, hydrogen sulfide, and nitrogen dioxide). Then, to evaluate its capability to operate with real relevant biological samples the array is exposed to human breath exhaled from healthy subjects. Finally, to provide a proof of concept of its diagnostic potential, the array is exposed to exhaled breath samples collected from subjects with chronic obstructive pulmonary disease (COPD), an airway chronic inflammatory disease not yet investigated with CNT-based sensor arrays, and breathprints are compared with those obtained from of healthy subjects. Principal component analysis shows that the sensor array is able to detect various target gas/volatiles with a clear fingerprint on a 2D subspace, is suitable for breath profiling in exhaled human breath, and is able to distinguish subjects with COPD from healthy subjects based on their breathprints. This classification ability is further improved by selecting the most responsive sensors to nitrogen dioxide, a potential biomarker of COPD.
Collapse
Affiliation(s)
- Sonia Freddi
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
- Surface Science and Spectroscopy Lab @ I‐LampUniversità Cattolica del Sacro Cuore Brescia 25121 Italy
- Department of ChemistryDivision of Molecular Imaging and PhotonicsKU Leuven Celestijnenlaan 200F Leuven 3001 Belgium
| | - Aleksei V. Emelianov
- National Research University of Electronic Technology Zelenograd Moscow 124498 Russia
- P.N. Lebedev Physical Institute of the Russian Academy of Sciences Moscow 119991 Russia
| | - Ivan I. Bobrinetskiy
- National Research University of Electronic Technology Zelenograd Moscow 124498 Russia
- BioSense Institute – Research and Development Institute for Information Technologies in BiosystemsUniversity of Novi Sad Dr Zorana Djindjica 1a Novi Sad 21000 Serbia
| | - Giovanni Drera
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
- Surface Science and Spectroscopy Lab @ I‐LampUniversità Cattolica del Sacro Cuore Brescia 25121 Italy
| | - Stefania Pagliara
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
- Surface Science and Spectroscopy Lab @ I‐LampUniversità Cattolica del Sacro Cuore Brescia 25121 Italy
| | | | - Maria Chiesa
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
| | - Giuseppe Santini
- Department of PharmacologyFaculty of MedicineCatholic University of the Sacred HeartFondazione Policlinico Universitario Agostino GemelliIRCCS Largo Francesco Vito, 1 Roma 00168 Italy
| | - Nadia Mores
- Department of PharmacologyFaculty of MedicineCatholic University of the Sacred HeartFondazione Policlinico Universitario Agostino GemelliIRCCS Largo Francesco Vito, 1 Roma 00168 Italy
| | - Umberto Moscato
- Occupational MedicineFaculty of MedicineCatholic University of the Sacred HeartFondazione Policlinico Universitario Agostino GemelliIRCCS Largo Francesco Vito, 1 Roma 00168 Italy
| | - Albert G. Nasibulin
- Skolkovo Institute of Science and Technology Moscow 121205 Russia
- Aalto University P. O. Box 16100 Aalto FI‐00076 Finland
| | - Paolo Montuschi
- Department of PharmacologyFaculty of MedicineCatholic University of the Sacred HeartFondazione Policlinico Universitario Agostino GemelliIRCCS Largo Francesco Vito, 1 Roma 00168 Italy
| | - Luigi Sangaletti
- Mathematics and Physics DepartmentUniversità Cattolica del Sacro Cuore via dei Musei 41 Brescia 25121 Italy
- Surface Science and Spectroscopy Lab @ I‐LampUniversità Cattolica del Sacro Cuore Brescia 25121 Italy
| |
Collapse
|
34
|
Jian Y, Hu W, Zhao Z, Cheng P, Haick H, Yao M, Wu W. Gas Sensors Based on Chemi-Resistive Hybrid Functional Nanomaterials. NANO-MICRO LETTERS 2020; 12:71. [PMID: 34138318 PMCID: PMC7770957 DOI: 10.1007/s40820-020-0407-5] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/02/2020] [Indexed: 05/12/2023]
Abstract
Chemi-resistive sensors based on hybrid functional materials are promising candidates for gas sensing with high responsivity, good selectivity, fast response/recovery, great stability/repeatability, room-working temperature, low cost, and easy-to-fabricate, for versatile applications. This progress report reviews the advantages and advances of these sensing structures compared with the single constituent, according to five main sensing forms: manipulating/constructing heterojunctions, catalytic reaction, charge transfer, charge carrier transport, molecular binding/sieving, and their combinations. Promises and challenges of the advances of each form are presented and discussed. Critical thinking and ideas regarding the orientation of the development of hybrid material-based gas sensor in the future are discussed.
Collapse
Affiliation(s)
- Yingying Jian
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, 710071, People's Republic of China
| | - Wenwen Hu
- School of Aerospace Science and Technology, Xidian University, Xi'an, 710071, People's Republic of China
| | - Zhenhuan Zhao
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, 710071, People's Republic of China
| | - Pengfei Cheng
- School of Aerospace Science and Technology, Xidian University, Xi'an, 710071, People's Republic of China
| | - Hossam Haick
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, 710071, People's Republic of China.
- Department of Chemical Engineering, Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, 3200003, Haifa, Israel.
| | - Mingshui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Xi'an, 710071, People's Republic of China.
| |
Collapse
|
35
|
Zhao H, Liu L, Lin X, Dai J, Liu S, Fei T, Zhang T. Proton-Conductive Gas Sensor: a New Way to Realize Highly Selective Ammonia Detection for Analysis of Exhaled Human Breath. ACS Sens 2020; 5:346-352. [PMID: 31793289 DOI: 10.1021/acssensors.9b01763] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The analysis of exhaled human breath has great significance for early noninvasive diagnosis. Poor selectivity and strong humidity are two bottlenecks for the application of gas sensors to exhaled breath analysis. In this work, we utilized the adsorption, dissolution, ionization, and migration processes of ammonia in wet nonconjugated hydrophilic polymers to realize effective ammonia detection. The indispensable high-humidity atmosphere of exhaled breath was turned into a favorable condition for ammonia sensing. Nonconjugated polymer sensors can distinguish ammonia from most other gases because of its extremely high solubility and good ionization ability. A sensor based on poly(vinyl pyrrolidone) (PVP) could detect 0.5 ppm ammonia with an extremely high selectivity. The ammonia-sensing mechanism was thoroughly investigated by complex impedance plots (CIPs) and a quartz crystal microbalance (QCM) measurement. Finally, the potential of the PVP sensor for ammonia detection in exhaled breath was evaluated in simulated environments.
Collapse
Affiliation(s)
- Hongran Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai 200050, P. R. China
| | - Lichao Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Xiuzhu Lin
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Jianxun Dai
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Sen Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Teng Fei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
- State Key Laboratory of Transducer Technology, Shanghai 200050, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
36
|
Shiba S, Yamada K, Matsuguchi M. Humidity-Resistive Optical NO Gas Sensor Devices Based on Cobalt Tetraphenylporphyrin Dispersed in Hydrophobic Polymer Matrix. SENSORS 2020; 20:s20051295. [PMID: 32120957 PMCID: PMC7085509 DOI: 10.3390/s20051295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 02/24/2020] [Accepted: 02/24/2020] [Indexed: 01/15/2023]
Abstract
We report on an optical nitrogen oxide (NO) gas sensor device using cobalt tetraphenylporphyrin (CoTPP) dispersed in three kinds of hydrophobic polymer film matrix (polystyrene (PSt), ethylcellulose (EC), and polycyclohexyl methacrylate (PCHMA)) to improve humidity resistance. Our approach is very effective because it allows us to achieve not only high humidity resistance, but also a more than sixfold increase in sensitivity compared with CoTPP film due to the high dispersion of CoTPP in the polymer film. The limit of detection was calculated as 33 ppb for the CoTPP-dispersed EC film, which is lower than that of CoTPP film (92 ppb).
Collapse
|
37
|
Synthesis of Nano-Praseodymium Oxide for Cataluminescence Sensing of Acetophenone in Exhaled Breath. Molecules 2019; 24:molecules24234275. [PMID: 31771216 PMCID: PMC6930594 DOI: 10.3390/molecules24234275] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 11/18/2019] [Accepted: 11/20/2019] [Indexed: 12/17/2022] Open
Abstract
In this work, we successfully developed a novel and sensitive gas sensor for the determination of trace acetophenone based on its cataluminescence (CTL) emission on the surface of nano-praseodymium oxide (nano-Pr6O11). The effects of working conditions such as temperature, flow rate, and detecting wavelength on the CTL sensing were investigated in detail. Under the optimized conditions, the sensor exhibited linear response to the acetophenone in the range of 15-280 mg/m3 (2.8-52 ppm), with a correlation coefficient (R2) of 0.9968 and a limit of detection (S/N = 3) of 4 mg/m3 (0.7 ppm). The selectivity of the sensor was also investigated, no or weak response to other compounds, such as alcohols (methanol, ethanol, n-propanol, iso-propanol, n-butanol), aldehyde (formaldehyde and acetaldehyde), benzenes (toluene, o-xylene, m-xylene, p-xylene), n-pentane, ethyl acetate, ammonia, carbon monoxide, carbon dioxide. Finally, the present sensor was applied to the determination of acetophenone in human exhaled breath samples. The results showed that the sensor has promising application in clinical breath analysis.
Collapse
|
38
|
Schroeder V, Evans ED, Wu YCM, Voll CCA, McDonald BR, Savagatrup S, Swager TM. Chemiresistive Sensor Array and Machine Learning Classification of Food. ACS Sens 2019; 4:2101-2108. [PMID: 31339035 DOI: 10.1021/acssensors.9b00825] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Successful identification of complex odors by sensor arrays remains a challenging problem. Herein, we report robust, category-specific multiclass-time series classification using an array of 20 carbon nanotube-based chemical sensors. We differentiate between samples of cheese, liquor, and edible oil based on their odor. In a two-stage machine-learning approach, we first obtain an optimal subset of sensors specific to each category and then validate this subset using an independent and expanded data set. We determined the optimal selectors via independent selector classification accuracy, as well as a combinatorial scan of all 4845 possible four selector combinations. We performed sample classification using two models-a k-nearest neighbors model and a random forest model trained on extracted features. This protocol led to high classification accuracy in the independent test sets for five cheese and five liquor samples (accuracies of 91% and 78%, respectively) and only a slightly lower (73%) accuracy on a five edible oil data set.
Collapse
Affiliation(s)
- Vera Schroeder
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Ethan D. Evans
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge Massachusetts 02139, United States
| | - You-Chi Mason Wu
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Constantin-Christian A. Voll
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Benjamin R. McDonald
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Suchol Savagatrup
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| | - Timothy M. Swager
- Department of Chemistry and Institute for Soldier Nanotechnologies, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge Massachusetts 02139, United States
| |
Collapse
|
39
|
Zhang YN, Niu Q, Gu X, Yang N, Zhao G. Recent progress on carbon nanomaterials for the electrochemical detection and removal of environmental pollutants. NANOSCALE 2019; 11:11992-12014. [PMID: 31140537 DOI: 10.1039/c9nr02935d] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Rapid global industrialization and explosive population growth have resulted in an increase in the discharge of harmful and toxic compounds. These toxic inorganic gases, volatile organic compounds, heavy metals, personal care products, endocrine-disrupting chemicals, dyes, and pharmaceuticals are destroying the balance in the Earth and increasing environmental toxicity at an alarming rate. Thus, their detection, adsorption and removal are of great significance. Various carbon nanomaterials including carbon nanotubes, graphene, mesoporous carbon, carbon dots, and boron-doped diamond have been extensively utilized and further proven to be ideal candidates for resolving environmental problems, emerging as adsorbents, electrochemical sensors and electrodes. Herein, we review the recent advances, progress and achievements in the design and properties of carbon nanomaterials and their applications for the electrochemical detection and removal of environmental pollutants.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Qiongyan Niu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Xiaotong Gu
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, Siegen 57076, Germany
| | - Guohua Zhao
- School of Chemical Science and Engineering, Shanghai Key Lab of Chemical Assessment and Sustainability, Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, People's Republic of China.
| |
Collapse
|
40
|
A nanoneedle-based reactional wettability variation sensor array for on-site detection of metal ions with a smartphone. J Colloid Interface Sci 2019; 547:330-338. [PMID: 30974249 DOI: 10.1016/j.jcis.2019.04.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/22/2022]
Abstract
An enhancement of the reactional wettability variation (RWV) sensing strategy is achieved based on the wettability switch of a nanoneedle surface. The sensor unit is formed by coating hydrophobic azoimidazole compounds, as the responder compounds onto the originally hydrophilic surface of cobalt hydroxide nanoneedles. The complexation reaction between metal ions and azoimidazole ligands etches the hydrophobic coating and switches the surface wettability, making the surface hydrophilic again. This switch is revealed by a decrease in the static contact angle (CA) and an increase in the sliding angle of the surface. The reactivity is tuned by the derivatization and conformational manipulation of the azoimidazole compounds. A sensor array composed of six as-tuned sensor units is constructed to distinguish among the species and concentrations of Fe3+, Ni2+ and La3+ at a low limit of 10-6 M using the chemometric method of principal component analysis (PCA). In addition, a new on-site detection strategy is developed based on PCA of the sliding angle, which can be measured conveniently and swiftly with a smartphone app and a commercially available setup. The application of the general RWV strategy is envisioned to open new possibilities for on-site detection.
Collapse
|
41
|
Xu Y, Li H, Zhang X, Jin H, Jin Q, Shen W, Zou J, Deng S, Cheung W, Kam W, Zhang X, Jian J. Light-Regulated Electrochemical Reaction Assisted Core-Shell Heterostructure for Detecting Specific Volatile Markers with Controllable Sensitivity and Selectivity. ACS Sens 2019; 4:1081-1089. [PMID: 30912423 DOI: 10.1021/acssensors.9b00289] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Breath analysis has been considered a noninvasive, safe, and reliable way to diagnose cancer at very early stage. Rapid detection of cancer volatile markers in breath samples via a portable sensing device will lay the foundation of future early cancer diagnosis. Nevertheless, unsatisfactory sensitivity and specificity of these sensing devices restrain the clinical application of breath analysis. Herein, we proposed the strategy of designing the light-regulated electrochemical reaction assisted core-shell heterostructure to address the issue of concern; that is, the photoactive shell will be designed for trigging the light-regulated electrochemical reaction and enhancing the sensitivity while a catalytic active core will play the function of removing interference gases. After screening of various core candidates, Fe2O3 was found to exhibit relatively low conversion rate to 3-methylhexane, which is one of the representative volatile markers for breath analysis, suggesting that mutual interference would be eliminated by Fe2O3. Based on this assumption, an electrochemical sensor comprising core-shell Fe2O3@ZnO-SE (vs Mn-based RE) was fabricated and sensing properties to 6 kinds of volatile markers was evaluated. Interestingly, the thickness of ZnO shell significantly influenced the response behavior; typically, the Fe2O3@ZnO with shell thickness of 4.8 nm offers the sensor high selectivity to 3-methylhexane. In contrast, significantly mutual response interference is observed for the Fe2O3@ZnO with extremely thick/thin shell. Particularly, sensing properties are greatly enhanced upon illumination; a detection limit to 3-methylhexane can even be as low as 0.072 ppm which will be useful in clinic application. Besides, the high selectivity of the sensor to 3-methylhexane is further confirmed by the testing of simulated breath samples. In summary, we anticipate that the strategy proposed in this research will be a starting point for artificially tailoring the sensitivity and selectivity of future sensing devices.
Collapse
Affiliation(s)
| | | | - Xin Zhang
- Ningbo Materials Science and Technology Institute, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | - Han Jin
- Ningbo Materials Science and Technology Institute, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
- The State Key Laboratory of Bielectronics, Sountheast University, Nanjing, 210096, P. R. China
| | | | - Wenfeng Shen
- Ningbo Materials Science and Technology Institute, Chinese Academy of Sciences, Ningbo, 315201, P. R. China
| | | | - Shengwei Deng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | | | | | | | | |
Collapse
|