1
|
Hu J, Arvejeh PM, Bone S, Hett E, Marincola FM, Roh KH. Nanocarriers for cutting-edge cancer immunotherapies. J Transl Med 2025; 23:447. [PMID: 40234928 PMCID: PMC12001629 DOI: 10.1186/s12967-025-06435-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/26/2025] [Indexed: 04/17/2025] Open
Abstract
Cancer immunotherapy aims to harness the body's own immune system for effective and long-lasting elimination of malignant neoplastic tissues. Owing to the advance in understanding of cancer pathology and immunology, many novel strategies for enhancing immunological responses against various cancers have been successfully developed, and some have translated into excellent clinical outcomes. As one promising strategy for the next generation of immunotherapies, activating the multi-cellular network (MCN) within the tumor microenvironment (TME) to deploy multiple mechanisms of action (MOAs) has attracted significant attention. To achieve this effectively and safely, delivering multiple or pleiotropic therapeutic cargoes to the targeted sites of cancerous tissues, cells, and intracellular organelles is critical, for which numerous nanocarriers have been developed and leveraged. In this review, we first introduce therapeutic payloads categorized according to their predicted functions in cancer immunotherapy and their physicochemical structures and forms. Then, various nanocarriers, along with their unique characteristics, properties, advantages, and limitations, are introduced with notable recent applications in cancer immunotherapy. Following discussions on targeting strategies, a summary of each nanocarrier matching with suitable therapeutic cargoes is provided with comprehensive background information for designing cancer immunotherapy regimens.
Collapse
Affiliation(s)
- Joyce Hu
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | - Pooria M Arvejeh
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Sydney Bone
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA
| | - Erik Hett
- Translational and Advanced Medicine (TAM) Biosciences, Nashville, TN, 37011, USA
| | | | - Kyung-Ho Roh
- Department of Chemical and Materials Engineering, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
- Biotechnology Science and Engineering Program, The University of Alabama in Huntsville, Huntsville, AL, 35899, USA.
| |
Collapse
|
2
|
Basu S, Hendler-Neumark A, Bisker G. Rationally Designed Functionalization of Single-Walled Carbon Nanotubes for Real-Time Monitoring of Cholinesterase Activity and Inhibition in Plasma. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309481. [PMID: 38358018 DOI: 10.1002/smll.202309481] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Enzymes play a pivotal role in regulating numerous bodily functions. Thus, there is a growing need for developing sensors enabling real-time monitoring of enzymatic activity and inhibition. The activity and inhibition of cholinesterase (CHE) enzymes in blood plasma are fluorometrically monitored using near-infrared (NIR) fluorescent single-walled carbon nanotubes (SWCNTs) as probes, strategically functionalized with myristoylcholine (MC)- the substrate of CHE. A significant decrease in the fluorescence intensity of MC-suspended SWCNTs upon interaction with CHE is observed, attributed to the hydrolysis of the MC corona phase of the SWCNTs by CHE. Complementary measurements for quantifying choline, the product of MC hydrolysis, reveal a correlation between the fluorescence intensity decrease and the amount of released choline, rendering the SWCNTs optical sensors with real-time feedback in the NIR biologically transparent spectral range. Moreover, when synthetic and naturally abundant inhibitors inhibit the CHE enzymes present in blood plasma, no significant modulations of the MC-SWCNT fluorescence are observed, allowing effective detection of CHE inhibition. The rationally designed SWCNT sensors platform for monitoring of enzymatic activity and inhibition in clinically relevant samples is envisioned to not only advance the field of clinical diagnostics but also deepen further understanding of enzyme-related processes in complex biological fluids.
Collapse
Affiliation(s)
- Srestha Basu
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Adi Hendler-Neumark
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
| | - Gili Bisker
- Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, 6997801, Israel
- Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, 6997801, Israel
| |
Collapse
|
3
|
Chamorro A, Rossetti M, Bagheri N, Porchetta A. Rationally Designed DNA-Based Scaffolds and Switching Probes for Protein Sensing. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:71-106. [PMID: 38273204 DOI: 10.1007/10_2023_235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
The detection of a protein analyte and use of this type of information for disease diagnosis and physiological monitoring requires methods with high sensitivity and specificity that have to be also easy to use, rapid and, ideally, single step. In the last 10 years, a number of DNA-based sensing methods and sensors have been developed in order to achieve quantitative readout of protein biomarkers. Inspired by the speed, specificity, and versatility of naturally occurring chemosensors based on structure-switching biomolecules, significant efforts have been done to reproduce these mechanisms into the fabrication of artificial biosensors for protein detection. As an alternative, in scaffold DNA biosensors, different recognition elements (e.g., peptides, proteins, small molecules, and antibodies) can be conjugated to the DNA scaffold with high accuracy and precision in order to specifically interact with the target protein with high affinity and specificity. They have several advantages and potential, especially because the transduction signal can be drastically enhanced. Our aim here is to provide an overview of the best examples of structure switching-based and scaffold DNA sensors, as well as to introduce the reader to the rational design of innovative sensing mechanisms and strategies based on programmable functional DNA systems for protein detection.
Collapse
Affiliation(s)
| | - Marianna Rossetti
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | - Neda Bagheri
- Department of Chemistry, University of Rome Tor Vergata, Rome, Italy
| | | |
Collapse
|
4
|
Zhu J, Sun W, Yao Y, Guo Z, Li Q, Li Z, Jiang L, Zuo S, Liu S, Huang J, Wang Y. Combination of specific proteins as markers for accurate detection of extracellular vesicles using proximity ligation-mediated bHCR amplification. Anal Chim Acta 2023; 1267:341322. [PMID: 37257980 DOI: 10.1016/j.aca.2023.341322] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/29/2023] [Accepted: 05/02/2023] [Indexed: 06/02/2023]
Abstract
As the molecular characteristics of extracellular vesicles (EVs) are closely related to the occurrence and progression of cancer, the detection of tumor-derived EVs provides a promising non-invasive tool for the early diagnosis and treatment of cancer. However, it would be difficult for most of the existing methods to avoid false positives because the obtained result declares the amounts of proteins, but cannot accurately reflect the protein sources, including EV proteins and interfering proteins, in the actual samples. In this manuscript, a robust, accurate, and sensitive fluorescent strategy for profiling EV proteins is developed by using the combination of specific proteins as markers (Co-marker). Our strategy relies on the Co-marker recognition-activated cascade bHCR amplification, which forms numerous G-quadruplex structures that are integrated with fluorescent dyes for signal transduction. Notably, the detection accuracy can be improved owing to the effective avoidance of false positives from interfering proteins or single protein markers. Moreover, by using the double-positive protein recognition mode, unpurified detection can be achieved that avoids time-consuming EVs purification procedures. With its capacities of accuracy, portability, sensitivity, high throughput, and non-purification, the developed strategy might provide a practical tool for EV identification and the related early diagnosis and treatment of cancer.
Collapse
Affiliation(s)
- Jingru Zhu
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Wenyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing, 210096, PR China
| | - Yuying Yao
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Zhiqiang Guo
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Qianru Li
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Zongqiang Li
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Long Jiang
- Qingdao Spring Water-treatment Co, Ltd, Qingdao, 266000, PR China
| | - Shangci Zuo
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China
| | - Su Liu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, PR China
| | - Jiadong Huang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China; Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022, PR China
| | - Yu Wang
- School of Biological Sciences and Technology, University of Jinan, Jinan, 250022, PR China.
| |
Collapse
|
5
|
Qian Y, Gu Y, Deng J, Cai Z, Wang Y, Zhou R, Zhu D, Lu H, Wang Z. Combined SERS Microfluidic Chip with Gold Nanocone Array for Effective Early Lung Cancer Prognosis in Mice Model. Int J Nanomedicine 2023; 18:3429-3442. [PMID: 37383221 PMCID: PMC10295598 DOI: 10.2147/ijn.s411395] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 06/19/2023] [Indexed: 06/30/2023] Open
Abstract
Introduction As the most common malignant tumor in the world, the prognosis of patients with advanced lung cancer remains poor even after treatment. There are many prognostic marker assays available, but there is still more room for the development of high-throughput and sensitive detection of circulating tumor DNA (ctDNA). Surface-enhanced Raman spectroscopy (SERS), a spectroscopic detection method that has received wide attention in recent years, can achieve exponential amplification of Raman signals by using different metallic nanomaterials. Integrating SERS with signal amplification strategy into the microfluidic chip and applying it to ctDNA detection is expected to be an effective tool for the prognosis of lung cancer treatment effect in the future. Methods To construct a high-throughput SERS microfluidic chip integrated with enzyme-assisted signal amplification (EASA) and catalytic hairpin self-assembly (CHA) signal amplification strategies, using hpDNA-functionalized Au nanocone arrays (AuNCAs) as capture substrates and cisplatin-treated lung cancer mice to simulate the detection environment for sensitive detection of ctDNA in serum of lung cancer patients after treatment. Results The SERS microfluidic chip constructed by this scheme, with two reaction zones, can simultaneously and sensitively detect the concentrations of four prognostic ctDNAs in the serum of three lung cancer patients with a limit of detection (LOD) as low as the aM level. The results of the ELISA assay are consistent with this scheme, and its accuracy is guaranteed. Conclusion This high-throughput SERS microfluidic chip has high sensitivity and specificity in the detection of ctDNA. This could be a potential tool for prognostic assessment of lung cancer treatment efficacy in future clinical applications.
Collapse
Affiliation(s)
- Yayun Qian
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yuexing Gu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, People’s Republic of China
| | - Jialin Deng
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Zhaoying Cai
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Yang Wang
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Ruoyu Zhou
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Dongxu Zhu
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou University, Yangzhou, People’s Republic of China
| | - Hongmei Lu
- Department of Pathology, Yangzhou Maternal and Child Health Hospital, Yangzhou, People’s Republic of China
| | - Zheng Wang
- Department of Pathology, The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, People’s Republic of China
| |
Collapse
|
6
|
Shi L, Ma Y, Zhang H, Tan Y, Zhu L, Liu Y, Yin J, Chen Q, Yang D, Qian Y, Ma Y. A fluorescent probe for protein tyrosine kinase 7 detection in serum and cell imaging. Talanta 2023; 254:124139. [PMID: 36470013 DOI: 10.1016/j.talanta.2022.124139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/17/2022] [Accepted: 11/25/2022] [Indexed: 11/28/2022]
Abstract
Tyrosine protein kinase 7 (PTK7) is overexpressed in breast cancer, which is considered as a cancer marker for breast cancer diagnosis. Therefore, a simple fluorescent probe for PTK7 detection and cell imaging was developed. In the developed probe, Fe3O4 magnetic nanoparticles were used as the fluorescent separator, and the fluorescence of carbon dots were used as the detection signal. The probe was worked by control the configurations of the aptamer of PTK7, the aptamer would be open chains by recognition of PTK7, which bond with carbon dots and show fluorescent signal. Based on the remarkably high affinity and selectivity of aptamer for PTK7, the excellent fluorescence property of carbon dots and the outstanding magnetism of Fe3O4 magnetic nanoparticles, the developed probe showed satisfied results for PTK7 detection in serum and MCF-7 cell imaging. The probe detected PTK7 in the range of 0.2-200 ng mL-1 with a detection limit of 0.0347 ng mL-1, and successfully imaged the cancer cell expressed PTK7. The results indicate that the nano-fluorescent probe has great potential for clinical applications.
Collapse
Affiliation(s)
- Lujia Shi
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China.
| | - Yu Ma
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China.
| | - Huaiyin Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China.
| | - Yiping Tan
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China.
| | - Ling Zhu
- Department of Pharmacy, The Affiliated Jiangyin Clinical College of Xuzhou Medical University, Wuxi, Jiangsu 214400, PR China.
| | - Yongjie Liu
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China.
| | - Jiacheng Yin
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China.
| | - Qianqian Chen
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China.
| | - Dongzhi Yang
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China.
| | - Yi Qian
- Department of Pharmacy, Wuxi No.2 People's Hospital, Wuxi, Jiangsu 214002, PR China.
| | - Yunsu Ma
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 22004, PR China; Jiangsu Yuanlong Hospital Management Co. LTD, Xuzhou, Jiangsu 22000, PR China.
| |
Collapse
|
7
|
He L, Guo Y, Li Y, Zhu J, Ren J, Wang E. Aptasensors for Biomarker Detection. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822120048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Sui JH, Wei YY, Li J, Xu ZR. A portable multicolor aptasensor for MUC1 detection based on enzyme-mediated cascade reaction. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Detection of prostate cancer biomarkers via a SERS-based aptasensor. Biosens Bioelectron 2022; 216:114660. [DOI: 10.1016/j.bios.2022.114660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/16/2022] [Accepted: 08/23/2022] [Indexed: 11/23/2022]
|
10
|
Dong Q, Jia X, Wang Y, Wang H, Liu Q, Li D, Wang J, Wang E. Sensitive and selective detection of Mucin1 in pancreatic cancer using hybridization chain reaction with the assistance of Fe 3O 4@polydopamine nanocomposites. J Nanobiotechnology 2022; 20:94. [PMID: 35197099 PMCID: PMC8867748 DOI: 10.1186/s12951-022-01289-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 01/31/2022] [Indexed: 11/10/2022] Open
Abstract
Pancreatic cancer is characterized as the worst for diagnosis lacking symptoms at the early stage, which results in a low overall survival rate. The frequently used techniques for pancreatic cancer diagnosis rely on imaging and biopsy, which have limitations in requiring experienced personnel to operate the expensive instruments and analyze the results. Therefore, there is a high demand to develop alternative tools or methods to detect pancreatic cancer. Herein, we propose a new strategy to enhance the detection sensitivity of pancreatic cancer cells both in biofluids and on tissues by combining the unique property of dopamine coated Fe3O4 nanoparticles (Fe3O4@DOP NPs) to specifically quench and separate free 6-carboxyfluorescein (FAM) labeled DNA (H1-FAM/H2-FAM), and the key feature of hybridization chain reaction (HCR) amplification. We have determined the limit of detection (LOD) to be 21 ~ 41 cells/mL for three different pancreatic cancer cell lines. It was also discovered that the fluorescence intensity of pancreatic cancer cells was significantly higher than that of HPDE-C7 and HepG-2 cells (control cell lines), which express lower MUC1 protein. Moreover, the HCR amplification system was used to identify the cancer cells on pancreatic tissue, which indicated the versatility of our strategy in clinical application. Therefore, the presented detection strategy shows good sensitivity, specificity and has great potential for the diagnosis of pancreatic cancer.
Collapse
Affiliation(s)
- Qing Dong
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Xiuna Jia
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Yuling Wang
- ARC Centre of Excellence for Nanoscale BioPhotonics, Department of Molecular Sciences, Macquarie University, Sydney, 2109, Australia
| | - Hao Wang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Qiong Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| | - Dan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China.
| | - Jin Wang
- Department of Chemistry and Physics, State University of New York at Stony Brook, Stony Brook, NY, 11794-3400, USA.
| | - Erkang Wang
- College of Chemistry, Jilin University, Changchun, 130012, Jilin, People's Republic of China
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, Jilin, People's Republic of China
| |
Collapse
|
11
|
Li C, Yang S, Li R, Gong S, Huang M, Sun Y, Xiong G, Wu D, Ji M, Chen Y, Gao C, Yu Y. Dual-Aptamer-Targeted Immunomagnetic Nanoparticles to Accurately Explore the Correlations between Circulating Tumor Cells and Gastric Cancer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7646-7658. [PMID: 35104098 DOI: 10.1021/acsami.1c22720] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
It has been acknowledged that circulating tumor cells (CTCs) are promising biomarkers in liquid biopsy for cancer diagnosis and prognosis. However, the relationship between the CTC number and gastric cancer has scarcely been quantitatively investigated. Moreover, the single criterion of epithelial cell adhesion molecule (EpCAM) antibody/aptamer to specifically recognize epithelial CTCs cannot be universally applied for clinical applications, as it fails to recognize EpCAM-negative CTCs. Herein, we propose simple, low-cost, dual-aptamer (EpCAM and PTK7)-modified immunomagnetic Fe3O4 particles (IMNs) for efficient capture of heterogeneous CTCs and downstream analysis in gastric cancer patients. High PTK7 expression and a significant negative correlation between PTK7 and EpCAM expression were observed in primary gastric cancer tissues. Taking MGC-803 and BGC-823 cells as CTC models, the obtained dual-targeting IMNs could distinguishably recognize these cells with both high or low EpCAM and PTK7 expressions, which enhanced the accuracy of CTC recognition in gastric cancer. More than 95% of these two kinds of cells could be captured within 20 min of incubation, which was significantly more efficient than that of single EpCAM- or PTK7-modified IMNs. With this strategy, as low as five CTCs could be captured from phosphate-buffered saline (PBS), a cell mixture containing THP-1 cells, and lysed blood mediums. Moreover, the obtained CTCs can be used for subsequent gene analysis. Finally, the fabricated IMNs were successfully applied for CTC capture in 1.0 mL of peripheral blood samples from patients with gastric cancer. The detected CTC numbers in 72 participants were found to have close relationships with chemotherapy sensitivity, diagnosis, stage, and distant metastasis of patients. This work provides important references for further investigations on CTC-related diagnosis and individualized treatment.
Collapse
Affiliation(s)
- Chenglin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shenhao Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Rui Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Shuyuan Gong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Meng Huang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yuqing Sun
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Guixiang Xiong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Dengpan Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Miaojin Ji
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yan Chen
- Department of Pharmacology of Materia Medica, School of Pharmaceutical Sciences, Guizhou Medical University, Guizhou 550025, China
| | - Chao Gao
- Department of Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| | - Yanyan Yu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou 221004, Jiangsu, China
| |
Collapse
|
12
|
Huang G, Zhao H, Li P, Liu J, Chen S, Ge M, Qin M, Zhou G, Wang Y, Li S, Cheng Y, Huang Q, Wang J, Wang H, Yang L. Construction of Optimal SERS Hotspots Based on Capturing the Spike Receptor-Binding Domain (RBD) of SARS-CoV-2 for Highly Sensitive and Specific Detection by a Fish Model. Anal Chem 2021; 93:16086-16095. [PMID: 34730332 PMCID: PMC8577364 DOI: 10.1021/acs.analchem.1c03807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/25/2021] [Indexed: 01/29/2023]
Abstract
It is highly challenging to construct the best SERS hotspots for the detection of proteins by surface-enhanced Raman spectroscopy (SERS). Using its own characteristics to construct hotspots can achieve the effect of sensitivity and specificity. In this study, we built a fishing mode device to detect the receptor-binding domain (RBD) of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) at low concentrations in different detection environments and obtained a sensitive SERS signal response. Based on the spatial resolution of proteins and their protein-specific recognition functions, SERS hotspots were constructed using aptamers and small molecules that can specifically bind to RBD and cooperate with Au nanoparticles (NPs) to detect RBD in the environment using SERS signals of beacon molecules. Therefore, two kinds of AuNPs modified with aptamers and small molecules were used in the fishing mode device, which can specifically recognize and bind RBD to form a stable hotspot to achieve high sensitivity and specificity for RBD detection. The fishing mode device can detect the presence of RBD at concentrations as low as 0.625 ng/mL and can produce a good SERS signal response within 15 min. Meanwhile, we can detect an RBD of 0.625 ng/mL in the mixed solution with various proteins, and the concentration of RBD in the complex environment of urine and blood can be as low as 1.25 ng/mL. This provides a research basis for SERS in practical applications for protein detection work.
Collapse
Affiliation(s)
- Guangyao Huang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| | - Hongxin Zhao
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Pan Li
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
| | - Juanjuan Liu
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Siyu Chen
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Meihong Ge
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Miao Qin
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Guoliang Zhou
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Yongtao Wang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Shaofei Li
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Yizhuang Cheng
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
| | - Qiang Huang
- Multiscale Research Institute of Complex Systems,
Fudan University, Shanghai 201203,
China
| | - Junfeng Wang
- High Magnetic Field Science Center, Hefei Institutes
of Physical Science, Chinese Academy of Sciences, Hefei 230031,
China
| | - Hongzhi Wang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| | - Liangbao Yang
- Institute of Health and Medicine Technology, and Hefei
Institutes of Physical Science, Chinese Academy of Sciences,
Hefei 230031, China
- University of Science and Technology of
China, Hefei 230026, China
- Cancer Hospital, Chinese Academy of
Sciences, Hefei 230031, China
| |
Collapse
|
13
|
Yan M, Li H, Li M, Cao X, She Y, Chen Z. Advances in Surface-Enhanced Raman Scattering-Based Aptasensors for Food Safety Detection. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:14049-14064. [PMID: 34798776 DOI: 10.1021/acs.jafc.1c05274] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to the excellent performances of high sensitivity, high specificity, on-site detection, and multiplexing capability, surface-enhanced Raman scattering (SERS)-based aptasensors have performed prosperous applications and gained impressive progress in food safety. Herein, we reviewed the SERS-based aptasensors from the principles to specific applications in food safety. First, the sensor-working principles, SERS label design and preparation are introduced. Then, the popular platforms in the aptasensors are summarized with their advantages and disadvantages, followed by their representative applications. Further, the specific applications of developing SERS-based aptasensors in food safety are systematically provided. Moreover, the multiplex analysis using SERS labels are highlighted. Finally, challenges and perspectives for improving the SERS-based aptasensor performance are also discussed, aiming to give some proposes for researchers to choose suitable SERS-based aptasensors according to specific applications.
Collapse
Affiliation(s)
- Mengmeng Yan
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Huidong Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Min Li
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| | - Xiaolin Cao
- College of Life Science, Yantai University, Yantai, Shandong 264005, People's Republic of China
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Zilei Chen
- Institute of Quality Standard and Testing Technology for Agro-Products, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, People's Republic of China
| |
Collapse
|
14
|
Wu L, Wang Y, Xu X, Liu Y, Lin B, Zhang M, Zhang J, Wan S, Yang C, Tan W. Aptamer-Based Detection of Circulating Targets for Precision Medicine. Chem Rev 2021; 121:12035-12105. [PMID: 33667075 DOI: 10.1021/acs.chemrev.0c01140] [Citation(s) in RCA: 342] [Impact Index Per Article: 85.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past decade has witnessed ongoing progress in precision medicine to improve human health. As an emerging diagnostic technique, liquid biopsy can provide real-time, comprehensive, dynamic physiological and pathological information in a noninvasive manner, opening a new window for precision medicine. Liquid biopsy depends on the sensitive and reliable detection of circulating targets (e.g., cells, extracellular vesicles, proteins, microRNAs) from body fluids, the performance of which is largely governed by recognition ligands. Aptamers are single-stranded functional oligonucleotides, capable of folding into unique tertiary structures to bind to their targets with superior specificity and affinity. Their mature evolution procedure, facile modification, and affinity regulation, as well as versatile structural design and engineering, make aptamers ideal recognition ligands for liquid biopsy. In this review, we present a broad overview of aptamer-based liquid biopsy techniques for precision medicine. We begin with recent advances in aptamer selection, followed by a summary of state-of-the-art strategies for multivalent aptamer assembly and aptamer interface modification. We will further describe aptamer-based micro-/nanoisolation platforms, aptamer-enabled release methods, and aptamer-assisted signal amplification and detection strategies. Finally, we present our perspectives regarding the opportunities and challenges of aptamer-based liquid biopsy for precision medicine.
Collapse
Affiliation(s)
- Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yidi Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yilong Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bingqian Lin
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Mingxia Zhang
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Jialu Zhang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Shuang Wan
- Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Collaborative Innovation Center of Chemistry for Energy Materials, The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Weihong Tan
- Institute of Molecular Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China.,Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha 410082, China.,The Cancer Hospital of the University of Chinese Academy of Sciences, Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
15
|
Zhao Y, Zuo X, Li Q, Chen F, Chen YR, Deng J, Han D, Hao C, Huang F, Huang Y, Ke G, Kuang H, Li F, Li J, Li M, Li N, Lin Z, Liu D, Liu J, Liu L, Liu X, Lu C, Luo F, Mao X, Sun J, Tang B, Wang F, Wang J, Wang L, Wang S, Wu L, Wu ZS, Xia F, Xu C, Yang Y, Yuan BF, Yuan Q, Zhang C, Zhu Z, Yang C, Zhang XB, Yang H, Tan W, Fan C. Nucleic Acids Analysis. Sci China Chem 2020; 64:171-203. [PMID: 33293939 PMCID: PMC7716629 DOI: 10.1007/s11426-020-9864-7] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Nucleic acids are natural biopolymers of nucleotides that store, encode, transmit and express genetic information, which play central roles in diverse cellular events and diseases in living things. The analysis of nucleic acids and nucleic acids-based analysis have been widely applied in biological studies, clinical diagnosis, environmental analysis, food safety and forensic analysis. During the past decades, the field of nucleic acids analysis has been rapidly advancing with many technological breakthroughs. In this review, we focus on the methods developed for analyzing nucleic acids, nucleic acids-based analysis, device for nucleic acids analysis, and applications of nucleic acids analysis. The representative strategies for the development of new nucleic acids analysis in this field are summarized, and key advantages and possible limitations are discussed. Finally, a brief perspective on existing challenges and further research development is provided.
Collapse
Affiliation(s)
- Yongxi Zhao
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Qian Li
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Feng Chen
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, 710049 China
| | - Yan-Ru Chen
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Jinqi Deng
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Da Han
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Changlong Hao
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fujian Huang
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Yanyi Huang
- College of Chemistry and Molecular Engineering, Biomedical Pioneering Innovation Center (BIOPIC), Beijing Advanced Innovation Center for Genomics (ICG), Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871 China
| | - Guoliang Ke
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Hua Kuang
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Fan Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiang Li
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Min Li
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Na Li
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Zhenyu Lin
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing, Nankai University, Tianjin, 300071 China
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Libing Liu
- Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190 China
- College of Chemistry, University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaoguo Liu
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Chunhua Lu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Fang Luo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Jiashu Sun
- CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190 China
| | - Bo Tang
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Shandong Normal University, Jinan, 250014 China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jianbin Wang
- School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Beijing Advanced Innovation Center for Structural Biology (ICSB), Chinese Institute for Brain Research (CIBR), Tsinghua University, Beijing, 100084 China
| | - Lihua Wang
- Division of Physical Biology, CAS Key Laboratory of Interfacial Physics and Technology, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800 China
- Bioimaging Center, Shanghai Synchrotron Radiation Facility, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201210 China
| | - Shu Wang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, Ontario N2L 3G1 Canada
| | - Lingling Wu
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zai-Sheng Wu
- Cancer Metastasis Alert and Prevention Center, Fujian Provincial Key Laboratory of Cancer Metastasis Chemoprevention and Chemotherapy, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350108 China
| | - Fan Xia
- Faculty of Materials Science and Chemistry, Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074 China
| | - Chuanlai Xu
- State Key Lab of Food Science and Technology, International Joint Research Laboratory for Biointerface and Biodetection, School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Yang Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Bi-Feng Yuan
- Department of Chemistry, Wuhan University, Wuhan, 430072 China
| | - Quan Yuan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chao Zhang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
| | - Zhi Zhu
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Chaoyong Yang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005 China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Huanghao Yang
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350116 China
| | - Weihong Tan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127 China
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240 China
| |
Collapse
|
16
|
Sun Y, Ge S, Xue J, Zhou X, Lu W, Li G, Cao X. Highly sensitive detection of cytochrome c in the NSCLC serum using a hydrophobic paper based-gold nanourchin substrate. BIOMEDICAL OPTICS EXPRESS 2020; 11:7062-7078. [PMID: 33408980 PMCID: PMC7747924 DOI: 10.1364/boe.408649] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 05/16/2023]
Abstract
Cytochrome c (Cyt c) is a biomarker of early apoptosis that plays a critical role in the diagnosis and therapy of non-small cell lung cancer (NSCLC). In this work, we proposed a novel surface-enhanced Raman scattering (SERS)-based biosensor to implement the ultrasensitive detection of Cyt c in the serum of NSCLC patients. The SERS-supporting substrates based on hydrophobic filter paper were composed of gold nanourchins (GNUs) surface-functionalized with the Cyt c aptamer and the cyanine 5-labeled complementary DNA. In the existence of Cyt c, it could specifically bind to its aptamer, which leads to the detachment of complementary strands modified with Cy5 and the great weakness of SERS signal. The finite-difference time domain (FDTD) simulation showed that the excellent SERS performance of GNUs aggregation was strongly dependent on a large number of "hot spots" at the tips and between the nanogaps of aggregated GNUs. Alkyl ketene dimer (AKD) was used to make the filter paper modify its property from hydrophilic to hydrophobic, which consequently increased the density of GNUs and extended the retention time of the analyte. SERS biosensors based on hydrophobic paper exhibited prominent reproducibility and selectivity. The detection limit of Cyt c in PBS was 1.148 pg/mL, while the detection limit in human serum was 1.79 pg/mL. Moreover, the analysis of the serum samples of healthy subjects and NSCLC patients confirmed the feasibility of its clinical application. The results were consistent with enzyme-linked immunosorbent assay results. This method can be a powerful strategy for quantitative detection of extracellular Cyt c, and it is expected that the SERS-based biosensors could be applied in the practical clinical diagnoses of NSCLC.
Collapse
Affiliation(s)
- Yue Sun
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Shengjie Ge
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Jin Xue
- Guangling College, Yangzhou University, Yangzhou 225001, China
| | - Xinyu Zhou
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
| | - Wenbo Lu
- Shanxi Normal University, College of Chemistry and Material Science, Linfen 041004, China
| | - Guang Li
- Department of Otorhinolaryngology, Affiliated Hospital of Yangzhou University, Yangzhou 225001, China
| | - Xiaowei Cao
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Medical College, Yangzhou University, Yangzhou 225001, China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
17
|
Lin T, Song YL, Liao J, Liu F, Zeng TT. Applications of surface-enhanced Raman spectroscopy in detection fields. Nanomedicine (Lond) 2020; 15:2971-2989. [PMID: 33140686 DOI: 10.2217/nnm-2020-0361] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a Raman spectroscopy technique that has been widely used in food safety, environmental monitoring, medical diagnosis and treatment and drug monitoring because of its high selectivity, sensitivity, rapidness, simplicity and specificity in identifying molecular structures. This review introduces the detection mechanism of SERS and summarizes the most recent progress concerning the use of SERS for the detection and characterization of molecules, providing references for the later research of SERS in detection fields.
Collapse
Affiliation(s)
- Ting Lin
- Department of Hematology, Institute of Hematology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Ya-Li Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Juan Liao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - Fang Liu
- Department of Laboratory Pathology, Xijing Hospital, Fourth Military Medical University, Xian, 710054, PR China
| | - Ting-Ting Zeng
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| |
Collapse
|
18
|
Zhang Q, Hao T, Hu D, Guo Z, Wang S, Hu Y. RNA aptamer-driven ECL biosensing for tracing histone acetylation based on nano-prism substrate and cascade DNA amplification strategy. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136828] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
19
|
Fluorescent aptasensor based on G-quadruplex-assisted structural transformation for the detection of biomarker lipocalin 1. Biosens Bioelectron 2020; 169:112607. [PMID: 32947081 DOI: 10.1016/j.bios.2020.112607] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 09/01/2020] [Accepted: 09/08/2020] [Indexed: 11/22/2022]
Abstract
Diabetic retinopathy (DR) is the leading global cause of blindness in the working-age population. Early diagnosis and intervention can effectively reduce the risk for blindness. However, the current diagnostic methods in clinical practice remain constrained by nonquantitative examinations and individual ophthalmologists' experiences. Sensitive, specific and accurate detection of DR-specific biomarkers is an important approach to achieve its early and rapid diagnosis. In this study, a high-affinity aptamer APT12TM that specifically binds to the tear-derived DR biomarker lipocalin 1 was obtained. The aptamer APT12TM can be folded into a stable B-DNA structure, and its strong interaction with LCN 1, including hydrogen bonding and hydrophobic interactions, is an important factor for targeted recognition and high-affinity binding. A G-rich DNA fragment was further assembled at both ends of the aptamer APT12TM, and the B-DNA form was successfully converted into a parallel G-quadruplex. Most importantly, LCN 1 could induce further transformation of the G-quadruplex structure. Therefore, a fluorescent aptasensor based on G-quadruplex-assisted structural transformation was developed through the Thioflavin T mediator. The aptasensor exhibited a broad detection window from 0.25 to 1000 nM LCN 1, with a limit of detection of 0.2 nM. Furthermore, the aptasensor was applied to LCN 1 detection in artificial tear samples and displayed good reproducibility and stability. These results show that the developed aptasensor has significant potential for sensitive, specific and convenient detection of the DR-specific biomarker LCN 1.
Collapse
|
20
|
Zhang D, Cai L, Bian F, Kong T, Zhao Y. Label-Free Quantifications of Multiplexed Mycotoxins by G-Quadruplex Based on Photonic Barcodes. Anal Chem 2020; 92:2891-2895. [PMID: 32013396 DOI: 10.1021/acs.analchem.9b05213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiplexed quantification of mycotoxins is of great significance in food safety. Here, novel photonic crystal (PhC) barcodes with G-quadruplex aptamer encapsulated for label-free multiplex mycotoxins quantification are developed. The probes are immobilized on PhC barcodes to form a molecular beacon (MB), which contains the sequences of mycotoxin aptamers and a G-quadruplex. In the presence of the target, the hairpin structure of MB would open and the region of the G-quadruplex is exposed, which subsequently combines with Thioflavin T (ThT) to produce fluorescence. The relative fluorescence intensity increased as the mycotoxins concentration increased in a linear range from 1.0 pg/mL to 100 ng/mL. Moreover, the multiplexed mycotoxins quantification could be achieved by tuning the structural color of the PhC barcodes. We demonstrate that this method with high accuracy and specificity for multiplexed detection of mycotoxins, with the sensitivity of the detection as low as 0.70 pg/mL. Our results show that G-quadruplex-encapsulated PhC barcodes offer a novel simple and label-free pathway toward the multiplex screen assay of mycotoxins for food safety.
Collapse
Affiliation(s)
- Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|