1
|
Wu P, Li Y, Yang A, Tan X, Chu J, Zhang Y, Yan Y, Tang J, Yuan H, Zhang X, Xiao S. Advances in 2D Materials Based Gas Sensors for Industrial Machine Olfactory Applications. ACS Sens 2024; 9:2728-2776. [PMID: 38828988 DOI: 10.1021/acssensors.4c00431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The escalating development and improvement of gas sensing ability in industrial equipment, or "machine olfactory", propels the evolution of gas sensors toward enhanced sensitivity, selectivity, stability, power efficiency, cost-effectiveness, and longevity. Two-dimensional (2D) materials, distinguished by their atomic-thin profile, expansive specific surface area, remarkable mechanical strength, and surface tunability, hold significant potential for addressing the intricate challenges in gas sensing. However, a comprehensive review of 2D materials-based gas sensors for specific industrial applications is absent. This review delves into the recent advances in this field and highlights the potential applications in industrial machine olfaction. The main content encompasses industrial scenario characteristics, fundamental classification, enhancement methods, underlying mechanisms, and diverse gas sensing applications. Additionally, the challenges associated with transitioning 2D material gas sensors from laboratory development to industrialization and commercialization are addressed, and future-looking viewpoints on the evolution of next-generation intelligent gas sensory systems in the industrial sector are prospected.
Collapse
Affiliation(s)
- Peng Wu
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yi Li
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Aijun Yang
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Xiangyu Tan
- Electric Power Research Institute, Yunnan Power Grid Co., Ltd., Kunming, Yunnan 650217, China
| | - Jifeng Chu
- State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong, No 28 XianNing West Road, Xi'an, Shanxi 710049, China
| | - Yifan Zhang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Yongxu Yan
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Ju Tang
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, Shanxi 710049, China
| | - Xiaoxing Zhang
- Hubei Engineering Research Center for Safety Monitoring of New Energy and Power Grid Equipment, Hubei University of Technology, Wuhan, Hubei 430068, China
| | - Song Xiao
- State Key Laboratory of Power Grid Environmental Protection, School of Electrical Engineering and Automation, Wuhan University, Wuhan, Hubei 430072, China
| |
Collapse
|
2
|
Zu J, Xuan X, Zhang W, Li M, Jiang D, Li H. Wireless Gold/Boron-Nitrogen-Codoped Graphene-Based Antenna Immunosensor for the Rapid Detection of Neuron-Specific Enolase. Anal Chem 2024; 96:6826-6835. [PMID: 38640511 DOI: 10.1021/acs.analchem.4c00826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Tumor-marker immunosensors for rapid on-site detection have not yet been developed because of immunoreaction bottlenecks, such as shortening the reaction time and facilitating incubation. In this study, a gold-boron-nitrogen-codoped graphene (Au-BNG)-based immunosensor antenna was constructed for the rapid detection of neuron-specific enolase (NSE). A Au-BNG radiation electrode with dual functions of antibody protein fixation and signal transmission was developed for the first time. A radiation sample cell was constructed by embedding a radiation electrode into the groove of a poly(dimethylsiloxane) dielectric substrate. The constructed sense antenna achieves accurate detection of NSE with a range from 50 fg mL-1 to 40,000 pg mL-1 and a limit of detection of 10.99 fg mL-1, demonstrating excellent selectivity, stability, and reliability. The tumor-marker detection meter can provide NSE detection results as rapidly as within 2 min by using the new strategy of the microwave self-incubation of tumor markers. This antenna immunosensor is suitable for rapid detection in outpatient clinics and can be developed into household tumor-marker detectors, which would be significant in the early detection, long-term monitoring, and efficacy evaluation of tumors.
Collapse
Affiliation(s)
- Jiao Zu
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Xiuwei Xuan
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Weihua Zhang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Mingji Li
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Daolian Jiang
- Tianjin Key Laboratory of Film Electronic and Communication Devices, School of Integrated Circuit Science and Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| | - Hongji Li
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, PR China
| |
Collapse
|
3
|
Walleni C, Malik SB, Missaoui G, Alouani MA, Nsib MF, Llobet E. Selective NO 2 Gas Sensors Employing Nitrogen- and Boron-Doped and Codoped Reduced Graphene Oxide. ACS OMEGA 2024; 9:13028-13040. [PMID: 38524411 PMCID: PMC10956123 DOI: 10.1021/acsomega.3c09460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/26/2024]
Abstract
In this paper, we develop high-performance gas sensors based on heteroatom-doped and -codoped graphene oxide as a sensing material for the detection of NO2 at trace levels. Graphene oxide (GO) was doped with nitrogen and boron by a chemical method using urea and boric acid as precursors. The prepared samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Raman spectroscopy, X-ray diffraction (XRD), and X-ray photoelectron spectroscopy (XPS). The obtained results proved the successful reduction of graphene oxide by doping effects, leading to the removal of some oxygen functional groups and restoration of an sp2 carbon structure. New bonds in honeycombs, such as pyridinic, pyrrolic, graphitic, B-C3, B-C2-O, and B-O, were created. Compared to the nondoped GO, the N/B-rGO materials exhibited enhanced responses toward low concentrations of NO2 (<1 ppm) at 100 °C. Particularly, the N-rGO-based device showed the highest sensitivity and lowest limit of detection.
Collapse
Affiliation(s)
- Chiheb Walleni
- Higher
School of Sciences and Technology of Hammam Sousse, University of Sousse, 4011 Sousse, Tunisia
- MINOS, Universitat Rovira i Virgili, Avinguda Països Catalans,
26, 43007 Tarragona, Spain
- NANOMISENE
Laboratory, LR16CRMN01, Center of Research on Microelectronics and
Nanotechnology (CRMN), Technopole of Sousse, B.P334, 4054 Sousse, Tunisia
| | - Shuja Bashir Malik
- MINOS, Universitat Rovira i Virgili, Avinguda Països Catalans,
26, 43007 Tarragona, Spain
| | - Ghada Missaoui
- Fakultät
V – Institute of Physics, Carl von
Ossietzky Universität Oldenburg, D-26111 Oldenburg, Germany
| | - Mohamed Ayoub Alouani
- MINOS, Universitat Rovira i Virgili, Avinguda Països Catalans,
26, 43007 Tarragona, Spain
| | - Mohamed Faouzi Nsib
- Higher
School of Sciences and Technology of Hammam Sousse, University of Sousse, 4011 Sousse, Tunisia
- NANOMISENE
Laboratory, LR16CRMN01, Center of Research on Microelectronics and
Nanotechnology (CRMN), Technopole of Sousse, B.P334, 4054 Sousse, Tunisia
| | - Eduard Llobet
- MINOS, Universitat Rovira i Virgili, Avinguda Països Catalans,
26, 43007 Tarragona, Spain
| |
Collapse
|
4
|
Zhumadilov RY, Yerlanuly Y, Parkhomenko HP, Soltabayev B, Orazbayev SA, Bakenov Z, Ramazanov TS, Gabdullin MT, Jumabekov AN. Carbon nanowall-based gas sensors for carbon dioxide gas detection. NANOTECHNOLOGY 2024; 35:165501. [PMID: 38171320 DOI: 10.1088/1361-6528/ad1a7e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 01/03/2024] [Indexed: 01/05/2024]
Abstract
Carbon nanowalls (CNWs) have attracted significant attention for gas sensing applications due to their exceptional material properties such as large specific surface area, electric conductivity, nano- and/or micro-porous structure, and high charge carrier mobility. In this work, CNW films were synthesized and used to fabricate gas sensors for carbon dioxide (CO2) gas sensing. The CNW films were synthesized using an inductively-coupled plasma (ICP) plasma-enhanced chemical vapor deposition (PECVD) method and their structural and morphological properties were characterized using Raman spectroscopy and electron microscopy. The obtained CNW films were used to fabricate gas sensors employing interdigitated gold (Au) microelectrodes. The gas sensors were fabricated using both direct synthesis of CNW films on interdigitated Au microelectrodes on quartz and also transferring presynthesized CNW films onto interdigitated Au microelectrodes on glass. The CO2gas-sensing properties of fabricated devices were investigated for different concentrations of CO2gas and temperature-ranges. The sensitivities of fabricated devices were found to have a linear dependence on the concentration of CO2gas and increase with temperature. It was revealed that devices, in which CNW films have a maze-like structure, perform better compared to the ones that have a petal-like structure. A sensitivity value of 1.18% was obtained at 500 ppm CO2concentration and 100 °C device temperature. The CNW-based gas sensors have the potential for the development of easy-to-manufacture and efficient gas sensors for toxic gas monitoring.
Collapse
Affiliation(s)
- Rakhymzhan Ye Zhumadilov
- Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
| | - Yerassyl Yerlanuly
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
- Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| | - Hryhorii P Parkhomenko
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Baktiyar Soltabayev
- National Laboratory Astana, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Sagi A Orazbayev
- Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
| | - Zhumabay Bakenov
- National Laboratory Astana, Astana, 010000, Kazakhstan
- Department of Chemical and Materials Engineering, School of Engineering and Digital Sciences, Nazarbayev University, Astana, 010000, Kazakhstan
| | - Tlekkabul S Ramazanov
- Al-Farabi Kazakh National University, Almaty, 050040, Kazakhstan
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
| | - Maratbek T Gabdullin
- Institute of Applied Science and Information Technologies, Almaty, 050038, Kazakhstan
- Kazakh-British Technical University, Almaty, 050000, Kazakhstan
| | - Askhat N Jumabekov
- Department of Physics, School of Sciences and Humanities, Nazarbayev University, Astana, 010000, Kazakhstan
| |
Collapse
|
5
|
Sysoev VI, Yamaletdinov RD, Plyusnin PE, Okotrub AV, Bulusheva LG. Adsorption kinetics of NO 2 gas on oxyfluorinated graphene film. Phys Chem Chem Phys 2023; 25:2084-2089. [PMID: 36562266 DOI: 10.1039/d2cp04926k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We report the fabrication of high-performance NO2 gas sensors based on oxyfluorinated graphene (OFG) layers. At room temperature, the times of adsorption/desorption of NO2 on/from the surface of thin OFG films are less than 1200 s and can be reduced by increasing the operation temperature. The sensors are capable of detecting NO2 molecules at sub-ppm level with a sensitivity of 0.15 ppm-1 at 348 K. The temperature dependence of the rate constants shows that the simultaneous presence of a large number of fluorine- and oxygen-containing groups on the graphene surface provides the formation of low-energy sites (ΔHa < 0.1 eV) for NO2 adsorption. The combination of the high sensitivity of the sensor and a reasonable adsorption/desorption time of the analyte is promising for on-line monitoring.
Collapse
Affiliation(s)
- Vitalii I Sysoev
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| | - Ruslan D Yamaletdinov
- Boreskov Institute of Catalysis, Siberian Branch of Russian Academy of Sciences, 5, Acad. Lavrentiev ave., Novosibirsk 630090, Russia
| | - Pavel E Plyusnin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| | - Alexander V Okotrub
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| | - Lyubov G Bulusheva
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of Russian Academy of Sciences, 3 Acad. Lavrentiev ave., Novosibirsk 630090, Russia.
| |
Collapse
|
6
|
Ma Z, Sun J, Bu M, Xiu K, Wang Z, Gao L. Oxygen Plasma-Assisted Defect Engineering of Graphene Nanocomposites with Ultrasmall Co 3O 4 Nanocrystals for Monitoring Toxic Nitrogen Dioxide at Room Temperature. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7290-7299. [PMID: 35642555 DOI: 10.1021/acs.langmuir.2c00824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Functional adjustment of graphene with metal oxide can in fact progress the affectability of graphene-based gas sensors. However, it could be a huge challenge to upgrade the detecting execution of nitrogen dioxide (NO2) sensors at room temperature. The ultrasmall size of nanocrystals (NCs) and copious defects are two key variables for moving forward gas detecting execution. Herein, we provide an effective strategy that the hydrothermal reaction is combined with room-temperature oxygen plasma treatment to prepare Co3O4 NCs and reduced graphene oxide (RGO) nanohybrids (Co3O4-RGO). Among all of Co3O4-RGO nanohybrids, Co3O4-RGO-60 W exhibits the most superior NO2 sensing properties and achieves the low-concentration detection of NO2. The sensitivity of Co3O4-RGO-60 W to 20 ppm NO2 at room temperature is the highest (72.36%). The excellent sensing properties can mainly depend on the change in the microstructure of Co3O4-RGO. Compared with Co3O4-RGO, Co3O4-RGO-60 W with oxygen plasma treatment shows more favorable properties for NO2 adsorption, including the smaller size of Co3O4 NCs, larger specific surface area, pore size, and more oxygen vacancies (OVs). Especially, OVs make the surface of NCs have a unique chemical state, which can increase active sites and improve the adsorption property of NO2. Besides, the agreeable impact of the p-p heterojunction (Co3O4 and RGO) and the doping of N molecule contribute to the improved NO2 detecting properties. It is demonstrated that the Co3O4-RGO-60 W sensor is expected to monitor NO2 at room temperature sensitively.
Collapse
Affiliation(s)
- Zongtao Ma
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Jingyao Sun
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Miaomiao Bu
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Kunhao Xiu
- School of Electronics and Information Engineering, Hebei University of Technology, 5340 Xiping Road, Tianjin 300401, P. R. China
| | - Ziying Wang
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- School of Mechanical Engineering and National Engineering Research Center for Technological Innovation Method and Tool, Hebei University of Technology, Tianjin 300401, P. R. China
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, Chongqing 400044, China
| | - Lingxiao Gao
- State Key Laboratory of Reliability and Intelligence Electrical Equipment, Hebei University of Technology, Tianjin 300130, P. R. China
- School of Mechanical Engineering and National Engineering Research Center for Technological Innovation Method and Tool, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
7
|
Simultaneous electrochemical detection of uric acid and xanthine based on electrodeposited B, N co-doped reduced graphene oxide, gold nanoparticles and electropolymerized poly (L-cysteine) gradually modified electrode platform. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107213] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
8
|
Chu Z, Xiao M, Dong Q, Li G, Hu T, Zhang Y, Jiang Z. Porous reduced graphene oxide for ultrasensitive detection of nitrogen dioxide. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
9
|
Rao Q, Hu FX, Gan LY, Guo C, Liu Y, Zhang C, Chen C, Yang HB, Li CM. Boron-Nitrogen-Co-Doping Nanocarbons to Create Rich Electroactive Defects toward Simultaneous Sensing Hydroquinone and Catechol. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2021.139427] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Zhou Y, Wang Y, Wang Y, Yu H, Zhang R, Li J, Zang Z, Li X. MXene Ti 3C 2T x-Derived Nitrogen-Functionalized Heterophase TiO 2 Homojunctions for Room-Temperature Trace Ammonia Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:56485-56497. [PMID: 34787994 DOI: 10.1021/acsami.1c17429] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
In this work, MXene Ti3C2Tx-derived nitrogen-functionalized heterophase TiO2 homojunctions (N-MXene) were prepared via the urea-involved solvothermal treatment with varying reaction time as the sensing layer to detect trace NH3 gas at room temperature (20 °C). Compared with no signal for the pristine MXene counterpart, the 18 h-treated sensors (N-MXene-18) achieved a detection limit of 200 ppb with an inspiring response that was 7.3% better than the existing MXene-involved reports thus far. Also, decent repeatability, stability, and selectivity were demonstrated. It is noteworthy that the N-MXene-18 sensors delivered a stronger response, more sufficient recovery, and quicker response/recovery speeds under a humid environment than those under dry conditions, proving the significance of humidity. Furthermore, to suppress the effect of the fluctuation of humidity on NH3 sensing during the tests, a commercial waterproof polytetrafluoroethylene (PTFE) membrane was anchored onto the sensing layer, eventually bringing about humidity-independent features. Both nitrogen doping and TiO2 homojunctions constituted by mixed anatase and rutile phases were primarily responsible for the performance improvement with respect to pristine MXene. This work showcases the enormous potential of N-MXene materials in trace NH3 detection and offers an alternative strategy to realize both heteroatom doping and partial oxidation of MXene that is applicable in future optoelectronic devices.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yuhang Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Haochen Yu
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ruijie Zhang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Zhigang Zang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xian Li
- Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
11
|
Zhi H, Zhang X, Wang F, Wan P, Feng L. Flexible Ti 3C 2T x MXene/PANI/Bacterial Cellulose Aerogel for e-Skins and Gas Sensing. ACS APPLIED MATERIALS & INTERFACES 2021; 13:45987-45994. [PMID: 34523329 DOI: 10.1021/acsami.1c12991] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Flexible pressure sensors made of carbon materials have been used in electronic skins (e-skins), whose performance can be enhanced if composite sensing materials are used. Herein, an MXene/polyaniline/bacterial cellulose (MXene/PANI/BC) aerogel sensor has been fabricated through the self-assembly process between the MXene and one-dimensional active material. Combined with fewer-layer or single-layer MXenes, the as-fabricated aerogel could be used as the active layer of the pressure sensor, monitoring tiny motion signals of finger bending, wrist bending, and pulse beating. Bluetooth wireless transmission could also be realized to monitor the real-time spatial pressure distributions on the mobile phone, making the aerogel-based sensor an ideal candidate in e-skins. Meanwhile, the aerogel-based sensor is sensitive toward NH3 due to the unique three-dimensional (3D) structure of the aerogel and the abundant terminal groups (such as -O, -OH, and -F) of the MXene in the system that ensure efficient electronic transfer for the sensing process and create active sites for the absorption with the target gas. This work offers a versatile platform to develop MXenes to fabricate 3D composite aerogels for high-performance flexible multiple sensors.
Collapse
Affiliation(s)
- Hui Zhi
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaobo Zhang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fengya Wang
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Peng Wan
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Liang Feng
- Department of Instrumentation and Analytical Chemistry, CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| |
Collapse
|
12
|
Xiong S, Zhou J, Wu J, Li H, Zhao W, He C, Liu Y, Chen Y, Fu Y, Duan H. High Performance Acoustic Wave Nitrogen Dioxide Sensor with Ultraviolet Activated 3D Porous Architecture of Ag-Decorated Reduced Graphene Oxide and Polypyrrole Aerogel. ACS APPLIED MATERIALS & INTERFACES 2021; 13:42094-42103. [PMID: 34431295 DOI: 10.1021/acsami.1c13309] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface acoustic wave (SAW) devices have been widely explored for real-time monitoring of toxic and irritant chemical gases such as nitrogen oxide (NO2), but they often have issues such as a complicated process of the sensing layer, low sensitivity, long response time, irreversibility, and/or requirement of high temperatures to enhance sensitivity. Herein, we report a sensing material design for room-temperature NO2 detection based on a 3D porous architecture of Ag-decorated reduced graphene oxide-polypyrrole hybrid aerogels (rGO-PPy/Ag) and apply UV activation as an effective strategy to further enhance the NO2 sensing performance. The rGO-PPy/Ag-based SAW sensor with the UV activation exhibits high sensitivity (127.68 Hz/ppm), fast response/recovery time (36.7 s/58.5 s), excellent reproducibility and selectivity, and fast recoverability. Its enhancement mechanisms for highly sensitive and selective detection of NO2 are based on a 3D porous architecture, Ag-decorated rGO-PPy, p-p heterojunction in rGO-PPy/Ag, and UV photogenerated carriers generated in the sensing layer. The scientific findings of this work will provide the guidance for future exploration of next-generation acoustic-wave-based gas sensors.
Collapse
Affiliation(s)
- Shuo Xiong
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jian Zhou
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Jianhui Wu
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Honglang Li
- National Center for Nanoscience and Technology, Beijing 100190, China
| | - Wei Zhao
- Institute of Semiconductor, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Chenguang He
- Institute of Semiconductor, Guangdong Academy of Sciences, Guangzhou 510651, China
| | - Yi Liu
- National Innovation Center of Advanced Rail Transit Equipment, Zhuzhou 412005, China
| | - Yiqin Chen
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| | - Yongqing Fu
- Faculty of Engineering and Environment, Northumbria University, Newcastle upon Tyne, NE1 8ST, United Kingdom
| | - Huigao Duan
- Engineering Research Center of Automotive Electrics and Control Technology, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
13
|
Abstract
High-performance tracking trace amounts of NO2 with gas sensors could be helpful in protecting human health since high levels of NO2 may increase the risk of developing acute exacerbation of chronic obstructive pulmonary disease. Among various gas sensors, Graphene-based sensors have attracted broad attention due to their sensitivity, particularly with the addition of noble metals (e.g., Ag). Nevertheless, the internal mechanism of improving the gas sensing behavior through doping Ag is still unclear. Herein, the impact of Ag doping on the sensing properties of Graphene-based sensors is systematically analyzed via first principles. Based on the density-functional theory (DFT), the adsorption behavior of specific gases (NO2, NH3, H2O, CO2, CH4, and C2H6) on Ag-doped Graphene (Ag–Gr) is calculated and compared. It is found that NO2 shows the strongest interaction and largest Mulliken charge transfer to Ag–Gr among these studied gases, which may directly result in the highest sensitivity toward NO2 for the Ag–Gr-based gas sensor.
Collapse
|
14
|
Kaiser A, Torres Ceja E, Liu Y, Huber F, Müller R, Herr U, Thonke K. H 2S sensing for breath analysis with Au functionalized ZnO nanowires. NANOTECHNOLOGY 2021; 32:205505. [PMID: 33498025 DOI: 10.1088/1361-6528/abe004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This work presents a H2S selective resistive gas sensor design based on a chemical field effect transistor (ChemFET) with open gate formed by hundreds of high temperature chemical vapour deposition (CVD) grown zinc oxide nanowires (ZnO NW). The sensing ability of pristine ZnO NWs and surface functionalized ZnO NWs for H2S is analysed systematically. ZnO NWs are functionalized by deposition of discontinuous gold (Au) nanoparticle films of different thicknesses of catalyst layer ranging from 1 to 10 nm and are compared in their gas sensing properties. All experiments were performed in a temperature stabilized small volume compartment with adjustable gas mixture at room temperature. The results allow for a well-founded understanding of signal-to-noise ratio, enhanced response, and improved limit of detection due to the Au functionalisation. Comprehension and controlled application of the beneficial effects of Au catalyst on ZnO NWs allow for the detection of very low H2S concentrations down to 10 ppb, and a theoretically estimated 500 ppt in synthetic air at room temperature.
Collapse
Affiliation(s)
- Angelika Kaiser
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Erick Torres Ceja
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Yujia Liu
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Florian Huber
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Raphael Müller
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| | - Ulrich Herr
- Institute of Functional Nanosystems, Ulm University, D-89069 Ulm, Germany
| | - Klaus Thonke
- Institute of Quantum Matter/Semiconductor Physics Group, Ulm University, D-89069 Ulm, Germany
| |
Collapse
|
15
|
Recent Progress of Toxic Gas Sensors Based on 3D Graphene Frameworks. SENSORS 2021; 21:s21103386. [PMID: 34067948 PMCID: PMC8152072 DOI: 10.3390/s21103386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/08/2021] [Accepted: 05/08/2021] [Indexed: 01/02/2023]
Abstract
Air pollution is becoming an increasingly important global issue. Toxic gases such as ammonia, nitrogen dioxide, and volatile organic compounds (VOCs) like phenol are very common air pollutants. To date, various sensing methods have been proposed to detect these toxic gases. Researchers are trying their best to build sensors with the lowest detection limit, the highest sensitivity, and the best selectivity. As a 2D material, graphene is very sensitive to many gases and so can be used for gas sensors. Recent studies have shown that graphene with a 3D structure can increase the gas sensitivity of the sensors. The limit of detection (LOD) of the sensors can be upgraded from ppm level to several ppb level. In this review, the recent progress of the gas sensors based on 3D graphene frameworks in the detection of harmful gases is summarized and discussed.
Collapse
|
16
|
Yaqoob U, Younis MI. Chemical Gas Sensors: Recent Developments, Challenges, and the Potential of Machine Learning-A Review. SENSORS (BASEL, SWITZERLAND) 2021; 21:2877. [PMID: 33923937 PMCID: PMC8073537 DOI: 10.3390/s21082877] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 02/04/2023]
Abstract
Nowadays, there is increasing interest in fast, accurate, and highly sensitive smart gas sensors with excellent selectivity boosted by the high demand for environmental safety and healthcare applications. Significant research has been conducted to develop sensors based on novel highly sensitive and selective materials. Computational and experimental studies have been explored in order to identify the key factors in providing the maximum active location for gas molecule adsorption including bandgap tuning through nanostructures, metal/metal oxide catalytic reactions, and nano junction formations. However, there are still great challenges, specifically in terms of selectivity, which raises the need for combining interdisciplinary fields to build smarter and high-performance gas/chemical sensing devices. This review discusses current major gas sensing performance-enhancing methods, their advantages, and limitations, especially in terms of selectivity and long-term stability. The discussion then establishes a case for the use of smart machine learning techniques, which offer effective data processing approaches, for the development of highly selective smart gas sensors. We highlight the effectiveness of static, dynamic, and frequency domain feature extraction techniques. Additionally, cross-validation methods are also covered; in particular, the manipulation of the k-fold cross-validation is discussed to accurately train a model according to the available datasets. We summarize different chemresistive and FET gas sensors and highlight their shortcomings, and then propose the potential of machine learning as a possible and feasible option. The review concludes that machine learning can be very promising in terms of building the future generation of smart, sensitive, and selective sensors.
Collapse
Affiliation(s)
| | - Mohammad I. Younis
- Department of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia;
| |
Collapse
|
17
|
Zhou Y, Wang Y, Wang Y, Li X. Humidity-Enabled Ionic Conductive Trace Carbon Dioxide Sensing of Nitrogen-Doped Ti 3C 2T x MXene/Polyethyleneimine Composite Films Decorated with Reduced Graphene Oxide Nanosheets. Anal Chem 2020; 92:16033-16042. [PMID: 33237743 DOI: 10.1021/acs.analchem.0c03664] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Continuous emission of carbon dioxide gas (CO2) poses a significant effect on ambient environment, crop production, and human health, necessitating further improvement of CO2 monitoring especially at low concentrations. To overcome the obstacles of elevated operation temperatures and faint response encountered by traditional CO2-sensitive materials such as metal oxides and perovskites, a nitrogen-doped MXene Ti3C2Tx (N-MXene)/polyethyleneimine (PEI) composite film decorated with reduced graphene oxide (rGO) nanosheets was initiatively leveraged in this work to detect 8-3000 ppm CO2 gas. Through subtle optimization in the aspects of componential constitutions, operation temperatures, PEI loading amounts, and relative humidity (RH), the ternary sensors with a PEI concentration of 0.01 mg/mL exhibited a reversible and superior performance over other counterparts under 62% RH at room temperature (20 °C). Apart from the inspiring detection limit of 8 ppm, favorable selectivity, repeatability, and long-term stability were demonstrated as well. During the humid CO2 sensing of the composites, few rGO nanosheets acted as an excellent conduction platform to transfer and collect charge carriers. Layered N-MXene offered more active sites for coadsorption of both CO2 and water, thereby facilitating the water-involving reactions. Rich amino groups of the PEI polymer were beneficial to bind CO2 molecules and thus induce appreciable density variation of charge carriers via proton-conduction behavior. This work initiatively offers an alternative ion-conduction strategy to detect ppm-level CO2 gas by harnessing rGO/N-MXene/PEI composites under a humid atmosphere at room temperature, simultaneously broadening the discrimination range of MXene-related gas sensing.
Collapse
Affiliation(s)
- Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yuhang Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xian Li
- Key Laboratory of Agricultural Information Service Technology of Ministry of Agriculture, Agricultural Information Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
18
|
Tohidi S, Parhizkar M, Bidadi H, Mohamad-Rezaei R. High-performance chemiresistor-type NH 3 gas sensor based on three-dimensional reduced graphene oxide/polyaniline hybrid. NANOTECHNOLOGY 2020; 31:415501. [PMID: 32554894 DOI: 10.1088/1361-6528/ab9daa] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this study, a novel gas sensor is proposed based on a three-dimensional reduced graphene oxide/polyaniline (3D RGO/PANI) hybrid, which is synthesized by a hydrothermal method for detecting NH3 gas at room temperature. The 3D RGO/PANI hybrid is characterized by field emission-scanning electron microscopy, Fourier transform infrared and x-ray diffraction. The specific surface area is analyzed using the Brunauer-Emmett-Teller (BET) equation. The as-synthesized sensing materials with an appropriate amount of polyaniline nanowires (PANI-NWs) can effectively prevent aggregation of the neighboring graphene sheets and directly act as adsorption sites for NH3 molecules. In comparison with its pure 3D RGO counterpart, the 3D RGO/PANI (1:1) hybrid exhibits 44.7 times enhanced response to 100 ppm NH3, suggesting the remarkable effect of PANI-NWs in improving the sensitivity. This work gives new insights into boosting the sensitivity and selectivity of detecting NH3 gas by incorporating PANI-NWs into 3D RGO.
Collapse
Affiliation(s)
- Somayeh Tohidi
- Department of Condensed Matter Physics, Faculty of Physics, University of Tabriz, Imam St., 29 Bahman Blvd., Tabriz, Iran
| | | | | | | |
Collapse
|
19
|
Cha GD, Lee WH, Lim C, Choi MK, Kim DH. Materials engineering, processing, and device application of hydrogel nanocomposites. NANOSCALE 2020; 12:10456-10473. [PMID: 32388540 DOI: 10.1039/d0nr01456g] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydrogels are widely implemented as key materials in various biomedical applications owing to their soft, flexible, hydrophilic, and quasi-solid nature. Recently, however, new material properties over those of bare hydrogels have been sought for novel applications. Accordingly, hydrogel nanocomposites, i.e., hydrogels converged with nanomaterials, have been proposed for the functional transformation of conventional hydrogels. The incorporation of suitable nanomaterials into the hydrogel matrix allows the hydrogel nanocomposite to exhibit multi-functionality in addition to the biocompatible feature of the original hydrogel. Therefore, various hydrogel composites with nanomaterials, including nanoparticles, nanowires, and nanosheets, have been developed for diverse purposes, such as catalysis, environmental purification, bio-imaging, sensing, and controlled drug delivery. Furthermore, novel technologies for the patterning of such hydrogel nanocomposites into desired shapes have been developed. The combination of such material engineering and processing technologies has enabled the hydrogel nanocomposite to become a key soft component of electronic, electrochemical, and biomedical devices. We herein review the recent research trend in the field of hydrogel nanocomposites, particularly focusing on materials engineering, processing, and device applications. Furthermore, the conclusions are presented with the scope of future research outlook, which also includes the current technical limitations.
Collapse
Affiliation(s)
- Gi Doo Cha
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Wang Hee Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Chanhyuk Lim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| | - Moon Kee Choi
- School of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea. and School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
| |
Collapse
|
20
|
Wu J, Wei Y, Ding H, Wu Z, Yang X, Li Z, Huang W, Xie X, Tao K, Wang X. Green Synthesis of 3D Chemically Functionalized Graphene Hydrogel for High-Performance NH 3 and NO 2 Detection at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20623-20632. [PMID: 32297738 DOI: 10.1021/acsami.0c00578] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To address the low gas sensitivity of pristine graphene (Gr), chemical modification of Gr has been proved as a promising route. However, the existing chemical functionalization method imposes the utilization of toxic chemicals, increasing the safety risk. Herein, vitamin C (VC)-modified reduced graphene hydrogel (V-RGOH) is synthesized via a green and facile self-assembly process with the assistance of biocompatible VC molecules for high-performance NH3 and NO2 detection. The three-dimensional (3D) structured V-RGOH is highly sensitive to low-concentration NH3 and NO2 at room temperature. In comparison with those of the unmodified RGOH, the V-RGOH gas sensors display an order of magnitude higher sensitivity and much lower limit of detection, resulting from the enhanced interaction between VC and analytes. NH3 and NO2 with extremely low concentrations of 500 and 100 ppb are detected experimentally. Notably, imbedded microheaters are exploited to explore the temperature-dependent gas sensing properties, revealing the negative and positive impacts of temperature on the sensitivity and recovery speed, respectively. Notably, the V-RGOH sensor exhibits remarkable selectivity and linearity and a wide detection range. This work reveals the remarkable effects of chemical modification with biodegradable molecules and 3D structure design on improving the gas sensing performance of the Gr material.
Collapse
Affiliation(s)
- Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Haojun Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhenyi Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Wenxi Huang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Kai Tao
- The Ministry of Education Key Laboratory of Micro and Nano Systems for Aerospace, Northwestern Polytechnical University, Xi'an 710072, China
| | - Xiaotian Wang
- School of Chemistry, Beihang University, Beijing 100191, China
| |
Collapse
|
21
|
Wu J, Wu Z, Ding H, Wei Y, Huang W, Yang X, Li Z, Qiu L, Wang X. Three-Dimensional Graphene Hydrogel Decorated with SnO 2 for High-Performance NO 2 Sensing with Enhanced Immunity to Humidity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:2634-2643. [PMID: 31894956 DOI: 10.1021/acsami.9b18098] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
A facile, one-step hydrothermal route was exploited to prepare SnO2-decorated reduced graphene oxide hydrogel (SnO2/RGOH) with three-dimensional (3D) porous structures for NO2 gas detection. Various material characterizations demonstrate the effective deoxygenation of graphene oxide and in situ growth of rutile SnO2 nanoparticles (NPs) on 3D RGOH. Compared with the pristine RGOH, the SnO2/RGOH displayed much lower limit of detection (LOD) and an order of magnitude higher sensitivity, revealing the distinct impact of SnO2 NPs in improving the NO2-sensing properties. An exceptional low theoretical LOD of 2.8 ppb was obtained at room temperature. The p-n heterojunction formed at the interface between RGOH and SnO2 facilitates the charge transfer, improving both the sensitivity in NO2 detection and the conductivity of hybrid material. Considering that existing SnO2/RGO-based NO2 sensors suffer from great vulnerability to humidity, here we employed integrated microheaters to effectively suppress the response to humidity, with nearly unimpaired response to NO2, which boosted the selectivity. Notably, a flexible NO2 sensor was constructed on a liquid crystal polymer substrate with endurance to mechanical deformation. This work indicates the feasibility of optimizing the gas-sensing performance of sensors by combining rational material hybridization, 3D structural engineering with temperature modulation.
Collapse
Affiliation(s)
- Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Haojun Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Wenxi Huang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zhenyi Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Qiu
- School of Energy and Environmental Engineering , University of Science and Technology Beijing , 100083 Beijing , P. R. China
| | - Xiaotian Wang
- School of Chemistry , Beihang University , 100191 Beijing , P. R. China
| |
Collapse
|
22
|
Li W, He L, Bai X, Liu L, Ikram M, Lv H, Ullah M, Khan M, Kan K, Shi K. Enhanced NO2 sensing performance of S-doped biomorphic SnO2 with increased active sites and charge transfer at room temperature. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00119h] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
S-Doped biomorphic SnO2 with active S-terminations and S–Sn–O chemical bonds has significantly improved gas sensing performance to NO2 at room temperature.
Collapse
|
23
|
Hu Y, Xie X, Sun C, Kou J. Assembling reduced graphene oxide hydrogel with controlled porous structures using cationic and anionic surfactants. NANOTECHNOLOGY 2019; 30:505602. [PMID: 31505473 DOI: 10.1088/1361-6528/ab432d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The roles of cationic and anionic surfactants in assembling reduced graphene oxide hydrogels (RGOHs) and controlling their porous structures are studied in this work. The mechanisms of the surfactant effects were studied by x-ray diffraction, Fourier transform infrared spectroscopy, x-ray photoelectron spectroscopy, and electrochemical methods. The morphology and structure of graphene oxide and RGOH were examined by atomic force microscopy, scanning electron microscopy, and transmission electron microscopy. The experimental results showed that surfactants could modify the structure of as-prepared RGOH but did not change the chemical or physical properties of the reduced graphene oxide (RGO) sheets. The modification was achieved by changing the orientation of graphene oxide sheets in aqueous solutions. It was also found that RGOH could not be prepared in the presence of high dosages of cationic surfactant because the RGO sheets were stacked piecewise with just one orientation and could not be cross-linked at any angle. The presence of an anionic surfactant did not affect the formation of RGOH but only enlarged the pores in its cross-linking structure. In addition, RGOHs prepared with anionic surfactants were found to have a higher specific capacitance compared to RGOHs prepared with cationic surfactants.
Collapse
Affiliation(s)
- Yang Hu
- School of Civil and Resources Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | | | | | | |
Collapse
|
24
|
Wu J, Wu Z, Ding H, Wei Y, Yang X, Li Z, Yang BR, Liu C, Qiu L, Wang X. Multifunctional and High-Sensitive Sensor Capable of Detecting Humidity, Temperature, and Flow Stimuli Using an Integrated Microheater. ACS APPLIED MATERIALS & INTERFACES 2019; 11:43383-43392. [PMID: 31709789 DOI: 10.1021/acsami.9b16336] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A multifunctional sensor comprising humidity, temperature, and flow detection capabilities is fabricated with a facile, single-layered device structure. A microheater based on serpentine Pt microlines plays key roles in both humidity and flow sensing at the hot state by introducing an efficient Joule heating effect, and meanwhile functions as a reliable thermistor at the cold state for accurate temperature measurement. For the first time, the strong temperature-dependent humidity-sensing properties of graphene oxide (GO) are revealed using the microheater platform. The GO-based humidity sensor displays ultrahigh sensitivity [124/% relative humidity (RH)], fast response time (3 s), wide detection range (8-95% RH) at room temperature, while the sensitivity drops at elevated temperatures, indicating the non-negligible temperature effect. Interestingly, a linear relationship between sensitivity and voltage is observed for the flow sensor, indicating the capability to manipulate sensitivity by conveniently modifying the voltage applied on the microheater. Because the three sensors work independently with distinguishable output signals, multiparametric sensing is enabled to monitor various human activities, such as respiration, noncontact sensation, and so forth. This work develops a simple, cost-effective, and useful multiparametric-sensing platform using a microheater for potential applications in the growing fields of internet of things, healthcare monitoring, and human-machine interfaces.
Collapse
Affiliation(s)
- Jin Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zixuan Wu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Haojun Ding
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Yaoming Wei
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Xing Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Zhenyi Li
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Bo-Ru Yang
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Chuan Liu
- State Key Laboratory of Optoelectronic Materials and Technologies and the Guangdong Province Key Laboratory of Display Material and Technology, School of Electronics and Information Technology , Sun Yat-sen University , Guangzhou 510275 , China
| | - Lin Qiu
- School of Energy and Environmental Engineering , University of Science and Technology Beijing , 100083 Beijing , P. R. China
| | - Xiaotian Wang
- School of Chemistry , Beihang University , 100191 Beijing , P. R. China
| |
Collapse
|