1
|
Sui B, Liu C, Sun Z, Zheng Y, Zhou W, Liu H. CRISPR/Cas12a-based transition state molecular switch for low-background detection of HPV-16 on a microfluidic platform. Int J Biol Macromol 2025; 311:143556. [PMID: 40306523 DOI: 10.1016/j.ijbiomac.2025.143556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025]
Abstract
Human papillomavirus type 16 (HPV-16) is a high-risk oncogenic subtype of HPV, strongly associated with the pathogenesis of multiple cancers. Researchers have developed many detection methods for HPV-16, among which, the detection method based on microfluidic has the characteristics of high efficiency and high sensitivity. However, non-specific adsorption remains a critical challenge, often leading to elevated background signals. Here, we propose an On-Chip assay integrated by transition state molecular switch based on CRISPR-Cas12a (OCTMS-CRISPR) for stable, sensitive, and low-background fluorescence detection of HPV-16. This system leverages a highly integrated molecular switch and Cas12a to perform dual-screening, while the dissociation products of the molecular switch activate trans-cleavage activity. Our data suggest that OCTMS-CRISPR suppresses background signals on microfluidic chip while maintaining the specificity and sensitivity of trans-cleavage. For demonstration, we detected five HPV subtypes and base mismatches at varying positions and quantities. The LOD can reach 7.64 pM (average fluorescence intensity) and 9.91fM (pixel counting), showing great potential in the field of biosensing and DNA chips.
Collapse
Affiliation(s)
- Boren Sui
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Chunhong Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Zhiwei Sun
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Yang Zheng
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Weijia Zhou
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| | - Haiyun Liu
- Institute for Advanced Interdisciplinary Research (iAIR), School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China.
| |
Collapse
|
2
|
Tan R, Wu J, Wang C, Zhao Z, Zhang X, Zhong C, Tang Z, Zheng R, Du B, He Y, Sun Y, Zhou P. The develop of persistent luminescence nanoparticles with excellent performances in cancer targeted bioimaging and killing: a review. J Nanobiotechnology 2025; 23:299. [PMID: 40247320 PMCID: PMC12007383 DOI: 10.1186/s12951-025-03350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Accepted: 03/23/2025] [Indexed: 04/19/2025] Open
Abstract
The use of fluorescent nanomaterials in tumor imaging and treatment effectively avoids the original limitations of traditional tumor clinical diagnostic methods. The PLNPs emitted persistent luminescence after the end of excitation light. Owing to their superior optical properties, such as a reduced laser irradiation dose, spontaneous fluorescence interference elimination, and near-infrared imaging, PLNPs show great promise in tumor imaging. Moreover, they also achieve excellent anti-tumor therapeutic effects through surface modification and drug delivery. However, their relatively large size and limited surface modification capacity limit their ability to kill tumors effectively enough for clinical applications. Thus, this article reviews the synthesis and modification of PLNPs and the research progress in targeted tumor imaging and tumor killing. We also discuss the challenges and prospects of their future applications in these fields. This review has value for accelerating the design of PLNPs based platform for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Rongshuang Tan
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Jianing Wu
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chunya Wang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zhengyan Zhao
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Xiaoyuan Zhang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Chang Zhong
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Zihui Tang
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Rui Zheng
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Binhong Du
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yunhan He
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China
| | - Yuhua Sun
- School of Stomatology, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
- Department of Stomatology, the Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Ping Zhou
- School and Hospital of Stomatology, Key Laboratory of Dental Maxillofacial Reconstruction & Biological Intelligence Manufacturing of Gansu Province, Lanzhou University, Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
3
|
Falabella R, De Simone V, Crocetto F, Del Giudice F, Porreca A, Foschi N, Barone B, Di Gianfrancesco L, Di Pasquale V, Caputo VF. New biomarkers for diagnosis of bladder cancer: a bibliometric analysis. Arch Ital Urol Androl 2025; 97:13396. [PMID: 39932162 DOI: 10.4081/aiua.2025.13396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Accepted: 12/07/2024] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND/OBJECTIVES Bladder cancer is a multifactorial disease, ranking as the 10th most common cancer globally and the fourth most common cancer in men and the ninth in women in the Western world. This bibliometric analysis aims to identify and evaluate scientific literature addressing new biomarkers for bladder cancer diagnosis, as well as to identify the most prolific organizations, authors, journals, countries, and keywords within this research domain. METHODS An electronic search was conducted using Elsevier's Scopus database. From a total of 940 retrieved papers (published between 2019 and 2024), 493 were selected. For data analysis and visualization, the titles of articles, year of publication, countries, authors, journals, articles, and keywords were analyzed using Microsoft Excel, VOSviewer, and Biblioshiny. RESULTS China published the most papers (200 articles) and received the highest number of citations, followed by the USA. While some countries, such as Egypt and India, published exclusively Single Country Publications (SCPs), others demonstrated a higher level of international collaboration, with at least half of their publications being Multi-Country Publications (MCPs). Countries with higher rates of MCPs were Greece (66.6%), Italy (53.8%), Korea, and France (50%). The journals that produced the most publications and received the highest number of citations were Cancers, International Journal of Molecular Sciences, and Frontiers in Oncology, confirming their role in producing high-impact research. CONCLUSIONS The consistent distribution of publications over the years considered indicates a sustained interest in this field.
Collapse
Affiliation(s)
| | | | - Felice Crocetto
- Unit of Urology, Department of Neurosciences, Reproductive science and Odontostomatology, Federico II University of Naples.
| | - Francesco Del Giudice
- Department of Maternal infant and Urological Sciences, Sapienza University of Rome, Policlinico Umberto 1 Hospital, Rome.
| | - Angelo Porreca
- Oncological Urology, Veneto Institute of Oncology (IOV) IRCCS, Padua.
| | - Nazario Foschi
- Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome.
| | - Biagio Barone
- Department of Urology, P.O. San Paolo, Asl Na1 Centro, Naples.
| | - Luca Di Gianfrancesco
- Oncological Urology, Veneto Institut of Oncology (IOV) IRCCS, Padua; Department of Urology, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome.
| | | | | |
Collapse
|
4
|
Yao C, Wang Q, Lu X, Chen X, Li Z. Hydrogel-Based Microdroplet Ensembles Encapsulating Multiplexed EXPAR Assays for Trichromic Digital Profiling of MicroRNAs and in-Depth Classification of Primary Urethral Cancers. NANO LETTERS 2024; 24:15861-15869. [PMID: 39585792 DOI: 10.1021/acs.nanolett.4c04898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The primary challenge in microarray-based biological analysis lies in achieving the sensitive and specific detection of single-molecule targets while ensuring high reproducibility. A user-friendly digital imaging platform has been developed for the encoded trichromic profiling of circulating microRNAs (miRNAs). This platform replaces the traditional exponential polymerase amplification reaction (EXPAR) conducted on the microliter scale with a system that confines the amplification process within thousands of femtoliter-sized microdroplet reactors, cross-linked from tetra-armed poly(ethylene glycol) acrylate (Tetra-PEGA) and poly(ethylene glycol) dithiol (HS-PEG-SH), thus offering significant advantages, including minimal sample input, enhanced reactivity, and simplified analytical procedures. The quantitative analysis relies on digital counting of fluorescently positive microdroplets, each containing an individual miRNA sequence. This approach significantly reduces nonspecific amplification and improves sensitivity by over 2 orders of magnitude. The system has shown great potential in differentiating between subtypes of primary urethral carcinoma, suggesting its practical application in routine cancer diagnostics through simple urinalysis.
Collapse
Affiliation(s)
- Chanyu Yao
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Qiang Wang
- Department of Radiology, Shenzhen University First Affiliated Hospital, Shenzhen, Guangdong 518000, People's Republic of China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| | - Xiaofeng Chen
- School of Life and Health Sciences, Hainan University, Haikou, Hainan 570228, People's Republic of China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen, Guangdong 518060, People's Republic of China
| |
Collapse
|
5
|
Lu Y, Xu J, Liu S, Tian B, Long F. A facile optical fiber-embedded microfluidic biochip for rapid and sensitive detection of microRNA-let-7a in serum. Mikrochim Acta 2024; 192:9. [PMID: 39641831 DOI: 10.1007/s00604-024-06865-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
A novel hybridization chain reaction (HCR) powered optical fiber-embedded microfluidic biochip (HCR-FMB) has been constructed for ultrafast and sensitive detection of lethal-7a (let-7a) in serum. By integrating HCR, fluorescence energy resonant transfer, and evanescent wave fluorescence principle, the HCR-FMB enables detecting let-7a with satisfactory limit of detection of 100.0 pM within 6 min at room temperature, and demonstrates excellent specificity. The HCR-FMB can directly detect let-7a in serum with high sensitivity and without any pre-treatment, and good recoveries were observed for let-7a in serum samples, demonstrating their potential application to the analysis of serum samples. The HCR-FMB exhibits several advantages, including rapidity, enzyme-free, miniaturization, ease-of-operation, field-deployment applicability, minimal-equipment, and cost-effectiveness. The HCR-FMB can be considered a revolutionary detection device that rapidly adapts and deploys in various settings, especially in low medical resource regions.
Collapse
Affiliation(s)
- Yongkai Lu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Jiaxin Xu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Siyan Liu
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Baochun Tian
- Beijing Daxing Xinkang Hospital, Beijing, 102600, China
| | - Feng Long
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China.
| |
Collapse
|
6
|
Tian Z, Luo J, Zhang C, Li Y, Hu S, Li Y. Photonic crystal-enhanced fluorescence biosensor with logic gate operation based on one-pot cascade amplification DNA circuit for enzyme-free and ultrasensitive analysis of two microRNAs. Talanta 2024; 277:126428. [PMID: 38897009 DOI: 10.1016/j.talanta.2024.126428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/18/2024] [Accepted: 06/13/2024] [Indexed: 06/21/2024]
Abstract
The development of sensitive and efficient analytical methods for multiple biomarkers is crucial for cancer screening at early stage. MicroRNAs (miRNAs) are a kind of biomarkers with diagnostic potential for cancer. However, the ultrasensitive and logical analysis of multiple miRNAs with simple operation still faces some challenges. Herein, a photonic crystal (PC)-enhanced fluorescence biosensor with logic gate operation based on one-pot cascade amplification DNA circuit was developed for enzyme-free and ultrasensitive analysis of two cancer-related miRNAs. The fluorescence biosensor was performed by biochemical recognition amplification module (BCRAM) and physical enhancement module (PEM) to achieve logical and sensitive detection. In the BCRAM, one-pot cascade amplification circuit consisted of the upstream parallel entropy-driven circuit (EDC) and the downstream shared catalytic hairpin assembly (CHA). The input of target miRNA would trigger each corresponding EDC, and the parallel EDCs released the same R strand for triggering subsequent CHA; thus, the OR logic gate was obtained with minimization of design and operation. In the PEM, photonic crystal (PC) array was prepared easily for specifically enhancing the fluorescence output from BCRAM by the optical modulation capabilities; meanwhile, the high-throughput signal readout was achieved by microplate analyzer. Benefiting from the integrated advantages of two modules, the proposed biosensor achieved ultrasensitive detection of two miRNAs with easy logic gate operation, obtaining the LODs of 8.6 fM and 6.7 fM under isothermal and enzyme-free conditions. Hence, the biosensor has the advantages of high sensitivity, easy operation, multiplex and high-throughput analysis, showing great potential for cancer screening at early stage.
Collapse
Affiliation(s)
- Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Jie Luo
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Chuyan Zhang
- Precision Medicine Center, Medical Equipment Innovation Research Center, Med-X Center for Manufacturing, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongru Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Shunming Hu
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
7
|
Cheng K, Wan S, Yang JW, Chen SY, Wang HL, Xu CH, Qiao SH, Li XR, Li Y. Applications of Biosensors in Bladder Cancer. Crit Rev Anal Chem 2024:1-20. [PMID: 38978228 DOI: 10.1080/10408347.2024.2373923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Bladder cancer (BC) is the tenth most common cancer globally, predominantly affecting men. Early detection and treatment are crucial due to high recurrence rates and poor prognosis for advanced stages. Traditional diagnostic methods like cystoscopy and imaging have limitations, leading to the exploration of noninvasive methods such as liquid biopsy. This review highlights the application of biosensors in BC, including electrochemical and optical sensors for detecting tumor markers like proteins, nucleic acids, and other biomolecules, noting their clinical relevance. Emerging therapeutic approaches, such as antibody-drug conjugates, targeted therapy, immunotherapy, and gene therapy, are also explored, the role of biosensors in detecting corresponding biomarkers to guide these treatments is examined. Finally, the review addresses the current challenges and future directions for biosensor applications in BC, highlighting the need for large-scale clinical trials and the integration of advanced technologies like deep learning to enhance diagnostic accuracy and treatment efficacy.
Collapse
Affiliation(s)
- Kun Cheng
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Shun Wan
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Jian-Wei Yang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Si-Yu Chen
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Hai-Long Wang
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Chang-Hong Xu
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Si-Hang Qiao
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Xiao-Ran Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| | - Yang Li
- Department of Urology, Lanzhou University Second Hospital, Lanzhou, P.R. China
- Gansu Province Clinical Research Center for Urology, Lanzhou, P.R. China
| |
Collapse
|
8
|
Yao C, Liu X, Lu X, Wang L, Jia J, Li Z. Smartphone-Based Fluorescent Profiling of Quaternary MicroRNAs in Urine for Rapid Diagnosis of Urological Cancers Using a Multiplexed Isothermal Exponential Amplification Reaction. Anal Chem 2024; 96:419-426. [PMID: 38152877 DOI: 10.1021/acs.analchem.3c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Urological cancers such as bladder or prostate cancer represent one of the most malignant tumors that accounts for an extremely high mortality. However, conventionally standard diagnostics for urological cancers are hardly available in low-resource settings. We developed herein a hand-held fluorescent imaging platform by integrating a multiplexed isothermal exponential amplification reaction (EXPAR) with a microgel-enriched methodology for sensitive profiling of quaternary microRNAs (miRNAs) in urine and quick diagnosis of urological cancers at the early stage. The target miRNA mixtures in the urine underwent four parallel EXPARs without cross-reactivity, followed by surface concentration and hybridization by the encoded polyacrylamide microgels. This mix-and-read strategy allowed for one-pot analysis of several key miRNAs simultaneously and provided 5-fold enhancement in fluorescent detection sensitivities compared to the individual EXPAR-based assays. Four urinary miRNAs (let-7a, miRNA-155, -223, and -143) could be quantitatively determined in a wide linear range from 50 fM to 30 nM, with the limits of detection at femtomolar levels. Using a smartphone-based imaging microreader, healthy and cancerous cohorts with prostate, bladder, and renal cell cancers could be discriminated in 30 min with the accuracy >83% using linear discriminant analysis. The developed detection platform has proven to be a portable, noninvasive, and useful complement to the toolbox for miRNA-based liquid biopsies, which holds immense potential and advantage for regular and large-scale applications in early cancer diagnosis.
Collapse
Affiliation(s)
- Chanyu Yao
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Xueliang Liu
- School of Basic Medical Sciences, Xinxiang Medical University, 601 Jinsui Road, Xinxiang, Henan 453003, P. R. China
| | - Xiaohui Lu
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| | - Lei Wang
- Department of Urology, Xinxiang Central Hospital, Xinxiang Medical College, 56 Jinsui Road, Xinxiang, Henan 453003, P. R. China
| | - Jia Jia
- Department of Anesthesiology and Perioperative Medicine, Zhengzhou University People's Hospital, Zhengzhou, Henan 450003, P. R. China
| | - Zheng Li
- Institute for Advanced Study, Shenzhen University, 3688 Nanhai Road, Shenzhen, Guangdong 518060, P. R. China
| |
Collapse
|
9
|
Li H, Qu H, Zhang X, Chen M, Wang J. Coordination-assembled phosphorescent microstructure from RTP HOF and Eu 3+-doping ZGO:Mn phosphors for cancer biomarker amplification detection and information encryption. J Colloid Interface Sci 2024; 653:220-228. [PMID: 37713920 DOI: 10.1016/j.jcis.2023.09.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/21/2023] [Accepted: 09/08/2023] [Indexed: 09/17/2023]
Abstract
The ultra-long room temperature phosphorescent hydrogen-bonded organic framework (RTP HOF) materials can achieve long afterglow via ligand hydrogen bond interaction and water implement to suppress the non-radiative decays by matrices rigidification, and its electron donor conjugated structure is first developed as a phosphorescent quencher. The Eu3+/Mn2+ co-doped Zn2GeO4 phosphors (ZGO:Mn, Eu) with abundant metal sites and enhanced phosphorescence were synthesized as response factors and electron acceptors, combined with RTP HOFs to form microstructures featuring multi-color modulation, as an high-level anti-counterfeiting platform and lysophosphatidic acid (LPA) detection unit. LPA is an ideal plasma biomarker for early diagnosis of ovarian and other gynecologic cancers. This detection strategy relies on the differential coordination substitution to restore ZGO:Mn, Eu phosphorescence through synergistic coordination of LPA and the hydrophobic assistance of LPA, and dual functional groups identification of LPA achieve specific detection at the nanomolar level. The anti-counterfeiting platform can fetch specific information by controlling the afterglow distinction and excited light from ZGO:Mn, Eu and RTP HOF. This study not only provides a typical case of the preparation of two phosphors with heterogeneous optical properties, but also expands the application field of combined phosphors as intelligent luminescent materials.
Collapse
Affiliation(s)
- Haiyan Li
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Hongli Qu
- Analytical and Testing Center, Northeastern University, Box 115, Shenyang 110819, China
| | - Xinyue Zhang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Mingli Chen
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China; Analytical and Testing Center, Northeastern University, Box 115, Shenyang 110819, China.
| | - Jianhua Wang
- Department of Chemistry, Research Center for Analytical Sciences, College of Sciences, Northeastern University, Box 332, Shenyang 110819, China.
| |
Collapse
|
10
|
Gao L, Chen R, Li H, Xu D, Zheng D. Time-resolved fluorescence nanoprobe of acetylcholinesterase based on ZnGeO:Mn luminescence nanorod modified with metal ions. Anal Bioanal Chem 2023; 415:7047-7055. [PMID: 37889311 DOI: 10.1007/s00216-023-05007-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/28/2023]
Abstract
A novel time-resolved fluorescence nanoprobe (PBMO, PLNR-BSA-Mn2+-OPD) is fabricated for the label-free determination of acetylcholinesterase (AChE). The ZnGeO:Mn persistent luminescence nanorod (PLNR) and Mn(II) are, respectively, exploited as the signal molecule and quencher to construct the PBMO nanopobe using bovine serum albumin (BSA) as the surface-modified shell and o-phenylenediamine (OPD) as the reducing agent. In the presence of H2O2, the persistent luminescence of PBMO at 530 nm is enhanced remarkably within 30 s due to the oxidation of Mn(II). H2O2 can react with thiocholine (TCh), which is produced through the enzymatic degradation of acetylcholine (ATCh) by AChE. The PBMO nanoprobe is successfully applied to the determination of AChE in the linear range of 0.08-10 U L-1, with a detection limit of 0.03 U L-1 (3σ/s). The practicability of this PBMO nanoprobe is confirmed by accurately monitoring AChE contents in human serum samples, giving rise to satisfactory spiking recoveries of 96.2-103.6%.
Collapse
Affiliation(s)
- Lifang Gao
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| | - Rong Chen
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Haixia Li
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Dan Xu
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China
| | - Danning Zheng
- School of Pharmacy, Hainan Medical University, Haikou, 571199, China.
| |
Collapse
|
11
|
Sun M, Chen M, Wang J. Perspective and Prospects on persistent luminescent nanoparticles for biological imaging and tumor therapy. Curr Med Chem 2023; 31:CMC-EPUB-129402. [PMID: 36809957 DOI: 10.2174/0929867330666230210093411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/07/2022] [Accepted: 12/16/2022] [Indexed: 02/17/2023]
Abstract
Persistent luminescent nanoparticles (PLNPs) are photoluminescent materials that can still emit luminescence after the cessation of the excitation light source. In recent years, due to their unique optical properties, the PLNPs have attracted extensive attention in the biomedical field. Since the PLNPs effectively eliminate autofluorescence interference from biological tissues, many researchers have contributed a lot of work in the fields of biological imaging and tumor therapy. This article mainly introduces the synthesis methods of the PLNPs and their progress in the application of biological imaging and tumor therapy, as well as the challenges and development prospects.
Collapse
Affiliation(s)
- Minghui Sun
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Ming Chen
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| | - Jun Wang
- Department of Clinical Laboratory Medicine, Southwest Hospital, Army Medical University, 30 Gaotanyan, Shapingba District, Chongqing 400038, China
| |
Collapse
|
12
|
Li T, Li X, Zheng Y, Zhu P, Zhang C, Zhang K, Xu JJ. Phosphorescent Carbon Dots as Long-Lived Donors To Develop an Energy Transfer-Based Sensing Platform. Anal Chem 2023; 95:2445-2451. [PMID: 36652380 DOI: 10.1021/acs.analchem.2c04639] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Employing long-lived luminescent materials to design a chemical sensing platform can eliminate real-time excitation and background fluorescence. However, the realization of long-lived emissions in aqueous media was limited to transition-metal complexes, doped quantum dots, organic crystals, and inorganic persistent phosphors, which suffer from the drawbacks of large size, expensive elements, and poor dispersibility. In this work, phosphorescent carbon dots (CDs) were covalently immobilized in a silica matrix (CDs@SiO2) to achieve afterglow emission in an aqueous dispersion. CDs@SiO2 with long lifetime (∼1.6 s) was utilized as an energy donor to fabricate nonradiative energy transfer systems with various organic dyes through the surface micelle self-assembly method. Benefiting from the high energy transfer efficiency between CDs@SiO2 and organic dyes, multicolor afterglow emissions were successfully obtained in aqueous media. As a proof of concept, a ratiometric phosphorescent probe using CDs@SiO2 as a donor and Hg2+-responsive rhodamine derivative as an acceptor was designed. Hg2+ triggered the energy transfer process between the donor-acceptor pair, leading to the sensitive detection of Hg2+ ions. The work presented here provides opportunities to develop chemical sensors with low background interferences and easily recognizable signals.
Collapse
Affiliation(s)
- Taotao Li
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan, Anhui243032, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan, Anhui243032, China
| | - Yu Zheng
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan, Anhui243032, China
| | - Pan Zhu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan, Anhui243032, China
| | - Cheng Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan, Anhui243032, China
| | - Kui Zhang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization, Anhui University of Technology, Maanshan, Anhui243032, China
| | - Jing-Juan Xu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu210023, China
| |
Collapse
|
13
|
Chen D, Chen N, Liu F, Wang Y, Liang H, Yang Y, Yuan Q. Flexible Point-of-Care Electrodes for Ultrasensitive Detection of Bladder Tumor-Relevant miRNA in Urine. Anal Chem 2023; 95:1847-1855. [PMID: 36607132 DOI: 10.1021/acs.analchem.2c03156] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Portable point-of-care testing (POCT) is currently drawing enormous attention owing to its great potential for disease diagnosis and personal health management. Electrochemical biosensors, with the intrinsic advantages of cost-effectiveness, fast response, ease of miniaturization, and integration, are considered as one of the most promising candidates for POCT application. However, the clinical application of electrochemical biosensors-based POCT is hindered by the decreased detection sensitivity due to the low abundance of disease-relevant biomolecules in extremely complex biological samples. Herein, we construct a flexible electrochemical biosensor based on single-stranded DNA functionalized single-walled carbon nanotubes (ssDNA-SWNTs) for high sensitivity and stability detection of miRNA-21 in human urine to achieve bladder cancer (BCa) diagnosis and classification. The ssDNA-SWNT electrodes with a 2D interconnected network structure exhibit a high electrical conductivity, thus enabling the ultrasensitive detection of miRNA-21 with a detection limit of 3.0 fM. Additionally, the intrinsic flexibility of ssDNA-SWNT electrodes endows the biosensors with the capability to achieve high stability detection of miRNA-21 even under large bending deformations. In a cohort of 40 BCa patients at stages I-III and 44 negative control samples, the constructed ssDNA-SWNT biosensors could detect BCa with a 92.5% sensitivity, an 88.6% specificity, and classify the cancer stages with an overall accuracy of 81.0%. Additionally, the flexible ssDNA-SWNT biosensors could also be utilized for treatment efficiency assessment and cancer recurrence monitoring. Owing to their excellent sensitivity and stability, the designed flexible ssDNA-SWNT biosensors in this work propose a strategy to realize point-of-care detection of complex clinical samples to achieve personalized healthcare.
Collapse
Affiliation(s)
- Duo Chen
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Na Chen
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Fangning Liu
- Urology Department, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan 430000, P. R. China
| | - Yiming Wang
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Huageng Liang
- Urology Department, Union Hospital, Tongji Medical College of Huazhong Science and Technology University, Wuhan 430000, P. R. China
| | - Yanbing Yang
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
| | - Quan Yuan
- College of Chemistry and Molecular Sciences, School of Microelectronics, Wuhan University, Wuhan 430072, P. R. China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
14
|
Song FX, Xu X, Ding H, Yu L, Huang H, Hao J, Wu C, Liang R, Zhang S. Recent Progress in Nanomaterial-Based Biosensors and Theranostic Nanomedicine for Bladder Cancer. BIOSENSORS 2023; 13:106. [PMID: 36671940 PMCID: PMC9855444 DOI: 10.3390/bios13010106] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/29/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Bladder cancer (BCa) is one of the most expensive and common malignancies in the urinary system due to its high progression and recurrence rate. Although there are various methods, including cystoscopy, biopsy, and cytology, that have become the standard diagnosis methods for BCa, their intrinsic invasive and inaccurate properties need to be overcome. The novel urine cancer biomarkers are assisted by nanomaterials-based biosensors, such as field-effect transistors (FETs) with high sensitivity and specificity, which may provide solutions to these problems. In addition, nanomaterials can be applied for the advancement of next-generation optical imaging techniques and the contrast agents of conventional techniques; for example, magnetic resonance imaging (MRI) for the diagnosis of BCa. Regarding BCa therapy, nanocarriers, including mucoadhesive nanoparticles and other polymeric nanoparticles, successfully overcome the disadvantages of conventional intravesical instillation and improve the efficacy and safety of intravesical chemotherapy for BCa. Aside from chemotherapy, nanomedicine-based novel therapies, including photodynamic therapy (PDT), photothermal therapy (PTT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), and combination therapy, have afforded us new ways to provide BC therapy and hope, which can be translated into the clinic. In addition, nanomotors and the nanomaterials-based solid tumor disassociation strategy provide new ideas for future research. Here, the advances in BCa diagnosis and therapy mentioned above are reviewed in this paper.
Collapse
Affiliation(s)
- Fan-Xin Song
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Xiaojian Xu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Hengze Ding
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Le Yu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Haochen Huang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Jinting Hao
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Chenghao Wu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China
- College of Nano Science & Technology (CNST), Soochow University, Suzhou 215123, China
| | - Rui Liang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Shaohua Zhang
- Department of Urology, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
- Department of Urology, The Affiliated South China Hospital of Shenzhen University, Shenzhen University, Shenzhen 518000, China
| |
Collapse
|
15
|
Singh S, Podder PS, Russo M, Henry C, Cinti S. Tailored point-of-care biosensors for liquid biopsy in the field of oncology. LAB ON A CHIP 2022; 23:44-61. [PMID: 36321747 DOI: 10.1039/d2lc00666a] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In the field of cancer detection, technologies to analyze tumors using biomarkers circulating in fluids such as blood have developed rapidly based on liquid biopsy. A proactive approach to early cancer detection can lead to more effective treatments with minimal side effects and better long-term patient survival. However, early detection of cancer is hindered by the existing limitations of conventional cancer diagnostic methods. To enable early diagnosis and regular monitoring and improve automation, the development of integrated point-of-care (POC) and biosensors is needed. This is expected to fundamentally change the diagnosis, management, and monitoring of response to treatment of cancer. POC-based techniques will provide a way to avoid complications that occur after invasive tissue biopsy, such as bleeding, infection, and pain. The aim of this study is to provide a comprehensive view of biosensors and their clinical relevance in oncology for the detection of biomarkers with liquid biopsies of proteins, miRNA, ctDNA, exosomes, and cancer cells. The preceding discussion also illustrates the changing landscape of liquid biopsy-based cancer diagnosis through nanomaterials, machine learning, artificial intelligence, wearable devices, and sensors, many of which apply POC design principles. With the advent of sensitive, selective, and timely detection of cancer, we see the field of POC technology for cancer detection and treatment undergoing a positive paradigm shift in the foreseeable future.
Collapse
Affiliation(s)
- Sima Singh
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
| | - Pritam Saha Podder
- Department of Pharmacy, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
| | - Matt Russo
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Charles Henry
- Department of Chemistry, Colorado State University, Fort Collins, CO, 80523-1872, USA
| | - Stefano Cinti
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy.
- BAT Center-Interuniversity Center for Studies on Bioinspired Agro-Environmental Technology, University of Napoli Federico II, 80055 Naples, Italy
| |
Collapse
|
16
|
Feng Y, Chen T, Rao Q, Xie X, Zhang L, Lv Y. Time-Resolved Persistent Luminescence Encoding for Multiplexed Severe Acute Respiratory Syndrome Coronavirus 2 Detection. Anal Chem 2022; 94:16967-16974. [DOI: 10.1021/acs.analchem.2c04788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Yang Feng
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Tingyan Chen
- College of Mathematics, Sichuan University, Chengdu, Sichuan610064, China
| | - Qianli Rao
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Xiaobo Xie
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan610064, China
| |
Collapse
|
17
|
Liu Z, Yang Y. Ginkgolide A Participates in LPS-Induced PMVEC Injury by Regulating miR-224 and Inhibiting p21 in a Targeted Manner. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:6384334. [PMID: 36134118 PMCID: PMC9482518 DOI: 10.1155/2022/6384334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/04/2022]
Abstract
Most studies have focused on the protective effects of ginkgolide A against ischemia/reperfusion-induced cardiomyopathy and injury of the brain, liver, and other organs, but there are few reports about the protection of lung tissues. This study was designed to clarify the protection of ginkgolide A against lipopolysaccharide (LPS)-induced pulmonary microvascular endothelial cell (PMVEC) injury. PMVECs were extracted and fell into control, LPS, and ginkgolide A groups. Next, we delved into the growth activity and apoptosis rate of cells via the CCK-8 assay and Hoechst staining, independently. Beyond that, western blotting (WB) was implemented for measurement of the expressions of cyclin D1, cyclin-dependent kinase 4 (CDK4), and CDK inhibitor (p21) that pertained to the cell cycle. The target sites of ginkgolide A were confirmed by miRNA array and real-time quantitative PCR. The relationship between miR-224 and p21 was analyzed using dual-luciferase reporter gene assay. Compared with the control group, the LPS group and ginkgolide A group had significantly decreased cell growth activity and relative expressions of cyclin D1 and CDK4 and elevated apoptosis rate and p21 expression. Pronounced elevations were observable in the cell growth activity and expressions of cyclin D1, CDK4, and p21, while the ginkgolide A group presented with a reduced apoptosis rate in comparison with the LPS group (P < 0.05). MiR-224 was the target of ginkgolide A, which had targeted regulatory effects on p21. Ginkgolide A can modulate miR-224 expression and regulate p21 expression in a targeted manner to enhance the resistance of PMVECs to LPS-induced cell apoptosis.
Collapse
Affiliation(s)
- Zhonglin Liu
- Department of Traditional Chinese Medicine, Affiliated Nanhua Hospital University of South China, Hengyang 421000, Hunan, China
| | - Yan Yang
- Department of Pain Medicine, Affiliated Nanhua Hospital University of South China, Hengyang 421000, Hunan, China
| |
Collapse
|
18
|
Caratelli V, Moccia M, Paggioro FR, Fiore L, Avitabile C, Saviano M, Imbriani AL, Dardano P, De Stefano L, Moscone D, Colabufo NA, Ghafir El Idrissi I, Russo F, Riezzo G, Giannelli G, Arduini F. Liquid Biopsy beyond Cancer: A miRNA Detection in Serum with Electrochemical Chip for Non‐Invasive Coeliac Disease Diagnosis. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Veronica Caratelli
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Maria Moccia
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Francesca R. Paggioro
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Luca Fiore
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Concetta Avitabile
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Michele Saviano
- Institute of Crystallography National Research Council (CNR) Via G. Amendola 122/O 70126 Bari Italy
| | - Anna Lisa Imbriani
- Biochemical Systems International S.p.A. Loc, Palazzo del Pero, 23 52100 Arezzo Italy
| | - Principia Dardano
- Department of Physical Sciences and Matter Technology Institute for Applied Science and Intelligent Systems National Research Council Via Pietro Castellino 111 80131 Napoli Italy
| | - Luca De Stefano
- Department of Physical Sciences and Matter Technology Institute for Applied Science and Intelligent Systems National Research Council Via Pietro Castellino 111 80131 Napoli Italy
| | - Danila Moscone
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
| | - Nicola A. Colabufo
- Department of Pharmacy-Pharmaceutical Science University of Bari Aldo Moro Via Orabona 4 70125 Bari Italy
- Biofordrug S.R.L Spin-off of the University of Bari Aldo Moro Via Dante 99, Triggiano 70019 Bari Italy
| | - Imane Ghafir El Idrissi
- Department of Pharmacy-Pharmaceutical Science University of Bari Aldo Moro Via Orabona 4 70125 Bari Italy
- Biofordrug S.R.L Spin-off of the University of Bari Aldo Moro Via Dante 99, Triggiano 70019 Bari Italy
| | - Francesco Russo
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Giuseppe Riezzo
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Gianluigi Giannelli
- National Institute of Gastroenterology “S. de Bellis” Research Hospital Castellana Grotte 70013 Bari Italy
| | - Fabiana Arduini
- Department of Chemical Science and Tecnologies University of Rome “Tor Vergata” Via della Ricerca Scientifica 00133 Rome Italy
- SENSE4MED S.R.L. Via della ricerca scientifica 00133 Rome Italy
| |
Collapse
|
19
|
Wang J, Qian B, Wang T, Ma Y, Lin H, Zhang Y, Lv H, Zhang X, Hu Y, Xu S, Liu F, Li H, Jiang Z. Nontoxic Tb 3+-induced hyaluronic nano-poached egg aggregates for colorimetric and luminescent detection of Fe 3+ ions. RSC Adv 2022; 12:22285-22294. [PMID: 36043088 PMCID: PMC9366763 DOI: 10.1039/d2ra03871d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/27/2022] [Indexed: 11/21/2022] Open
Abstract
This study demonstrates that a luminescent Tb3+ complex with green emission can be complexed with hyaluronic (hya) to form nanoparticles. The structure of complexation is composed of a Tb(acac)2phen core with a hya surface, similar to those of the nano-poached eggs. What makes the structure unique is that Tb(acac)2phen and hya are connected by chemical bonds. To confirm their utility, we illustrate that the luminescence is rapidly and selectively quenched in the presence of Fe3+. Initial cytotoxicity experiments with human liver carcinoma cells show that the luminescent lanthanide complexes are cytotoxic, however, complexing lanthanides to hya renders them cytocompatible. The new complex integrates the advantages of superior lanthanide luminescence, the unique shape of nano-poached eggs, compatibility with aqueous systems, and cytocompatibility. Tb3+-induced hyaluronic nano-poached eggs (THNE) can, therefore, be used for Fe3+ detection in aqueous systems. The original Tb3+-induced hyaluronic nano-poached eggs (THNE) integrates the advantages of superior lanthanide luminescence, the unique shape of nano-poached eggs, and non-toxicity, for the sensing of Fe3+ in aqueous surroundings.![]()
Collapse
Affiliation(s)
- Jing Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Bei Qian
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University Qingdao 266109 China
| | - Tao Wang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Yanyan Ma
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Haitao Lin
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Yimeng Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Hongmin Lv
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Xiaonan Zhang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Yimeng Hu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Shanshan Xu
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| | - Fengchen Liu
- Shandong Technological Center of Oceanographic Instrumentation Co., Ltd 37 Miaoling Road Qingdao 266061 P. R. China
| | - Huiling Li
- Innovation and Development Institute of Shangdong Province Jinan 250101 P. R. China
| | - Zike Jiang
- Institute of Oceanographic Instrumentation, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Marine Monitoring Instrument Equipment Technology, National Engineering and Technological Research Center of Marine Monitoring Equipment 37 Miaoling Road Qingdao 266061 P. R. China
| |
Collapse
|
20
|
Liu R, Hu JJ, Wu X, Hu Q, Jiang W, Zhao Z, Xia F, Lou X. Precisely Detecting the Telomerase Activities by an AIEgen Probe with Dual Signal Outputs after Cell-Cycle Synchronization. Anal Chem 2022; 94:4874-4880. [PMID: 35276037 DOI: 10.1021/acs.analchem.2c00583] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
By maintaining the telomere lengths, telomerase can make the tumor cells avoid the apoptosis, thus, achieving the cell immortalization. In the past, a series of telomerase detection systems have been developed through utilizing the unique characteristic of telomerase extended primer. However, fluctuation of telomerase activity, along with the cell cycle progression, leads to ambiguous detection results. Here, we reported a dual signal output detection strategy based on cell-cycle synchronization for precisely detecting telomerase activities by using a new AIEgen probe SSNB. Experimental and simulating calculation results demonstrated that positively charged SSNB could interact with DNA through the electrostatic interaction and π-π interaction, as well as the hydrogen bonds. The aggregation of SSNB caused by the extended template strand primer (TP) could be observed in tumor cells, thus, indicating the telomerase activity in various cell lines. Furthermore, after cell cycle synchronization, it was found that the telomerase activity in the S phase was the highest, no matter from the fluorescence intensity or the ROS generation situation. Dual signal outputs of SSNB verified the significance and necessity of cell-cycle synchronization detection for telomerase activity. This strategy could open a new window for the biotargets of which activity is variational in time dimension.
Collapse
Affiliation(s)
- Rui Liu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Jing-Jing Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Xia Wu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Qinyu Hu
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Wenlian Jiang
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China.,Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430078, China
| |
Collapse
|
21
|
Wang X, Wang Y, Chen S, Fu P, Lin Y, Ye S, Long Y, Gao G, Zheng J. A persistent luminescence resonance energy transfer-based molecular beacon probe for the highly sensitive detection of microRNA in biological samples. Biosens Bioelectron 2022; 198:113849. [PMID: 34861528 DOI: 10.1016/j.bios.2021.113849] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/12/2021] [Accepted: 11/25/2021] [Indexed: 12/30/2022]
Abstract
Herein, a time-resolved luminescence resonance energy transfer (TR-LRET) molecular beacon (MB) probe employing persistent luminescence nanoparticles (PLNPs) as the energy donors was first constructed, and further designed for microRNA21 (miR21) sensing. This probe (named as PLNPs-MB) was facilely fabricated by covalent bioconjugation between poly-(acrylic acid) (PAA) modified near-infrared (NIR) emissive PLNPs i.e. ZnGa2O4:Cr3+ and functionalized MB oligonucleotide (5'-NH2 and 3'-BHQ3). Accordingly, PLNPs and BHQ3 were in close proximity to each other, leading to the occurrence of LRET and obvious persistent luminescence (PL) quenching. In the presence of miR21, loop of the PLNP-MB was hybridized, accompanying BHQ3 away from PLNPs and the restraint of LRET process. As a result, PL of the PLNPs was recovered, which built the foundation of miR21 quantification. The probe provided a linear response range from 0.1 to 10 nM for miR21 detection. Quantification limit of this probe was competitive and about 1-2 orders of magnitude lower than that of other reported MB probes for nucleic acid. Moreover, the proposed probe was successfully adopted for miR21 detection in biological fluids (human serum, cell extraction). This work also provided a sensitive detection nanoplatform for other targets through modifying diverse MBs onto the surface of PLNPs.
Collapse
Affiliation(s)
- Xiuhua Wang
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China; Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuhui Wang
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| | - Shu Chen
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China
| | - Pan Fu
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Yuanbin Lin
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China
| | - Shuyuan Ye
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Yunfei Long
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan, 411201, PR China.
| | - Guosheng Gao
- Hwa Mei Hospital, University of Chinese Academy of Sciences, Ningbo, 315010, PR China
| | - Jianping Zheng
- Cixi Institute of Biomedical Engineering, Ningbo Institute of Materials Technology & Engineering, Chinese Academy of Sciences (CAS), Ningbo, 315300, PR China.
| |
Collapse
|
22
|
Monitoring of viral myocarditis injury using an energy-confined upconversion nanoparticle and nature-inspired biochip combined CRISPR/Cas12a-powered biosensor. Anal Chim Acta 2022; 1195:339455. [DOI: 10.1016/j.aca.2022.339455] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/22/2022]
|
23
|
Wu M, Zhang C, Tian Z, Xie Q, Lu X, Ning W, Li Y, Duan Y. A universal array platform for ultrasensitive, high-throughput and microvolume detection of heavy metal, nucleic acid and bacteria based on photonic crystals combined with DNA nanomachine. Biosens Bioelectron 2022; 197:113731. [PMID: 34768068 DOI: 10.1016/j.bios.2021.113731] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/19/2021] [Accepted: 10/23/2021] [Indexed: 01/07/2023]
Abstract
The development of a universal, sensitive, and rapid assay platform to achieve detections of heavy metal, nucleic acid and bacteria is of great significance but it also faces a thorny challenge. Herein, a novel and universal array platform was developed by combining photonic crystals (PCs) and DNA nanomachine. The developed array platform integrated the physical and biological signal amplification ability of PCs and DNA nanomachine, resulting in ultrasensitive detections of Hg2+, DNA, and Shigella sonnei with limits of detection (LODs) of 22.1 ppt, 31.6 fM, and 9 CFU/mL, respectively. More importantly, by utilizing a microplate reader as signal output device, the array achieved high-throughput scanning (96 samples/3 min) with only 2 μL loading sample, which is advantageous for the detection of infectious dangerous targets. In addition, the PCs array could be obtained easily and rapidly based on self-assembly of colloidal nanospheres, and the DNA nanomachine was operated with enzyme-free and time-saving features. Benefiting from these merits, the proposed PCs array offered a powerful universal platform for large-scale detection of various analytes in the fields of pollution monitoring, epidemic control, and public health.
Collapse
Affiliation(s)
- Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuyan Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Ziyi Tian
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyue Xie
- College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Xiaoyong Lu
- College of Life Sciences, Sichuan University, 610065, Chengdu, China
| | - Wei Ning
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China
| | - Yongxin Li
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, China.
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
24
|
Guo J, Shen R, Shen X, Zeng B, Yang N, Liang H, Yang Y, Yuan Q. Construction of high stability indium gallium zinc oxide transistor biosensors for reliable detection of bladder cancer-associated microRNA. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.07.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Wang C, Jiang H. Long non-coding RNA PCAT19 regulates the malignant progression of bladder cancer through the miR-335-5p/IER2 axis. Crit Rev Eukaryot Gene Expr 2022; 32:81-94. [DOI: 10.1615/critreveukaryotgeneexpr.2022043175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
26
|
MiR-20a-5p Negatively Regulates NR4A3 to Promote Metastasis in Bladder Cancer. JOURNAL OF ONCOLOGY 2021; 2021:1377989. [PMID: 34925506 PMCID: PMC8677415 DOI: 10.1155/2021/1377989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 02/05/2023]
Abstract
Metastasis is the leading cause of death in cancer patients. Therefore, the prediction and treatment of metastasis are critical in improving the survival of patients with bladder cancer. In this study, we aimed to investigate the role of miR-20a-5p and NR4A3 in bladder cancer and the regulatory relationship between them. The high expression of miR-20a-5p in the bladder cancer (BCa) tissues and cells was determined by qRT-PCR. Exogenous miR-20a-5p overexpression promoted the proliferation, migration, and invasion of BCa cells. MiR-20a-5p inhibition inhibited the BCa cell proliferation, invasion, and migration. NR4A3 was proved to be the target gene of miR-20a-5p by the double luciferase reporter assay. In addition, the reduction of NR4A3 could promote the proliferation, invasion, and clonal formation of the bladder cancer cells 5637 and T24. NR4A3 overexpression could reverse the carcinogenic effect of miR-20a. We further confirmed that the oncogenic effect of miR-20a was achieved by promoting EMT in tumor cells. MiR-20a-5p promoted the growth and metastasis of the bladder cancer cells by inhibiting the expression of the tumor suppressor gene NR4A3 and played a carcinogenic role in BCa. Thus, miR-20a-5p may become a potential therapeutic target for BCa treatment.
Collapse
|
27
|
Gao L, Zhang X, Yang R, Lv Z, Yang W, Hu Y, Zhou B. Time-resolved fluorescence determination of albumin using ZnGeO:Mn luminescence nanorods modified with polydopamine nanoparticles. Mikrochim Acta 2021; 188:429. [PMID: 34817697 DOI: 10.1007/s00604-021-05097-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/09/2021] [Indexed: 10/19/2022]
Abstract
A novel time-resolved fluorescence (TRF) pobe is constructed to detect human serum albumin (HSA) by exploiting ZnGeO:Mn persistent luminescence nanorods (ZnGeO:Mn PLNRs) and polydopamine nanoparticles (PDA NPs). HSA-induced dynamic quenching leads to the fluorescence decrease of ZnGeO:Mn PLNRs, providing the basis for quantitative analysis of HSA. The excellent photo-thermal conversion performance of PDA NPs is helpful to the collision process between ZnGeO:Mn PLNRs and HSA, inducing significant improvement of sensitivity. HSA is quantified by measuring time-resolved fluorescence at 540 nm under excitation of 250-nm light. Under optimal conditions, HSA in the linear range 0.1-100 ng mL-1 are detected by this PDA-mediated ZnGeO:Mn probe with high sensitivity and selectivity, and the detection limit is 36 pg mL-1 (3σ/s). The RSD for the quantification of HSA (5 ng mL-1, n = 11) is 5.2%. The practicability of this TRF probe is confirmed by accurate monitoring HSA contents in urine samples, giving rise to satisfactory spiking recoveries of 96.2-106.0%.
Collapse
Affiliation(s)
- Lifang Gao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China.
| | - Xu Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Runlin Yang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China
| | - Zhongwei Lv
- Department of Nuclear Medicine, Shanghai 10Th People's Hospital, Tongji University School of Medicine, Shanghai, 200000, China
| | - Wenge Yang
- The Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Yonghong Hu
- The Synergetic Innovation Center for Advanced Materials, State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, China
| | - Bin Zhou
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063, Jiangsu, China. .,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
| |
Collapse
|
28
|
Ji C, Tan J, Yuan Q. Defect Luminescence Based Persistent Phosphors—From Controlled Synthesis to Bioapplications. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Cailing Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering Hunan University Changsha Hunan 410082 China
| |
Collapse
|
29
|
Abstract
Optical imaging is an indispensable tool in clinical diagnostics and fundamental biomedical research. Autofluorescence-free optical imaging, which eliminates real-time optical excitation to minimize background noise, enables clear visualization of biological architecture and physiopathological events deep within living subjects. Molecular probes especially developed for autofluorescence-free optical imaging have been proven to remarkably improve the imaging sensitivity, penetration depth, target specificity, and multiplexing capability. In this Review, we focus on the advancements of autofluorescence-free molecular probes through the lens of particular molecular or photophysical mechanisms that produce long-lasting luminescence after the cessation of light excitation. The versatile design strategies of these molecular probes are discussed along with a broad range of biological applications. Finally, challenges and perspectives are discussed to further advance the next-generation autofluorescence-free molecular probes for in vivo imaging and in vitro biosensors.
Collapse
Affiliation(s)
- Yuyan Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore
| | - Kanyi Pu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 70 Nanyang Drive, Singapore 637457, Singapore.,School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| |
Collapse
|
30
|
Li CY, Zheng B, Lu LL, Fang WK, Zheng MQ, Gao JL, Yuheng L, Pang DW, Tang HW. Biomimetic Chip Enhanced Time-Gated Luminescent CRISPR-Cas12a Biosensors under Functional DNA Regulation. Anal Chem 2021; 93:12514-12523. [PMID: 34490773 DOI: 10.1021/acs.analchem.1c01403] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Despite that the currently discovered CRISPR-Cas12a system is beneficial for improving the detection accuracy and design flexibility of luminescent biosensors, there are still challenges to extend target species and strengthen adaptability in complicated biological media. To conquer these obstacles, we present here some useful strategies. For the former, the limitation to nucleic acids assay is broken through by introducing a simple functional DNA regulation pathway to activate the unique trans-cleavage effect of this CRISPR system, under which the expected biosensors are capable of effectively transducing a protein (employing dual aptamers) and a metal ion (employing DNAzyme). For the latter, a time-gated luminescence resonance energy transfer imaging manner using a long-persistent nanophosphor as the energy donor is performed to completely eliminate the background interference and a nature-inspired biomimetic periodic chip constructed by photonic crystals is further combined to enhance the persistent luminescence. In line with the above efforts, the improved CRISPR-Cas12a luminescent biosensor not only exhibits a sound analysis performance toward the model targets (carcinoembryonic antigen and Na+) but also owns a strong anti-interference feature to actualize accurate sensing in human plasma samples, offering a new and applicative analytical tool for laboratory medicine.
Collapse
Affiliation(s)
- Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Bei Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China.,Westlake Institute for Advanced Study, School of Life Sciences, Westlake University, Hangzhou, 310024, People's Republic of China
| | - Li-Li Lu
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China.,Institute of Pharmaceutical Innovation, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Wen-Kai Fang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Ming-Qiu Zheng
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| | - Jia-Ling Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Liu Yuheng
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430065, People's Republic of China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Center for Analytical Sciences, and College of Chemistry, Nankai University, Tianjin, 300071, People's Republic of China
| | - Hong-Wu Tang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's Republic of China
| |
Collapse
|
31
|
Wu M, Wang X, Niu G, Zhao Z, Zheng R, Liu Z, Zhao Z, Duan Y. Ultrasensitive and Simultaneous Detection of Multielements in Aqueous Samples Based on Biomimetic Array Combined with Laser-Induced Breakdown Spectroscopy. Anal Chem 2021; 93:10196-10203. [PMID: 34270226 DOI: 10.1021/acs.analchem.1c01484] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ultrasensitive detection of metallic elements in liquids has attracted considerable attention in fields such as environmental pollution monitoring and drinking water quality control. Hence, it is of great significance to develop a sensitive and simultaneous detection strategy for multiple metal elements in liquid. Laser-induced breakdown spectroscopy (LIBS) technology shows unique advantages because of its simple, rapid, and real-time in situ detection, but the laser energy will be greatly attenuated in the liquids; thus, the sensitivity of LIBS for direct detection of metal elements in liquid samples will decrease sharply. In this study, inspired by the structure of Stenocara beetle's back, a superhydrophobic biomimetic interface with hydrophilic array was prepared for enriching low-concentration targets into detection regions, and the biomimetic array LIBS (BA-LIBS) was successfully established. The ultrasensitive and simultaneous detection of nine metal elements in drinking water was realized based on the effective enrichment method. The limits of detection of the nine metal elements in mixed solution ranged from 8.3 ppt to 13.49 ppb. With these excellent properties, this facile and ultrasensitive BA-LIBS strategy might provide a new idea for the prevention and control of metal hazards in the liquid environment.
Collapse
Affiliation(s)
- Mengfan Wu
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.,College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Xu Wang
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Guanghui Niu
- Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., Dortmund 44139, Germany
| | - Zhao Zhao
- College of Life Sciences, Sichuan University, Chengdu 610065, China
| | - Ruiqin Zheng
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China
| | - Zhuo Liu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhongjun Zhao
- School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Yixiang Duan
- Research Center of Analytical Instrumentation, School of Mechanical Engineering, Sichuan University, Chengdu 610065, China.,College of Life Sciences, Sichuan University, Chengdu 610065, China
| |
Collapse
|
32
|
He X, Ma Y, Xie H, Rao G, Yang Z, Zhang J, Feng Z. Biomimetic Nanostructure Platform for Cancer Diagnosis Based on Tumor Biomarkers. Front Bioeng Biotechnol 2021; 9:687664. [PMID: 34336803 PMCID: PMC8320534 DOI: 10.3389/fbioe.2021.687664] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022] Open
Abstract
Biomarker discovery and its clinical use have attracted considerable attention since early cancer diagnosis can significantly decrease mortality. Cancer biomarkers include a wide range of biomolecules, such as nucleic acids, proteins, metabolites, sugars, and cytogenetic substances present in human biofluids. Except for free-circulating biomarkers, tumor-extracellular vesicles (tEVs) and circulating tumor cells (CTCs) can serve as biomarkers for the diagnosis and prognosis of various cancers. Considering the potential of tumor biomarkers in clinical settings, several bioinspired detection systems based on nanotechnologies are in the spotlight for detection. However, tremendous challenges remain in detection because of massive contamination, unstable signal-to-noise ratios due to heterogeneity, nonspecific bindings, or a lack of efficient amplification. To date, many approaches are under development to improve the sensitivity and specificity of tumor biomarker isolation and detection. Particularly, the exploration of natural materials in biological frames has encouraged researchers to develop new bioinspired and biomimetic nanostructures, which can mimic the natural processes to facilitate biomarker capture and detection in clinical settings. These platforms have substantial influence in biomedical applications, owing to their capture ability, significant contrast increase, high sensitivity, and specificity. In this review, we first describe the potential of tumor biomarkers in a liquid biopsy and then provide an overview of the progress of biomimetic nanostructure platforms to isolate and detect tumor biomarkers, including in vitro and in vivo studies. Capture efficiency, scale, amplification, sensitivity, and specificity are the criteria that will be further discussed for evaluating the capability of platforms. Bioinspired and biomimetic systems appear to have a bright future to settle obstacles encountered in tumor biomarker detection, thus enhancing effective cancer diagnosis.
Collapse
Affiliation(s)
- Xiping He
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Yifan Ma
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Haotian Xie
- Department of Mathematics, The Ohio State University, Columbus, OH, United States
| | - Gaofeng Rao
- Department of Rehabilitation Medicine, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| | - Zhaogang Yang
- Department of Radiation Oncology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - Jingjing Zhang
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, United States
| | - Zhong Feng
- Department of Neurology, The Affiliated Wenling Hospital of Wenzhou Medical University, Wenling, China
| |
Collapse
|
33
|
Liu X, Wu W, Cui D, Chen X, Li W. Functional Micro-/Nanomaterials for Multiplexed Biodetection. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004734. [PMID: 34137090 DOI: 10.1002/adma.202004734] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 11/08/2020] [Indexed: 05/24/2023]
Abstract
When analyzing biological phenomena and processes, multiplexed biodetection has many advantages over single-factor biodetection and is highly relevant to both human health issues and advancements in the life sciences. However, many key problems with current multiplexed biodetection strategies remain unresolved. Herein, the main issues are analyzed and summarized: 1) generating sufficient signal to label targets, 2) improving the signal-to-noise ratio to ensure total detection sensitivity, and 3) simplifying the detection process to reduce the time and labor costs of multiple target detection. Then, available solutions made possible by designing and controlling the properties of micro- and nanomaterials are introduced. The aim is to emphasize the role that micro-/nanomaterials can play in the improvement of multiplexed biodetection strategies. Through analyzing existing problems, introducing state-of-the-art developments regarding relevant materials, and discussing future directions of the field, it is hopeful to help promote necessary developments in multiplexed biodetection and associated scientific research.
Collapse
Affiliation(s)
- Xinyi Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Weijie Wu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Daxiang Cui
- Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Engineering Research Center for Intelligent Diagnosis and Treatment Instrument, Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine and Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore
| | - Wanwan Li
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
34
|
Feng Y, Su Y, Liu R, Lv Y. Engineering activatable nanoprobes based on time-resolved luminescence for chemo/biosensing. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
35
|
Smith DA, Simpson K, Lo Cicero M, Newbury LJ, Nicholas P, Fraser DJ, Caiger N, Redman JE, Bowen T. Detection of urinary microRNA biomarkers using diazo sulfonamide-modified screen printed carbon electrodes. RSC Adv 2021; 11:18832-18839. [PMID: 34123373 PMCID: PMC8144888 DOI: 10.1039/d0ra09874d] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
This paper describes a straightforward electrochemical method for rapid and robust urinary microRNA (miRNA) quantification using disposable biosensors that can discriminate between urine from diabetic kidney disease (DKD) patients and control subjects. Aberrant miRNA expression has been observed in several major human disorders, and we have identified a urinary miRNA signature for DKD. MiRNAs therefore have considerable promise as disease biomarkers, and techniques to quantify these transcripts from clinical samples have significant clinical and commercial potential. Current RT-qPCR-based methods require technical expertise, and more straightforward methods such as electrochemical detection offer attractive alternatives. We describe a method to detect urinary miRNAs using diazo sulfonamide-modified screen printed carbon electrode-based biosensors that is amenable to parallel analysis. These sensors showed a linear response to buffered miR-21, with a 17 fM limit of detection, and successfully discriminated between urine samples (n = 6) from DKD patients and unaffected control subjects (n = 6) by differential miR-192 detection. Our technique for quantitative miRNA detection in liquid biopsies has potential for development as a platform for non-invasive high-throughput screening and/or to complement existing diagnostic procedures in disorders such as DKD. In this study we have developed an electrochemical microRNA biosensor sensitive to 17 fM and capable of detecting an established downregulation of urinary miR-192 in diabetic kidney disease patients.![]()
Collapse
Affiliation(s)
- Daniel A Smith
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK .,Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK
| | - Kate Simpson
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK
| | - Matteo Lo Cicero
- School of Chemistry, College of Physical Sciences and Engineering, Cardiff University Cardiff CF10 3AT UK
| | - Lucy J Newbury
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK .,Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK
| | | | - Donald J Fraser
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK .,Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK
| | - Nigel Caiger
- Sun Chemical Ltd Midsomer Norton, Radstock Bath BA3 4RT UK
| | - James E Redman
- Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK.,School of Chemistry, College of Physical Sciences and Engineering, Cardiff University Cardiff CF10 3AT UK
| | - Timothy Bowen
- Wales Kidney Research Unit, Division of Infection & Immunity, School of Medicine, College of Biomedical and Life Sciences, Cardiff University Heath Park Cardiff CF14 4XN UK .,Cardiff Institute of Tissue Engineering and Repair Museum Place Cardiff CF10 3BG UK
| |
Collapse
|
36
|
Barani M, Hosseinikhah SM, Rahdar A, Farhoudi L, Arshad R, Cucchiarini M, Pandey S. Nanotechnology in Bladder Cancer: Diagnosis and Treatment. Cancers (Basel) 2021; 13:2214. [PMID: 34063088 PMCID: PMC8125468 DOI: 10.3390/cancers13092214] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/29/2021] [Accepted: 05/04/2021] [Indexed: 02/07/2023] Open
Abstract
Bladder cancer (BC) is the second most common cancer of the urinary tract in men and the fourth most common cancer in women, and its incidence rises with age. There are many conventional methods for diagnosis and treatment of BC. There are some current biomarkers and clinical tests for the diagnosis and treatment of BC. For example, radiotherapy combined with chemotherapy and surgical, but residual tumor cells mostly cause tumor recurrence. In addition, chemotherapy after transurethral resection causes high side effects, and lack of selectivity, and low sensitivity in sensing. Therefore, it is essential to improve new procedures for the diagnosis and treatment of BC. Nanotechnology has recently sparked an interest in a variety of areas, including medicine, chemistry, physics, and biology. Nanoparticles (NP) have been used in tumor therapies as appropriate tools for enhancing drug delivery efficacy and enabling therapeutic performance. It is noteworthy, nanomaterial could be reduced the limitation of conventional cancer diagnosis and treatments. Since, the major disadvantages of therapeutic drugs are their insolubility in an aqueous solvent, for instance, paclitaxel (PTX) is one of the important therapeutic agents utilized to treating BC, due to its ability to prevent cancer cell growth. However, its major problem is the poor solubility, which has confirmed to be a challenge when improving stable formulations for BC treatment. In order to reduce this challenge, anti-cancer drugs can be loaded into NPs that can improve water solubility. In our review, we state several nanosystem, which can effective and useful for the diagnosis, treatment of BC. We investigate the function of metal NPs, polymeric NPs, liposomes, and exosomes accompanied therapeutic agents for BC Therapy, and then focused on the potential of nanotechnology to improve conventional approaches in sensing.
Collapse
Affiliation(s)
- Mahmood Barani
- Department of Chemistry, Shahid Bahonar University of Kerman, Kerman 76169-14111, Iran;
| | - Seyedeh Maryam Hosseinikhah
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Abbas Rahdar
- Department of Physics, Faculty of Science, University of Zabol, Zabol 98613-35856, Iran
| | - Leila Farhoudi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran; (S.M.H.); (L.F.)
| | - Rabia Arshad
- Department of Pharmacy, Quaid-I-Azam University, Islamabad 45320, Pakistan;
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, 66421 Homburg/Saar, Germany
| | - Sadanand Pandey
- Department of Chemistry, College of Natural Science, Yeungnam University, 280 Daehak-Ro, Gyeongsan 38541, Korea
- Particulate Matter Research Center, Research Institute of Industrial Science & Technology (RIST), 187-12, Geumho-ro, Gwangyang-si 57801, Korea
| |
Collapse
|
37
|
A phosphorescence resonance energy transfer-based "off-on" long afterglow aptasensor for cadmium detection in food samples. Talanta 2021; 232:122409. [PMID: 34074399 DOI: 10.1016/j.talanta.2021.122409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 11/22/2022]
Abstract
Cadmium contamination is a severe food safety risk for human health. Herein, a long afterglow "off-on" phosphorescent aptasensor was developed based on phosphorescence resonance energy transfer (PRET) for the detection of Cd2+ in complex samples which minimizes the interference of background fluorescence. In this scheme, initially the phosphorescence of Cd2+-binding aptamer conjugated long afterglow nanoparticles (Zn2GeO4:Mn) was quenched by black hole quencher 1 (BHQ1) modified complementary DNA. Upon encountering of Cd2+, the aptamer interacted with Cd2+ and the complementary DNA with BHQ1 was released, leading to phosphorescence recovery. The content of Cd2+ could be quantified by the intensity of phosphorescence recovery with 100 μs gate time (which eliminated the sample autofluorescence) with a linear relationship between 0.5 and 50 μg L-1 and a limit of detection (LOD) of 0.35 μg L-1. This method was successfully demonstrated for Cd2+ detection in drinking water and yesso scallop samples. The "off-on" phosphorescent aptasensor based on PRET of long afterglow nanomaterials could be an effective tool for Cd2+ detection in food samples.
Collapse
|
38
|
A dual-colored persistent luminescence nanosensor for simultaneous and autofluorescence-free determination of aflatoxin B 1 and zearalenone. Talanta 2021; 232:122395. [PMID: 34074391 DOI: 10.1016/j.talanta.2021.122395] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/24/2021] [Accepted: 03/31/2021] [Indexed: 12/12/2022]
Abstract
Mycotoxins contamination in agricultural products poses a serious threat to human and animal health, so rapid and sensitive nanosensors for simultaneous determination of multiple mycotoxins in food samples are highly desirable for food safety monitoring. Herein, we report the fabrication of functional dual-colored persistent luminescence nanoparticles (PLNPs) in conjunction with Fe3O4 magnetic nanoparticles as a nanosensor for the simultaneous biosensing of aflatoxin B1 (AFB1) and zearalenone (ZEN) in food samples. Two types of PLNPs with a single excitation wavelength, Zn2GeO4:Mn2+ and Zn1.25Ga1.5Ge0.25O4:Cr3+,Yb3+,Er3+, are employed as the signal units, and aptamers with high affinity and specificity to the corresponding mycotoxins are used as the recognition units. The nanosensor was fabricated by hybridizing the aptamer modified PLNPs with the complementary DNA modified Fe3O4. The developed nanosensor offers the integrated merits of autofluorescence-free detection of persistent luminescence, the high specificity of aptamer and the high speed of magnetic separation, allowing highly sensitive and selective detection of AFB1 and ZEN in food samples with the limits of detection of 0.29 pg mL-1 for AFB1 and 0.22 pg mL-1 for ZEN and the recoveries of 93.6%-103.2% for AFB1 and 94.7%-105.1% for ZEN. This work also provides a novel universal PLNPs-based optical platform for the simultaneous detection of multiple contaminants in complex samples.
Collapse
|
39
|
Luo Q, Wang W, Tan J, Yuan Q. Surface Modified Persistent Luminescence Probes for Biosensing and Bioimaging: A Review. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000583] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Qiang Luo
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Wenjie Wang
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Jie Tan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
| | - Quan Yuan
- Institute of Chemical Biology and Nanomedicine (ICBN), State Key Laboratory of Chemo/Biosensing and Chemometrics College of Chemistry and Chemical Engineering, Hunan University Changsha Hunan 410082 China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, College of Chemistry and Molecular Sciences Wuhan University Wuhan Hubei 430072 China
| |
Collapse
|
40
|
Kim S, Park S, Cho YS, Kim Y, Tae JH, No TI, Shim JS, Jeong Y, Kang SH, Lee KH. Electrical Cartridge Sensor Enables Reliable and Direct Identification of MicroRNAs in Urine of Patients. ACS Sens 2021; 6:833-841. [PMID: 33284011 DOI: 10.1021/acssensors.0c01870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Urinary miRNAs are biomarkers that demonstrate considerable promise for the noninvasive diagnosis and prognosis of diseases. However, because of background noise resulting from complex physiological features of urine, instability of miRNAs, and their low concentration, accurate monitoring of miRNAs in urine is challenging. To address these limitations, we developed a urine-based disposable and switchable electrical sensor that enables reliable and direct identification of miRNAs in patient urine. The proposed sensing platform combining disposable sensor chips composed of a reduced graphene oxide nanosheet and peptide nucleic acid facilitates the label-free detection of urinary miRNAs with high specificity and sensitivity. Using real-time detection of miRNAs in patient urine without pretreatment or signal amplification, this sensor allows rapid, direct detection of target miRNAs in a broad dynamic range with a detection limit down to 10 fM in human urine specimens within 20 min and enables simultaneous quantification of multiple miRNAs. As confirmed using a blind comparison with the results of pathological examination of patients with prostate cancer, the sensor offers the potential to improve the accuracy of early diagnosis before a biopsy is taken. This study holds the usefulness of the practical sensor for the clinical diagnosis of urological diseases.
Collapse
Affiliation(s)
- Seongchan Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Sungwook Park
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Young Soo Cho
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Younghoon Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Jong Hyun Tae
- Department of Urology, Korea University, School of Medicine, Seoul 02841, Republic of Korea
| | - Tae Il No
- Department of Urology, Korea University, School of Medicine, Seoul 02841, Republic of Korea
| | - Ji Sung Shim
- Department of Urology, Korea University, School of Medicine, Seoul 02841, Republic of Korea
| | - Youngdo Jeong
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- Department of HY-KIST Bio-convergence, Hanyang University, Seoul 04763, Republic of Korea
| | - Seok Ho Kang
- Department of Urology, Korea University, School of Medicine, Seoul 02841, Republic of Korea
| | - Kwan Hyi Lee
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
41
|
Li CY, Zheng B, Liu YH, Gao JL, Zheng MQ, Pang DW, Tang HW. A boosting upconversion luminescent resonance energy transfer and biomimetic periodic chip integrated CRISPR/Cas12a biosensor for functional DNA regulated transduction of non-nucleic acid targets. Biosens Bioelectron 2020; 169:112650. [DOI: 10.1016/j.bios.2020.112650] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 12/15/2022]
|
42
|
Badshah MA, Koh NY, Zia AW, Abbas N, Zahra Z, Saleem MW. Recent Developments in Plasmonic Nanostructures for Metal Enhanced Fluorescence-Based Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1749. [PMID: 32899375 PMCID: PMC7558009 DOI: 10.3390/nano10091749] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 01/14/2023]
Abstract
Metal-enhanced fluorescence (MEF) is a unique phenomenon of surface plasmons, where light interacts with the metallic nanostructures and produces electromagnetic fields to enhance the sensitivity of fluorescence-based detection. In particular, this enhancement in sensing capacity is of importance to many research areas, including medical diagnostics, forensic science, and biotechnology. The article covers the basic mechanism of MEF and recent developments in plasmonic nanostructures fabrication for efficient fluorescence signal enhancement that are critically reviewed. The implications of current fluorescence-based technologies for biosensors are summarized, which are in practice to detect different analytes relevant to food control, medical diagnostics, and forensic science. Furthermore, characteristics of existing fabrication methods have been compared on the basis of their resolution, design flexibility, and throughput. The future projections emphasize exploring the potential of non-conventional materials and hybrid fabrication techniques to further enhance the sensitivity of MEF-based biosensors.
Collapse
Affiliation(s)
- Mohsin Ali Badshah
- Department of Chemical and Biomolecular Engineering, University of California-Irvine, Irvine, CA 92697, USA
| | - Na Yoon Koh
- Plamica Labs, Batten Hall, 125 Western Ave, Allston, MA 02163, USA;
| | - Abdul Wasy Zia
- Institute of Structural Health Management, Faculty of Civil Engineering and Engineering Mechanics, Jiangsu University, Zhenjiang 212013, China;
| | - Naseem Abbas
- School of Mechanical Engineering, Chung-Ang University, Seoul 06974, Korea;
| | - Zahra Zahra
- Department of Civil & Environmental Engineering, University of California-Irvine, Irvine, CA 92697, USA;
| | - Muhammad Wajid Saleem
- Department of Mechanical Engineering, University of Engineering and Technology, Lahore 54890, Pakistan;
| |
Collapse
|
43
|
Zhang J, Zhu Y, Shi J, Zhang K, Zhang Z, Zhang H. Sensitive Signal Amplifying a Diagnostic Biochip Based on a Biomimetic Periodic Nanostructure for Detecting Cancer Exosomes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33473-33482. [PMID: 32603586 DOI: 10.1021/acsami.0c06785] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Tumor-derived exosomes are emerging noninvasive biomarker reservoirs that reflect biological information from their parental cells, especially specific markers, including proteins, DNA fragments and RNAs. Recently, analytical methods of tumor-derived exosomes have been increasing growth. However, developing a convenient signal amplification technique to improve the sensitivity of exosomes detection still remains a challenge. Herein, an ultrasensitive and specific exosomes diagnostic biochip is constructed and further applied to circulating tumor exosomes detection in serum. Using an exosomes diagnostic biochip, signal amplification is achieved by combining the advantages of quantum dots with the biomimetic periodic nanostructure of photonic crystals. Glypican-1 (GPC1), a membrane-anchored protein that is overexpressed in exosomes from pancreatic cancer, is detected using nanosized molecular beacons with high luminescence efficiency; then the signal is amplified through photonic crystals. Moreover, the method allows the quantitative analysis of various disease-specific surface proteins on exosomes. We believe that this exosomes diagnostic biochip is likely to have potential as an effective bioassay, which may be helpful for quantification of disease-specific exosomes in clinical use.
Collapse
Affiliation(s)
- Junli Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Yifan Zhu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Jinjin Shi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Kaixiang Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
| | - Zhenzhong Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province 450001, China
| | - Hongling Zhang
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, Henan Province 450001, China
- Key Laboratory of Targeting Therapy and Diagnosis for Critical Diseases, Zhengzhou, Henan Province 450001, China
| |
Collapse
|
44
|
Liu N, Shi J, Wang Q, Guo J, Hou Z, Su X, Zhang H, Sun X. In Vivo Repeatedly Activated Persistent Luminescence Nanoparticles by Radiopharmaceuticals for Long-Lasting Tumor Optical Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001494. [PMID: 32510845 DOI: 10.1002/smll.202001494] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/20/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) with rechargeable near-infrared afterglow properties attract much attention for tumor diagnosis in living animals since they can avoid tissue autofluorescence and greatly improve the signal-to-background ratio. Using UV, visible light, or X-ray as excitation sources to power up persistent luminescence (PL) faces the challenges such as limited tissue penetration, inefficient charging capability, or tissue damage caused by irradiation. Here, it is proved that radiopharmaceuticals can efficiently excite ZnGa2 O4 :Cr3+ nanoparticles (ZGCs) for both fluorescence and afterglow luminescence via Cerenkov resonance energy transfer as well as ionizing radiation. 18 F-FDG, a clinically approved tumor-imaging radiopharmaceutical with a short decay half-life around 110 min, is successfully used as the internal light source to in vivo excite intravenously injected ZGCs for tumor luminescence imaging over 3 h. The luminescence with similar decay time can be re-obtained for multiple times upon injection of 18 F-FDG at any time needed with no health concern. It is believed this strategy can not only provide tumor luminescence imaging with high sensitivity, high contrast, and long decay time at desired time, but also guarantee the patients much less radiation exposure, greatly benefiting image-guided surgery in the future.
Collapse
Affiliation(s)
- Nian Liu
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Chemistry, Technical University of Munich, Garching, 85747, Germany
| | - Junpeng Shi
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Qiang Wang
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Jingru Guo
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
| | - Zhenyu Hou
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Xinhui Su
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| | - Hongwu Zhang
- Key Lab of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- School of Chemistry and Materials, Ludong University, Yantai, 264025, China
| | - Xiaolian Sun
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Quality Control and Pharmacovigilance, Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, 210009, China
- Department of Nuclear Medicine, Zhongshan Hospital Xiamen University, Xiamen, 361004, China
| |
Collapse
|
45
|
Chen CK, Liao J, Li MS, Khoo BL. Urine biopsy technologies: Cancer and beyond. Theranostics 2020; 10:7872-7888. [PMID: 32685026 PMCID: PMC7359094 DOI: 10.7150/thno.44634] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 06/02/2020] [Indexed: 12/18/2022] Open
Abstract
Since the discovery of circulating tumor cells in 1869, technological advances in the study of biomarkers from liquid biopsy have made it possible to diagnose disease in a less invasive way. Although blood-based liquid biopsy has been used extensively for the detection of solid tumors and immune diseases, the potential of urine-based liquid biopsy has not been fully explored. Advancements in technologies for the harvesting and analysis of biomarkers are providing new opportunities for the characterization of other disease types. Liquid biopsy markers such as exfoliated bladder cancer cells, cell-free DNA (cfDNA), and exosomes have the potential to change the nature of disease management and care, as they allow a cost-effective and convenient mode of patient monitoring throughout treatment. In this review, we addressed the advancement of research in the field of disease detection for the key liquid biopsy markers such as cancer cells, cfDNA, and exosomes, with an emphasis on urine-based liquid biopsy. First, we highlighted key technologies that were widely available and used extensively for clinical urine sample analysis. Next, we presented recent technological developments in cell and genetic research, with implications for the detection of other types of diseases, besides cancer. We then concluded with some discussions on these areas, emphasizing the role of microfluidics and artificial intelligence in advancing point-of-care applications. We believe that the benefits of urine biopsy provide diagnostic development potential, which will pave opportunities for new ways to guide treatment selections and facilitate precision disease therapies.
Collapse
Affiliation(s)
| | | | | | - Bee Luan Khoo
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
46
|
Li L, Zhang Y, Yan Z, Chen M, Zhang L, Zhao P, Yu J. Ultrasensitive Photoelectrochemical Detection of MicroRNA on Paper by Combining a Cascade Nanozyme-Engineered Biocatalytic Precipitation Reaction and Target-Triggerable DNA Motor. ACS Sens 2020; 5:1482-1490. [PMID: 32362115 DOI: 10.1021/acssensors.0c00632] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Developing efficient strategies for sensitive detection of microRNAs, the noncoding bioactive molecules and well-established biomarkers, has aroused great interests due to its great potential values in genetic and pathological analyses. Herein, a highly selective and disposable paper-based photoelectrochemical (PEC) sensor was rationally designed for sensing microRNA based on simple self-assembly of a target-triggerable DNA motor and nanozyme-catalyzed multistage biocatalytic precipitation reaction. Specifically, a brand-new type II heterojunction of TiO2-CeO2 nanotubes decorated with carbon fiber paper (CFP) was first prepared, which gave an enhanced photoreactive surface and realized fast electron transport and extraction, markedly accelerating photoelectric conversion efficiency of the sensor. For achieving target detection, cascade nanozyme centers of the CeO2 and Au nanoparticles modified by cyclodextrin were drafted, greatly decreasing the photocurrent intensity and achieving an ultralow background signal. With target introduction, the DNA motor was activated and automatically moved along the predesigned route driven by an endonuclease cleavage reaction, resulting in more substrate probe digestion and nanozyme release from CFP. Consequently, the repressive inner enhancement mechanism was gradually renewed with constant advancement of the enzymatic reaction and walker probe walking progressively, eventually allowing multiple enzymatic factor output in each target import. As a proof-of-concept application, the developed PEC sensor successfully performed detection of miRNA-141, showing a low detection limit of 0.6 fM, and was further applied to real sample bioassays with satisfying results. This work proposes promising strategies to boost the catalytic cascade DNA-motor adhibition in biological samples analysis and also exhibits potential capability in detection of other targets.
Collapse
Affiliation(s)
- Li Li
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Yan Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Zhao Yan
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Mengqi Chen
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Lina Zhang
- Shandong Provincial Key Laboratory of Preparation and Measurement of Building Materials, University of Jinan, Jinan 250022, P. R. China
| | - Peini Zhao
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| | - Jinghua Yu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, P. R. China
| |
Collapse
|
47
|
Lin Q, Li Z, Ji C, Yuan Q. Electronic structure engineering and biomedical applications of low energy-excited persistent luminescence nanoparticles. NANOSCALE ADVANCES 2020; 2:1380-1394. [PMID: 36132298 PMCID: PMC9417836 DOI: 10.1039/c9na00817a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 03/17/2020] [Indexed: 06/13/2023]
Abstract
Persistent luminescence nanoparticles (PLNPs) are new luminescent materials that can store the excitation energy quickly and persistently emit it after ceasing excitation sources. Due to the advantages of long-lasting luminescence without constant excitation, PLNPs have been widely used in biomedical applications. Visible light excitable PLNPs (VPLNPs) and near-infrared excitable PLNPs (NPLNPs) are two kinds of novel and promising PLNPs. Compared to conventional PLNPs, VPLNPs and NPLNPs have the characteristics of low tissue damage, deep tissue penetration, and high signal-to-noise ratio. With these special features, they have great potential in applications such as long-term tracing, deep-tissue bioimaging, and precise treatment. In this review, we introduce the common strategy of constructing VPLNPs and NPLNPs based on electronic structure engineering and the applications of VPLNPs and NPLNPs in biomedicine. This review article aims to offer valuable information about the progress and development direction of VPLNPs and NPLNPs, promoting more applications in biomedicine, materials science, energy engineering, and environmental technologies in the future.
Collapse
Affiliation(s)
- Qiaosong Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Zhihao Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
| | - Chenhui Ji
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| | - Quan Yuan
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University Wuhan 430072 China
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University Changsha 410082 China
| |
Collapse
|
48
|
Wang M, Chen W, Tang L, Yan R, Miao P. Duplex-specific nuclease assisted miRNA assay based on gold and silver nanoparticles co-decorated on electrode interface. Anal Chim Acta 2020; 1107:23-29. [DOI: 10.1016/j.aca.2020.01.041] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/15/2020] [Accepted: 01/18/2020] [Indexed: 12/19/2022]
|
49
|
Wu S, Li Y, Ding W, Xu L, Ma Y, Zhang L. Recent Advances of Persistent Luminescence Nanoparticles in Bioapplications. NANO-MICRO LETTERS 2020; 12:70. [PMID: 34138268 PMCID: PMC7770784 DOI: 10.1007/s40820-020-0404-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 02/02/2020] [Indexed: 05/21/2023]
Abstract
Persistent luminescence phosphors are a novel group of promising luminescent materials with afterglow properties after the stoppage of excitation. In the past decade, persistent luminescence nanoparticles (PLNPs) with intriguing optical properties have attracted a wide range of attention in various areas. Especially in recent years, the development and applications in biomedical fields have been widely explored. Owing to the efficient elimination of the autofluorescence interferences from biotissues and the ultra-long near-infrared afterglow emission, many researches have focused on the manipulation of PLNPs in biosensing, cell tracking, bioimaging and cancer therapy. These achievements stimulated the growing interest in designing new types of PLNPs with desired superior characteristics and multiple functions. In this review, we summarize the works on synthesis methods, bioapplications, biomembrane modification and biosafety of PLNPs and highlight the recent advances in biosensing, imaging and imaging-guided therapy. We further discuss the new types of PLNPs as a newly emerged class of functional biomaterials for multiple applications. Finally, the remaining problems and challenges are discussed with suggestions and prospects for potential future directions in the biomedical applications.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Weihang Ding
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Letong Xu
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Yuan Ma
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience and Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, People's Republic of China.
| |
Collapse
|
50
|
Gai P, Kong X, Zhang S, Song P, Li F. Photo-driven self-powered biosensor for ultrasensitive microRNA detection via DNA conformation-controlled co-sensitization behavior. Chem Commun (Camb) 2020; 56:7116-7119. [DOI: 10.1039/d0cc03039b] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We developed a photoelectrochemical enzymatic fuel cell-based self-powered biosensing platform for microRNA detection via DNA conformation change-controlled co-sensitization behavior.
Collapse
Affiliation(s)
- Panpan Gai
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Xinke Kong
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Shuxia Zhang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Panpan Song
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- P. R. China
| |
Collapse
|