1
|
Gao Z, Zhou Y, Zhang J, Foroughi J, Peng S, Baughman RH, Wang ZL, Wang CH. Advanced Energy Harvesters and Energy Storage for Powering Wearable and Implantable Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404492. [PMID: 38935237 DOI: 10.1002/adma.202404492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/21/2024] [Indexed: 06/28/2024]
Abstract
Wearable and implantable active medical devices (WIMDs) are transformative solutions for improving healthcare, offering continuous health monitoring, early disease detection, targeted treatments, personalized medicine, and connected health capabilities. Commercialized WIMDs use primary or rechargeable batteries to power their sensing, actuation, stimulation, and communication functions, and periodic battery replacements of implanted active medical devices pose major risks of surgical infections or inconvenience to users. Addressing the energy source challenge is critical for meeting the growing demand of the WIMD market that is reaching valuations in the tens of billions of dollars. This review critically assesses the recent advances in energy harvesting and storage technologies that can potentially eliminate the need for battery replacements. With a key focus on advanced materials that can enable energy harvesters to meet the energy needs of WIMDs, this review examines the crucial roles of advanced materials in improving the efficiencies of energy harvesters, wireless charging, and energy storage devices. This review concludes by highlighting the key challenges and opportunities in advanced materials necessary to achieve the vision of self-powered wearable and implantable active medical devices, eliminating the risks associated with surgical battery replacement and the inconvenience of frequent manual recharging.
Collapse
Affiliation(s)
- Ziyan Gao
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Yang Zhou
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Jin Zhang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Javad Foroughi
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhua Peng
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
| | - Chun H Wang
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
2
|
Oh S, Kim HJ, Lee S, Kim KJ, Kim SH. Carbon Nanotube Sheets/Elastomer Bilayer Harvesting Electrode with Biaxially Generated Electrical Energy. Polymers (Basel) 2024; 16:2477. [PMID: 39274111 PMCID: PMC11398110 DOI: 10.3390/polym16172477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/16/2024] Open
Abstract
Mechanical energy harvesters made from soft and flexible materials can be employed as energy sources for wearable and implantable devices. However, considering how human organs and joints expand and bend in many directions, the energy generated in response to a mechanical stimulus in only one direction limits the applicability of mechanical energy harvesters. Here, we report carbon nanotube (CNT) sheets/an elastomer bilayer harvesting electrode (CBHE) that converts two-axis mechanical stimulation into electrical energy. The novel microwinkled structure of the CBHE successfully demonstrates an electrochemical double-layer (EDL) capacitance change from biaxial mechanical stimulation, thereby generating electrical power (0.11 W kg-1). Additionally, the low modulus (0.16 MPa) and high deformability due to the elastomeric substrate suggest that the CBHE can be applied to the human body.
Collapse
Affiliation(s)
- Seongjae Oh
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Hyeon Ji Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Seon Lee
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| | - Keon Jung Kim
- Semiconductor R&D Center, Samsung Electronics, Hwaseong 18448, Republic of Korea
| | - Shi Hyeong Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan 15588, Republic of Korea
| |
Collapse
|
3
|
Ruhparwar A, Osswald A, Kim H, Wakili R, Müller J, Pizanis N, Al-Rashid F, Hendgen-Cotta U, Rassaf T, Kim SJ. Implanted Carbon Nanotubes Harvest Electrical Energy from Heartbeat for Medical Implants. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313688. [PMID: 38685135 DOI: 10.1002/adma.202313688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 04/10/2024] [Indexed: 05/02/2024]
Abstract
Reliability of power supply for current implantable electronic devices is a critical issue for longevity and for reducing the risk of device failure. Energy harvesting is an emerging technology, representing a strategy for establishing autonomous power supply by utilizing biomechanical movements in human body. Here, a novel "Twistron energy cell harvester" (TECH), consisting of coiled carbon nanotube yarn that converts mechanical energy of the beating heart into electrical energy, is presented. The performance of TECH is evaluated in an in vitro artificial heartbeat system which simulates the deformation pattern of the cardiac surface, reaching a maximum peak power of 1.42 W kg-1 and average power of 0.39 W kg-1 at 60 beats per minute. In vivo implantation of TECH onto the left ventricular surface in a porcine model continuously generates electrical energy from cardiac contraction. The generated electrical energy is used for direct pacing of the heart as documented by extensive electrophysiology mapping. Implanted modified carbon nanotubes are applicable as a source for harvesting biomechanical energy from cardiac motion for power supply or cardiac pacing.
Collapse
Affiliation(s)
- Arjang Ruhparwar
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625, Hannover, Germany
| | - Anja Osswald
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Heewoo Kim
- Department of Biomedical Engineering, National Creative Research Initiative Center for Self-Powered Actuation, Hanyang University, Seoul, 04763, South Korea
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, 45147, Essen, Germany
- Department of Cardiology and Vascular Medicine, University Hospital Frankfurt, Goethe University, 60590, Frankfurt, Germany
| | - Jan Müller
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Nikolaus Pizanis
- Department of Thoracic and Cardiovascular Surgery, West-German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Fadi Al-Rashid
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, 45147, Essen, Germany
| | - Ulrike Hendgen-Cotta
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, 45147, Essen, Germany
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West-German Heart and Vascular Center Essen, 45147, Essen, Germany
| | - Seon Jeong Kim
- Department of Biomedical Engineering, National Creative Research Initiative Center for Self-Powered Actuation, Hanyang University, Seoul, 04763, South Korea
| |
Collapse
|
4
|
Park T, Lee DY, Ahn BJ, Kim M, Bok J, Kang JS, Lee JM, Choi C, Jang Y. Implantable anti-biofouling biosupercapacitor with high energy performance. Biosens Bioelectron 2024; 243:115757. [PMID: 37862758 DOI: 10.1016/j.bios.2023.115757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 09/12/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023]
Abstract
Biofluidic open-type supercapacitors offer significant advantages over batteries in implantable electronics. However, poor energy storage in bioelectrolytes and performance degradation owing to electrode biofouling remain challenges and hamper their implementation. In this study, we present a flexible polydopamine (PDA)-infiltrated carbon nanotube (CNT) yarn (PDA/CNT) supercapacitor with high performance in biofluids, encapsulated by a hydrogel-barrier circular knit that provides anti-biofouling protection. Infiltration of the biopolymer PDA provide a hydrophilic coating to obtain a hydrophobic CNT electrode under aqueous conditions and an energy density 250-fold higher than that of the pristine CNT in the biofluid. The PDA/CNT supercapacitor exhibited remarkable energy performance in biological fluids in terms of the maximum areal capacitance (503.91 mF cm-2), energy density (274 μWh/cm2), and power density (25.52 mW cm-2). Moreover, it demonstrated negligible capacitance loss after 10,000 repeated charge/discharge cycles and bending tests. To prevent biofouling, the PDA/CNT electrode was encapsulated in an agarose-coated circular knit that allows free movement of the electrolyte. Notably, implanting an encapsulated PDA/CNT supercapacitor into the abdominal cavity of rat resulted in stable in vivo energy storage performance without biofouling for 21 d, and the charged supercapacitor was used successfully to power a light-emitting diode in vivo.
Collapse
Affiliation(s)
- Taegyu Park
- Department of Electronic Engineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Dong Yeop Lee
- Department of Electronic Engineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea
| | - Bum Ju Ahn
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Minwoo Kim
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Junsoo Bok
- Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea
| | - Ju-Seop Kang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea
| | - Jae Myeong Lee
- Department of Electronic Engineering, College of Engineering, Hanyang University, Seoul, 04763, South Korea; Department of Energy and Materials Engineering, College of Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, College of Engineering, Dongguk University, Seoul, 04620, South Korea
| | - Yongwoo Jang
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, South Korea; Department of Medical and Digital Engineering, College of Engineering, Hanyang University, Seoul 04736, South Korea.
| |
Collapse
|
5
|
Kim H, Rigo B, Wong G, Lee YJ, Yeo WH. Advances in Wireless, Batteryless, Implantable Electronics for Real-Time, Continuous Physiological Monitoring. NANO-MICRO LETTERS 2023; 16:52. [PMID: 38099970 PMCID: PMC10724104 DOI: 10.1007/s40820-023-01272-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 12/18/2023]
Abstract
This review summarizes recent progress in developing wireless, batteryless, fully implantable biomedical devices for real-time continuous physiological signal monitoring, focusing on advancing human health care. Design considerations, such as biological constraints, energy sourcing, and wireless communication, are discussed in achieving the desired performance of the devices and enhanced interface with human tissues. In addition, we review the recent achievements in materials used for developing implantable systems, emphasizing their importance in achieving multi-functionalities, biocompatibility, and hemocompatibility. The wireless, batteryless devices offer minimally invasive device insertion to the body, enabling portable health monitoring and advanced disease diagnosis. Lastly, we summarize the most recent practical applications of advanced implantable devices for human health care, highlighting their potential for immediate commercialization and clinical uses.
Collapse
Affiliation(s)
- Hyeonseok Kim
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Bruno Rigo
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Gabriella Wong
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yoon Jae Lee
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Woon-Hong Yeo
- IEN Center for Wearable Intelligent Systems and Healthcare, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Tech and Emory University School of Medicine, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Biosciences, Institute for Materials, Institute for Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
6
|
Kim J, Noh JH, Chun S, Kim SJ, Sim HJ, Choi C. Hierarchically Plied Mechano-Electrochemical Energy Harvesting Using a Scalable Kinematic Sensing Textile Woven from a Graphene-Coated Commercial Cotton Yarn. NANO LETTERS 2023; 23:7623-7632. [PMID: 37530440 DOI: 10.1021/acs.nanolett.3c02221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
Wearable sensing systems are suitable for monitoring human motion. To realize a cost-effective and self-powered strain-sensing fiber, we developed a mechano-electrochemical harvesting yarn and textile using hierarchically arranged plied yarns composed of meter-long graphene-coated cotton yarns. Such a fiber relies on the principle of electrochemical capacity change to convert mechanical energy to electric energy. Further, this harvester can be used as a self-powered strain sensor because its output depends on mechanical stimuli. Additionally, the yarn can be woven into a kinematic sensing textile that measures the strength and direction of the applied force. The textile-type harvester can successfully detect various human movements such as pressing, bending, and stretching. The proposed sensing fiber will pave the way for the development of advanced wearable systems for ubiquitous healthcare in the future.
Collapse
Affiliation(s)
- Juwan Kim
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Department of Advanced Battery Convergence Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Jun Ho Noh
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Department of Advanced Battery Convergence Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Sungwoo Chun
- Department of Electronics and Information Engineering, Korea University, Sejong 30019, Republic of Korea
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Hyeon Jun Sim
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
- Department of Advanced Battery Convergence Engineering, Dongguk University-Seoul, Seoul 04620, Republic of Korea
| |
Collapse
|
7
|
Xiahou X, Wu S, Guo X, Li H, Chen C, Xu M. Strategies for enhancing low-frequency performances of triboelectric, electrochemical, piezoelectric, and dielectric elastomer energy harvesting: recent progress and challenges. Sci Bull (Beijing) 2023; 68:1687-1714. [PMID: 37451961 DOI: 10.1016/j.scib.2023.06.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 05/12/2023] [Accepted: 06/25/2023] [Indexed: 07/18/2023]
Abstract
Mechanical energy harvesting transforms various forms of mechanical energy, including ocean waves, wind, and human motions, into electrical energy, providing a viable solution to address the depletion of fossil fuels and environmental problems. However, one major obstacle for the direct conversion of mechanical energy into electricity is the low frequency of the majority of mechanical energy sources (≤5 Hz), resulting in low energy conversion efficiency, output power and output current. Over recent years, a numerous innovative technologies have been reported to enable improved energy harvesting utilizing various mechanisms. This review aims to present an in-depth analysis of the research progress in low-frequency energy harvesting technologies that rely on triboelectric, electrochemical, piezoelectric, and dielectric elastomer effects. The discussion commences with an overview of the difficulties associated with low-frequency energy harvesting. The critical aspects that impact the low-frequency performance of mechanical energy harvesters, including working mechanisms, environmental factors, and device compositions, are elucidated, while the advantages and disadvantages of different mechanisms in low-frequency operation are compared and summarized. Moreover, this review expounds on the strategies that can improve the low-frequency energy harvesting performance through the modulations of material compositions, structures, and devices. It also showcases the applications of mechanical energy harvesters in energy harvesting via waves, wind, and human motions. Finally, the recommended choices of mechanical energy harvesters with different mechanisms for various applications are offered, which can assist in the design and fabrication process.
Collapse
Affiliation(s)
- Xingzi Xiahou
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Sijia Wu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Guo
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Huajian Li
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chen Chen
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Ming Xu
- School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
8
|
Hu X, Bao X, Zhang M, Fang S, Liu K, Wang J, Liu R, Kim SH, Baughman RH, Ding J. Recent Advances in Carbon Nanotube-Based Energy Harvesting Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2303035. [PMID: 37209369 DOI: 10.1002/adma.202303035] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 05/14/2023] [Indexed: 05/22/2023]
Abstract
There has been enormous interest in technologies that generate electricity from ambient energy such as solar, thermal, and mechanical energy, due to their potential for providing sustainable solutions to the energy crisis. One driving force behind the search for new energy-harvesting technologies is the desire to power sensor networks and portable devices without batteries, such as self-powered wearable electronics, human health monitoring systems, and implantable wireless sensors. Various energy harvesting technologies have been demonstrated in recent years. Among them, electrochemical, hydroelectric, triboelectric, piezoelectric, and thermoelectric nanogenerators have been extensively studied because of their special physical properties, ease of application, and sometimes high obtainable efficiency. Multifunctional carbon nanotubes (CNTs) have attracted much interest in energy harvesting because of their exceptionally high gravimetric power outputs and recently obtained high energy conversion efficiencies. Further development of this field, however, still requires an in-depth understanding of harvesting mechanisms and boosting of the electrical outputs for wider applications. Here, various CNT-based energy harvesting technologies are comprehensively reviewed, focusing on working principles, typical examples, and future improvements. The last section discusses the existing challenges and future directions of CNT-based energy harvesters.
Collapse
Affiliation(s)
- Xinghao Hu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Xianfu Bao
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Mengmeng Zhang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Kangyu Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Jian Wang
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Runmin Liu
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Shi Hyeong Kim
- Department of Advanced Textile R&D, Korea Institute of Industrial Technology, Ansan-si, Gyeonggi-do, 15588, Republic of Korea
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics & School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| |
Collapse
|
9
|
Leng X, Mei G, Zhang G, Liu Z, Zhou X. Tethering of twisted-fiber artificial muscles. Chem Soc Rev 2023; 52:2377-2390. [PMID: 36919405 DOI: 10.1039/d2cs00489e] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Twisted-fiber artificial muscles, a new type of soft actuator, exhibit significant potential for use in applications related to lightweight smart devices and soft robotics. Fiber twisting generates internal torque and a spiral architecture, exhibiting rotation, contraction, or elongation as a result of fiber volume change. Untethering a twisted fiber often results in fiber untwisting and loss of stored torque energy. Preserving the torque in twisted fibers during actuation is necessary to realize a reversible and stable artificial muscle performance; this is a key issue that has not yet been systematically discussed and reviewed. This review summarizes the mechanisms for preserving the torque within twisted fibers and the potential applications of such systems. The potential challenges and future directions of research related to twisted-fiber artificial muscles are also discussed.
Collapse
Affiliation(s)
- Xueqi Leng
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guangkai Mei
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Guanghao Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Zunfeng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| | - Xiang Zhou
- Department of Science, China Pharmaceutical University, Nanjing 211198, China. .,State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Smart Sensing Interdisciplinary Science Center, College of Chemistry, Nankai University, Tianjin 300350, China.
| |
Collapse
|
10
|
Kamireddi D, Street RM, Schauer CL. Electrospun nanoyarns: A comprehensive review of manufacturing methods and applications. POLYM ENG SCI 2023. [DOI: 10.1002/pen.26240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Divya Kamireddi
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| | - Reva M. Street
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| | - Caroline L. Schauer
- Materials Science and Engineering Drexel University Philadelphia Pennsylvania USA
| |
Collapse
|
11
|
Hu X, Bao X, Wang J, Zhou X, Hu H, Wang L, Rajput S, Zhang Z, Yuan N, Cheng G, Ding J. Enhanced energy harvester performance by a tension annealed carbon nanotube yarn at extreme temperatures. NANOSCALE 2022; 14:16185-16192. [PMID: 36278850 DOI: 10.1039/d2nr05303a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Carbon nanotube (CNT) yarns generate electrical energy when they were stretched in an electrolyte, and they have been exploited for diverse applications such as self-powered sensors and human health monitoring systems. Here we improved the capacitance change and harvester performance of a coiled CNT yarn by using an incandescent tension annealing process (ITAP). When undergoing stretching cycles at 1 Hz, a coiled ITAP yarn can produce 2.5 times peak electrical power and 1.6 times output voltage than that of a neat CNT yarn. Electrochemical analysis shows that the capacitance of the ITAP yarn decreased by 20.4% when it was stretched to 30% strain. Microstructure results demonstrate that the large capacitance change may result from the densified electrochemical surface by the ITAP. Moreover, the potential of the zero charge (PZC) of ITAP yarns was shifted to a more negative value than that of the neat CNT yarn, which means that more charges were injected into the ITAP yarn once it was immersed in an electrolyte. Thus, the large capacitance change and initial injected charge are two main reasons for enhancing the harvester performance of the ITAP yarn. In addition, by annealing a twisted CNT yarn before it was coiled, we further increased the output peak power density to 170 W kg-1 at a strain of 55%.
Collapse
Affiliation(s)
- Xinghao Hu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, PR China.
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xianfu Bao
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Jian Wang
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Xiaoshuang Zhou
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Hongwei Hu
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Luhua Wang
- Suzhou Institute of Nano-tech and Nano-bionics, Chinese Academy of Sciences, Suzhou 215123, China
| | - Shailendra Rajput
- Department of Physics, University Centre for Research & Development, Chandigarh University, Mohali 140431, India
| | - Zhongqiang Zhang
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, PR China.
| | - Ningyi Yuan
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Guanggui Cheng
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, PR China.
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jianning Ding
- Institute of Intelligent Flexible Mechatronics, Jiangsu University, Zhenjiang, 212013, PR China.
- Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
12
|
Sim HJ, Choi C. Microbuckled Mechano-electrochemical Harvesting Fiber for Self-Powered Organ Motion Sensors. NANO LETTERS 2022; 22:8695-8703. [PMID: 36301734 DOI: 10.1021/acs.nanolett.2c03296] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Mechanical harvesters have attracted tremendous attention as self-powered strain sensors; previous harvesters required high stress to stretch the fiber because of their high Young's modulus and low elasticity. We report on a mechano-electrochemical harvesting (MECH) fiber based on the new buckle structure, which has a low Young's modulus (2 MPa) with high elasticity (up to 100%) in a similar physiological fluid. MECH converts mechanical energy into electrical energy by changing the capacitance due to changing the surface area caused by the microbuckle on the surface. The damage to the cells can be minimized by their softness; the fiber was stitched on the tissue of the pig stomach while maintaining the performance like a suture fiber. Additionally, the fiber successfully operated in an organ-similar system, which is composed of the stomach or bladder of a pig. The fiber has a high potential to be applied in wearable energy sources and self-powered strain sensors.
Collapse
Affiliation(s)
- Hyeon Jun Sim
- Department of Energy and Materials Engineering, Dongguk University, Seoul04620, Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, Dongguk University, Seoul04620, Korea
| |
Collapse
|
13
|
Multimodal collective swimming of magnetically articulated modular nanocomposite robots. Nat Commun 2022; 13:6750. [PMID: 36347849 PMCID: PMC9643480 DOI: 10.1038/s41467-022-34430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 10/26/2022] [Indexed: 11/11/2022] Open
Abstract
Magnetically responsive composites can impart maneuverability to miniaturized robots. However, collective actuation of these composite robots has rarely been achieved, although conducting cooperative tasks is a promising strategy for accomplishing difficult missions with a single robot. Here, we report multimodal collective swimming of ternary-nanocomposite-based magnetic robots capable of on-demand switching between rectilinear translational swimming and rotational swimming. The nanocomposite robots comprise a stiff yet lightweight carbon nanotube yarn (CNTY) framework surrounded by a magnetic polymer composite, which mimics the hierarchical architecture of musculoskeletal systems, yielding magnetically articulated multiple robots with an agile above-water swimmability (~180 body lengths per second) and modularity. The multiple robots with multimodal swimming facilitate the generation and regulation of vortices, enabling novel vortex-induced transportation of thousands of floating microparticles and heavy semi-submerged cargos. The controllable collective actuation of these biomimetic nanocomposite robots can lead to versatile robotic functions, including microplastic removal, microfluidic vortex control, and transportation of pharmaceuticals.
Collapse
|
14
|
Jang Y, Moon JH, Lee C, Lee S, Kim H, Song GH, Spinks GM, Wallace GG, Kim SJ. A Coiled Carbon Nanotube Yarn-Integrated Surface Electromyography System To Monitor Isotonic and Isometric Movements. ACS APPLIED MATERIALS & INTERFACES 2022; 14:45149-45155. [PMID: 36169191 DOI: 10.1021/acsami.2c11811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A surface electromyogram (sEMG) electrode collects electrical currents generated by neuromuscular activity by a noninvasive technique on the skin. It is particularly attractive for wearable systems for various human activities and health care monitoring. However, it remains challenging to discriminate EMG signals from isotonic (concentric/eccentric) and isometric movements. By applying nanotechnology, we provide a coiled carbon nanotube (CNT) yarn-integrated sEMG device to overcome sEMG-based motion recognition. When the arm was contracted at different angles, the sEMG-derived root mean square amplitude signals were constant regardless of the angle of the moving arm. However, the coiled CNT yarn-derived open circuit voltage (OCV) signals proportionally increased when the arm's angle increased, and presented negative and positive values depending on the moving direction of the arm. Moreover, isometric contraction is characterized by the onset of EMG signals without an OCV signal, and isotonic contraction is determined by both EMG signals and OCV signals. Taken together, the integration of EMG and coiled CNT yarn electrodes provides complementary information, including the strength, direction, and degree of muscle movement. Therefore, we suggest that our system has high potential as a wearable system to monitor human motions in industrial and human system applications.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
- Department of Pharmacology, College of Medicine, Hanyang University, Seoul 04736, Korea
| | - Ji Hwan Moon
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Chanho Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Sungmin Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Heesoo Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Gyu Hyeon Song
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| | - Geoffrey M Spinks
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electro Materials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| | - Gordon G Wallace
- Intelligent Polymer Research Institute, ARC Centre of Excellence for Electro Materials Science, AIIM Facility, Innovation Campus, University of Wollongong, North Wollongong, NSW 2522, Australia
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
- Center for Self-Powered Actuation, Department of Electronic Engineering, Hanyang University, Seoul 04763, South Korea
| |
Collapse
|
15
|
Zhu Y, Yue H, Aslam MJ, Bai Y, Zhu Z, Wei F. Controllable Preparation and Strengthening Strategies towards High-Strength Carbon Nanotube Fibers. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3478. [PMID: 36234606 PMCID: PMC9565896 DOI: 10.3390/nano12193478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Carbon nanotubes (CNTs) with superior mechanical properties are expected to play a role in the next generation of critical engineering mechanical materials. Crucial advances have been made in CNTs, as it has been reported that the tensile strength of defect-free CNTs and carbon nanotube bundles can approach the theoretical limit. However, the tensile strength of macro carbon nanotube fibers (CNTFs) is far lower than the theoretical level. Although some reviews have summarized the development of such fiber materials, few of them have focused on the controllable preparation and performance optimization of high-strength CNTFs at different scales. Therefore, in this review, we will analyze the characteristics and latest challenges of multiscale CNTFs in preparation and strength optimization. First, the structure and preparation of CNTs are introduced. Then, the preparation methods and tensile strength characteristics of CNTFs at different scales are discussed. Based on the analysis of tensile fracture, we summarize some typical strategies for optimizing tensile performance around defect and tube-tube interaction control. Finally, we introduce some emerging applications for CNTFs in mechanics. This review aims to provide insights and prospects for the controllable preparation of CNTFs with ultra-high tensile strength for emerging cutting-edge applications.
Collapse
Affiliation(s)
- Yukang Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongjie Yue
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Muhammad Junaid Aslam
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yunxiang Bai
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Zhenxing Zhu
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Fei Wei
- Beijing Key Laboratory of Green Chemical Reaction Engineering and Technology, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Li B, Liu S, Xu X, Yang H, Zhou Y, Yang D, Zhang Y, Li J. Grape‐clustered polyaniline grafted with carbon nanotube woven film as a flexible electrode material for supercapacitors. J Appl Polym Sci 2022. [DOI: 10.1002/app.52785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bingjian Li
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Shi Liu
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Xixi Xu
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Haicun Yang
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Yinjie Zhou
- School of Materials Science and Engineering Changzhou University Changzhou China
| | - Dan Yang
- School of Materials Science and Engineering Changzhou University Changzhou China
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Changzhou University Changzhou China
| | - Yun Zhang
- Pan Asian Microvent Tech (Jiangsu) Corporation Changzhou Key Laboratory of Functional Film Materials Changzhou China
| | - Jinchun Li
- School of Materials Science and Engineering Changzhou University Changzhou China
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials Changzhou University Changzhou China
- Changzhou University National‐Local Joint Engineering Research Center of Biomass Refining and High‐Quality Utilization Changzhou China
| |
Collapse
|
17
|
Sim HJ, Kim J, Choi JH, Oh M, Choi C. Stretchy Electrochemical Harvesters for Binarized Self-Powered Strain Gauge-Based Static Motion Sensors. SENSORS (BASEL, SWITZERLAND) 2022; 22:4542. [PMID: 35746323 PMCID: PMC9231270 DOI: 10.3390/s22124542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The human monitoring system has motivated the search for new technology, leading to the development of a self-powered strain sensor. We report on the stretchable and soft stretchy electrochemical harvester (SECH) bilayer for a binarized self-powered strain gauge in dynamic and static motion. The active surface area participating in the electrochemical reaction was enhanced after stretching the SECH in the electrolyte, leading to an increase in the electrochemical double-layer capacitance. A change in the capacitance induced a change in the electrical potential of the bilayer, generating electrical energy. The SECH overcomes several challenges of the previous mechano-electrochemical harvester: The harvester had high elasticity (50%), which satisfied the required strain during human motion. The harvester was highly soft (modulus of 5.8 MPa), 103 times lower than that of the previous harvester. The SECH can be applied to a self-powered strain gauge, capable of measuring stationary deformation and low-speed motion. The SECH created a system to examine the configuration of the human body, as demonstrated by the human monitoring sensor from five independent SECH assembled on the hand. Furthermore, the sensing information was simplified through the binarized signal. It can be used to assess the hand configuration for hand signals and sign language.
Collapse
|
18
|
Fang J, Zhuang Y, Liu K, Chen Z, Liu Z, Kong T, Xu J, Qi C. A Shift from Efficiency to Adaptability: Recent Progress in Biomimetic Interactive Soft Robotics in Wet Environments. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2104347. [PMID: 35072360 PMCID: PMC8922102 DOI: 10.1002/advs.202104347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/30/2021] [Indexed: 05/07/2023]
Abstract
Research field of soft robotics develops exponentially since it opens up many imaginations, such as human-interactive robot, wearable robots, and transformable robots in unpredictable environments. Wet environments such as sea and in vivo represent dynamic and unstructured environments that adaptive soft robots can reach their potentials. Recent progresses in soft hybridized robotics performing tasks underwater herald a diversity of interactive soft robotics in wet environments. Here, the development of soft robots in wet environments is reviewed. The authors recapitulate biomimetic inspirations, recent advances in soft matter materials, representative fabrication techniques, system integration, and exemplary functions for underwater soft robots. The authors consider the key challenges the field faces in engineering material, software, and hardware that can bring highly intelligent soft robots into real world.
Collapse
Affiliation(s)
- Jielun Fang
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Yanfeng Zhuang
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Kailang Liu
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| | - Zhuo Chen
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Zhou Liu
- College of Chemistry and Environmental EngineeringShenzhen UniversityShenzhenGuangdong518000China
| | - Tiantian Kong
- Department of Biomedical EngineeringSchool of MedicineShenzhen UniversityShenzhenGuangdong518000China
| | - Jianhong Xu
- The State Key Laboratory of Chemical EngineeringDepartment of Chemical EngineeringTsinghua UniversityBeijing100084China
| | - Cheng Qi
- College of Mechatronics and Control EngineeringShenzhen UniversityShenzhen518000China
| |
Collapse
|
19
|
Son W, Chun S, Lee JM, Jeon G, Sim HJ, Kim HW, Cho SB, Lee D, Park J, Jeon J, Suh D, Choi C. Twist-Stabilized, Coiled Carbon Nanotube Yarns with Enhanced Capacitance. ACS NANO 2022; 16:2661-2671. [PMID: 35072453 DOI: 10.1021/acsnano.1c09465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Coil-structured carbon nanotube (CNT) yarns have recently attracted considerable attention. However, structural instability due to heavy twist insertion, and inherent hydrophobicity restrict its wider application. We report a twist-stable and hydrophilic coiled CNT yarn produced by the facile electrochemical oxidation (ECO) method. The ECO-treated coiled CNT yarn is prepared by applying low potentiostatic voltages (3.0-4.5 V vs Ag/AgCl) between the coiled CNT yarn and a counter electrode immersed in an electrolyte for 10-30 s. Notably, a large volume expansion of the coiled CNT yarns prepared by electrochemical charge injection produces morphological changes, such as surface microbuckling and large reductions in the yarn bias angle and diameter, resulting in the twist-stability of the dried ECO-treated coiled CNT yarns with increased yarn density. The resulting yarns are well functionalized with oxygen-containing groups; they exhibit extrinsic hydrophilicity and significantly improved capacitance (approximately 17-fold). We quantitatively explain the origin of the capacitance improvement using theoretical simulations and experimental observations. Stretchable supercapacitors fabricated with the ECO-treated coiled CNT yarns show high capacitance (12.48 mF/cm and 172.93 mF/cm2, respectively) and great stretchability (80%). Moreover, the ECO-treated coiled CNT yarns are strong enough to be woven into a mask as wearable supercapacitors.
Collapse
Affiliation(s)
- Wonkyeong Son
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Sungwoo Chun
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea
| | - Jae Myeong Lee
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Gichan Jeon
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Hyeon Jun Sim
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| | - Hyeon Woo Kim
- Convergence Technology Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju-si, 52851, Republic of Korea
| | - Sung Beom Cho
- Convergence Technology Division, Korea Institute of Ceramic Engineering and Technology (KICET), Jinju-si, 52851, Republic of Korea
| | - Dongyun Lee
- Department of Nanoenergy Engineering, Pusan National University, Busan, 46241, Republic of Korea
| | - Junyoung Park
- Department of Energy and Advanced Material Engineering, Dongguk University-Seoul, 30, Pildong-ro 1gil, Jung-gu, Seoul 04620, Republic of Korea
| | - Joonhyeon Jeon
- Division of Electronics & Electronical Engineering, Dongguk University-Seoul, 30, Pildong-ro 1gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Dongseok Suh
- Department of Energy Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Changsoon Choi
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea
| |
Collapse
|
20
|
Jang Y, Kim SM, Kim E, Lee DY, Kang TM, Kim SJ. Biomimetic cell-actuated artificial muscle with nanofibrous bundles. MICROSYSTEMS & NANOENGINEERING 2021; 7:70. [PMID: 34567782 PMCID: PMC8433352 DOI: 10.1038/s41378-021-00280-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/13/2021] [Accepted: 04/30/2021] [Indexed: 06/13/2023]
Abstract
Biohybrid artificial muscle produced by integrating living muscle cells and their scaffolds with free movement in vivo is promising for advanced biomedical applications, including cell-based microrobotic systems and therapeutic drug delivery systems. Herein, we provide a biohybrid artificial muscle constructed by integrating living muscle cells and their scaffolds, inspired by bundled myofilaments in skeletal muscle. First, a bundled biohybrid artificial muscle was fabricated by the integration of skeletal muscle cells and hydrophilic polyurethane (HPU)/carbon nanotube (CNT) nanofibers into a fiber shape similar to that of natural skeletal muscle. The HPU/CNT nanofibers provided a stretchable basic backbone of the 3-dimensional fiber structure, which is similar to actin-myosin scaffolds. The incorporated skeletal muscle fibers contribute to the actuation of biohybrid artificial muscle. In fact, electrical field stimulation reversibly leads to the contraction of biohybrid artificial muscle. Therefore, the current development of cell-actuated artificial muscle provides great potential for energy delivery systems as actuators for implantable medibot movement and drug delivery systems. Moreover, the innervation of the biohybrid artificial muscle with motor neurons is of great interest for human-machine interfaces.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Sung Min Kim
- Department of Physical Education and Human-Tech Convergence Program (BK21 Four), Hanyang University, Seoul, 04763 South Korea
| | - Eunyoung Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Dong Yeop Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| | - Tong Mook Kang
- Department of Physiology, Sungkyunkwan University School of Medicine, Suwon, 16419 South Korea
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul, 04763 South Korea
| |
Collapse
|
21
|
Abstract
Nature's evolution over billions of years has led to the development of different kinds of twisted structures in a variety of biological species. Twisted fibers from nanoscale- to micrometer-scale diameter have been prepared by mimicking natural twisted structures. Mechanically inserting twist in a yarn is an efficient and important method, which generates internal stress, changes the macromolecular orientation, and increases compactness. Recently, twist insertion has been found to produce interesting fiber properties, including chemical, mechanical, electrical, and thermal properties. This Account summarizes recent progress in how twist insertion affects the chemical and physical properties of fibers and describes their applications in artificial spider silk, artificial muscles, refrigeration, and electricity generation.Twist and associated chirality widely arise in nature from molecules to nano- and microscale materials to macroscopic objects such as DNA, RNA, peptides, and chromosomes. Such twisted architectures play an important role in improving the mechanical properties and enabling biological functions. Inspired by the beauty and interesting properties of twisted structures, a wide range of artificial chiral materials with twisted or coiled structures have been prepared, from organic and inorganic nanorods, nanotubes, and nanobelts to macroscopic architectures and buildings.An efficient way to prepare twisted materials is by inserting twist in fibers or yarns, which is an ancient technique used to make yarns or ropes (Wang, R., et al. Science 2019, 366, 216-221. Mu, J., et al. Science 2019, 365, 150-155). During the twisting process, torque is generated in fibers or yarns, the structure of the polymer chains becomes helically oriented, and the fibers in a yarn become more compact. Therefore, the twisting of fibers and yarns can produce novel chemical, mechanical, electrical, and thermal properties (Dou, Y., et al. Nat. Commun. 2019, 10, 1-10. Kim, S. H., et al. Science 2017, 357, 773-778). This Account focuses on the novel properties generated by twist insertion. The mechanical stress and strain can be optimized in a yarn by twist insertion, and different types of fibers exhibit rather different mechanisms.In the first section, we will focus on recent progress in improving the mechanical properties of twisted fibers, including carbon nanotube yarns, single-filament fibers, and hydrogel fibers. Torque was generated by twist insertion in a fiber or a yarn, and the balance of internal torsional stress can be changed by causing a change in yarn volume. This will result in twist release and torsional and tensile actuations of the yarn, which will be described in the second section. Twisting a yarn generally makes it more compact, which will result in a mechanically induced change in capacitance, supercapacitance, and other useful electrochemical properties when a conducting yarn is in an electrolyte. Such processes were used to develop novel devices for twist-based electricity generation, called twistrons, which will be discussed in the third section. Twist insertion or release also changes the polymer chain orientation or crystal structure, resulting in changes in entropy. This is called the twistocaloric effect, which was used to develop a new cooling method, and will be discussed in the last section.
Collapse
Affiliation(s)
- Xiang Zhou
- Key Laboratory of Functional Polymer Materials, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
- College of Science, China Pharmaceutical University, Nanjing 210009, China
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| | - Xueqi Leng
- Key Laboratory of Functional Polymer Materials, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Zunfeng Liu
- Key Laboratory of Functional Polymer Materials, College of Chemistry, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300350, China
| | - Ray H. Baughman
- Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
22
|
Liu Y, Li Z, Feng Y, Yao J. Scale production of conductive cotton yarns by sizing process and its conductive mechanism. SN APPLIED SCIENCES 2021. [DOI: 10.1007/s42452-021-04493-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
AbstractConductive yarn is an important component and connector of electronic and intelligent textiles, and with the development of high-performance and low-cost conductive yarns, it has attracted more attention. Herein, a simple, scalable sizing process was introduced to prepare the graphene-coated conductive cotton yarns. The electron conductive mechanism of fibers and yarns were studied by the percolation and binomial distribution theory, respectively. The conductive paths are formed due to the conductive fibers' contact with each other, and the results revealed that the connection probability of the fibers in the yarn (p) is proportional to the square of the fibers filling coefficient (φ) as p ∝ φ2. The calculation formula of the staple spun yarn resistance can be derived from this conclusion and verified by experiments, which further proves the feasibility of produce conductive cotton yarns by sizing process.
Collapse
|
23
|
Jang Y, Park T, Kim E, Park JW, Lee DY, Kim SJ. Implantable Biosupercapacitor Inspired by the Cellular Redox System. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202101388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yongwoo Jang
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Taegyu Park
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Eunyoung Kim
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Jong Woo Park
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Dong Yeop Lee
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| | - Seon Jeong Kim
- Center for Self-powered Actuation and Department of Biomedical Engineering Hanyang University Seoul 04736 Korea
| |
Collapse
|
24
|
Jang Y, Park T, Kim E, Park JW, Lee DY, Kim SJ. Implantable Biosupercapacitor Inspired by the Cellular Redox System. Angew Chem Int Ed Engl 2021; 60:10563-10567. [PMID: 33565220 DOI: 10.1002/anie.202101388] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Indexed: 11/10/2022]
Abstract
The carbon nanotube (CNT) yarn supercapacitor has high potential for in vivo energy storage because it can be used in aqueous environments and stitched to inner parts of the body, such as blood vessels. The biocompatibility issue for frequently used pseudocapacitive materials, such as metal oxides, is controversial in the human body. Here, we report an implantable CNT yarn supercapacitor inspired by the cellular redox system. In all living cells, nicotinamide adenine dinucleotide (NAD) is a key redox biomolecule responsible for cellular energy transduction to produce adenosine triphosphate (ATP). Based on this redox system, CNT yarn electrodes were fabricated by inserting a twist in CNT sheets with electrochemically deposited NAD and benzoquinone for redox shuttling. Consequently, the NAD/BQ/CNT yarn electrodes exhibited the maximum area capacitance (55.73 mF cm-2 ) under physiological conditions, such as phosphate-buffered saline and serum. In addition, the yarn electrodes showed a negligible loss of capacitance after 10 000 repeated charge/discharge cycles and deformation tests (bending/knotting). More importantly, NAD/BQ/CNT yarn electrodes implanted into the abdominal cavity of a rat's skin exhibited the stable in vivo electrical performance of a supercapacitor. Therefore, these findings demonstrate a redox biomolecule-applied platform for implantable energy storage devices.
Collapse
Affiliation(s)
- Yongwoo Jang
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Taegyu Park
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Eunyoung Kim
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Jong Woo Park
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Dong Yeop Lee
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| | - Seon Jeong Kim
- Center for Self-powered Actuation and Department of Biomedical Engineering, Hanyang University, Seoul, 04736, Korea
| |
Collapse
|
25
|
Park S, Nguyen DV, Kang L. Immobilized nanoneedle-like structures for intracellular delivery, biosensing and cellular surgery. Nanomedicine (Lond) 2021; 16:335-349. [PMID: 33533658 DOI: 10.2217/nnm-2020-0337] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The rapid advancements of nanotechnology over the recent years have reformed the methods used for treating human diseases. Nanostructures including nanoneedles, nanorods, nanowires, nanofibers and nanotubes have exhibited their potential roles in drug delivery, biosensing, cancer therapy, regenerative medicine and intracellular surgery. These high aspect ratio structures enhance targeted drug delivery with spatiotemporal control while also demonstrating their role as an efficient intracellular biosensor with minimal invasiveness. This review discusses the history and emergence of these nanostructures and their fabrication methods. This review also provides an overview of the different applications of nanoneedle systems, further highlighting the importance of greater investigation into these nanostructures for future medicine.
Collapse
Affiliation(s)
- Sol Park
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| | - Duc-Viet Nguyen
- Nusmetics Pte. Ltd, i4 building, 3 Research Link, Singapore 117602, Republic of Singapore
| | - Lifeng Kang
- School of Pharmacy, Faculty of Medicine & Health, University of Sydney, NSW 2006, Australia
| |
Collapse
|
26
|
Kim H, Park JW, Hyeon JS, Sim HJ, Jang Y, Shim Y, Huynh C, Baughman RH, Kim SJ. Electrical energy harvesting from ferritin biscrolled carbon nanotube yarn. Biosens Bioelectron 2020; 164:112318. [DOI: 10.1016/j.bios.2020.112318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 05/19/2020] [Accepted: 05/20/2020] [Indexed: 12/31/2022]
|