1
|
Kim J, Kim JM, Choi K, Park JE, Nam JM. Open Cross-gap Gold Nanocubes with Strong, Large-Area, Symmetric Electromagnetic Field Enhancement for On-Particle Molecular-Fingerprint Raman Bioassays. J Am Chem Soc 2024; 146:14012-14021. [PMID: 38738871 DOI: 10.1021/jacs.4c02099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2024]
Abstract
Plasmonic nanoparticles with an externally open nanogap can localize the electromagnetic (EM) field inside the gap and directly detect the target via the open nanogap with surface-enhanced Raman scattering (SERS). It would be beneficial to design and synthesize the open gap nanoprobes in a high yield for obtaining uniform and quantitative signals from randomly oriented nanoparticles and utilizing these particles for direct SERS analysis. Here, we report a facile strategy to synthesize open cross-gap (X-gap) nanocubes (OXNCs) with size- and EM field-tunable gaps in a high yield. The site-specific growth of Au budding structures at the corners of the AuNC using the principle that the Au deposition rate is faster than the surface diffusion rate of the adatoms allows for a uniform X-gap formation. The average SERS enhancement factor (EF) for the OXNCs with 2.6 nm X-gaps was 1.2 × 109, and the EFs were narrowly distributed within 1 order of magnitude for ∼93% of the measured OXNCs. OXNCs consistently displayed strong EM field enhancement on large particle surfaces for widely varying incident light polarization directions, and this can be attributed to the symmetric X-gap geometry and the availability of these gaps on all 6 faces of a cube. Finally, the OXNC probes with varying X-gap sizes have been utilized in directly detecting biomolecules with varying sizes without Raman dyes. The concept, synthetic method, and biosensing results shown here with OXNCs pave the way for designing, synthesizing, and utilizing plasmonic nanoparticles for selective, quantitative molecular-fingerprint Raman sensing and imaging applications.
Collapse
Affiliation(s)
- Jiyeon Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Kyungin Choi
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jeong-Eun Park
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul 08826, South Korea
| |
Collapse
|
2
|
Vázquez-Iglesias L, Stanfoca Casagrande GM, García-Lojo D, Ferro Leal L, Ngo TA, Pérez-Juste J, Reis RM, Kant K, Pastoriza-Santos I. SERS sensing for cancer biomarker: Approaches and directions. Bioact Mater 2024; 34:248-268. [PMID: 38260819 PMCID: PMC10801148 DOI: 10.1016/j.bioactmat.2023.12.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/24/2024] Open
Abstract
These days, cancer is thought to be more than just one illness, with several complex subtypes that require different screening approaches. These subtypes can be distinguished by the distinct markings left by metabolites, proteins, miRNA, and DNA. Personalized illness management may be possible if cancer is categorized according to its biomarkers. In order to stop cancer from spreading and posing a significant risk to patient survival, early detection and prompt treatment are essential. Traditional cancer screening techniques are tedious, time-consuming, and require expert personnel for analysis. This has led scientists to reevaluate screening methodologies and make use of emerging technologies to achieve better results. Using time and money saving techniques, these methodologies integrate the procedures from sample preparation to detection in small devices with high accuracy and sensitivity. With its proven potential for biomedical use, surface-enhanced Raman scattering (SERS) has been widely used in biosensing applications, particularly in biomarker identification. Consideration was given especially to the potential of SERS as a portable clinical diagnostic tool. The approaches to SERS-based sensing technologies for both invasive and non-invasive samples are reviewed in this article, along with sample preparation techniques and obstacles. Aside from these significant constraints in the detection approach and techniques, the review also takes into account the complexity of biological fluids, the availability of biomarkers, and their sensitivity and selectivity, which are generally lowered. Massive ways to maintain sensing capabilities in clinical samples are being developed recently to get over this restriction. SERS is known to be a reliable diagnostic method for treatment judgments. Nonetheless, there is still room for advancement in terms of portability, creation of diagnostic apps, and interdisciplinary AI-based applications. Therefore, we will outline the current state of technological maturity for SERS-based cancer biomarker detection in this article. The review will meet the demand for reviewing various sample types (invasive and non-invasive) of cancer biomarkers and their detection using SERS. It will also shed light on the growing body of research on portable methods for clinical application and quick cancer detection.
Collapse
Affiliation(s)
- Lorena Vázquez-Iglesias
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | | | - Daniel García-Lojo
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Letícia Ferro Leal
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Barretos School of Medicine Dr. Paulo Prata—FACISB, Barretos, 14785-002, Brazil
| | - Tien Anh Ngo
- Vinmec Tissue Bank, Vinmec Health Care System, Hanoi, Viet Nam
| | - Jorge Pérez-Juste
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Rui Manuel Reis
- Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, Brazil
- Life and Health Sciences Research Institute (ICVS), School of Medicine, Campus de Gualtar, University of Minho, 4710-057 Braga, Portugal
- ICVS/3B's—PT Government Associate Laboratory, 4710-057, Braga, Portugal
| | - Krishna Kant
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| | - Isabel Pastoriza-Santos
- CINBIO, Universidade de Vigo, Campus Universitario As Lagoas Marcosende, Vigo 36310, Spain
- Galicia Sur Health Research Institute (IIS Galicia Sur), 36310, Vigo, Spain
| |
Collapse
|
3
|
Sibug-Torres SM, Grys DB, Kang G, Niihori M, Wyatt E, Spiesshofer N, Ruane A, de Nijs B, Baumberg JJ. In situ electrochemical regeneration of nanogap hotspots for continuously reusable ultrathin SERS sensors. Nat Commun 2024; 15:2022. [PMID: 38448412 PMCID: PMC10917746 DOI: 10.1038/s41467-024-46097-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 02/13/2024] [Indexed: 03/08/2024] Open
Abstract
Surface-enhanced Raman spectroscopy (SERS) harnesses the confinement of light into metallic nanoscale hotspots to achieve highly sensitive label-free molecular detection that can be applied for a broad range of sensing applications. However, challenges related to irreversible analyte binding, substrate reproducibility, fouling, and degradation hinder its widespread adoption. Here we show how in-situ electrochemical regeneration can rapidly and precisely reform the nanogap hotspots to enable the continuous reuse of gold nanoparticle monolayers for SERS. Applying an oxidising potential of +1.5 V (vs Ag/AgCl) for 10 s strips a broad range of adsorbates from the nanogaps and forms a metastable oxide layer of few-monolayer thickness. Subsequent application of a reducing potential of -0.80 V for 5 s in the presence of a nanogap-stabilising molecular scaffold, cucurbit[5]uril, reproducibly regenerates the optimal plasmonic properties with SERS enhancement factors ≈106. The regeneration of the nanogap hotspots allows these SERS substrates to be reused over multiple cycles, demonstrating ≈5% relative standard deviation over at least 30 cycles of analyte detection and regeneration. Such continuous and reliable SERS-based flow analysis accesses diverse applications from environmental monitoring to medical diagnostics.
Collapse
Affiliation(s)
- Sarah May Sibug-Torres
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - David-Benjamin Grys
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Gyeongwon Kang
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
- Department of Chemistry, Kangwon National University, Chuncheon, 24341, South Korea
| | - Marika Niihori
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Elle Wyatt
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Nicolas Spiesshofer
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Ashleigh Ruane
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Jeremy J Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, Department of Physics, JJ Thompson Avenue, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
4
|
Ma T, Chang S, He J, Liang F. Emerging sensing platforms based on Cucurbit[ n]uril functionalized gold nanoparticles and electrodes. Chem Commun (Camb) 2023; 60:150-167. [PMID: 38054368 DOI: 10.1039/d3cc04851a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Cucurbit[n]urils (CB[n]s, n = 5-8, 10, and 14), synthetic macrocycles with unique host-guest properties, have triggered increasing research interest in recent years. Gold nanoparticles (Au NPs) and electrodes stand out as exceptional substrates for sensing due to their remarkable physicochemical characteristics. Coupling the CB[n]s with Au NPs and electrodes has enabled the development of emerging sensing platforms for various promising applications. However, monitoring the behavior of analytes at the single-molecule level is currently one of the most challenging topics in the field of CB[n]-based sensing. Constructing supramolecular junctions in a sensing platform provides an ideal structure for single-molecule analysis, which can provide insights for a fundamental understanding of supramolecular interactions and chemical reactions and guide the design of sensing applications. This feature article outlines the progress in the preparation of the CB[n] functionalized Au NPs and Au electrodes, as well as the construction and application of supramolecular junctions in sensing platforms, based on the methods of recognition tunneling (RT), surface-enhanced Raman spectroscopy (SERS), single-molecule force spectroscopy (SMFS), and electrochemical sensing (ECS). A brief perspective on the future development of and challenges in CB[n] mediated sensing platforms is also covered.
Collapse
Affiliation(s)
- Tao Ma
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Shuai Chang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| | - Jin He
- Department of Physics, Florida International University, Miami, Florida 33199, USA.
| | - Feng Liang
- The State Key Laboratory of Refractories and Metallurgy, Coal Conversion and New Carbon Materials Hubei Key Laboratory, School of Chemistry & Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, China.
| |
Collapse
|
5
|
Bedingfield K, Elliott E, Gisdakis A, Kongsuwan N, Baumberg JJ, Demetriadou A. Multi-faceted plasmonic nanocavities. NANOPHOTONICS (BERLIN, GERMANY) 2023; 12:3931-3944. [PMID: 39635199 PMCID: PMC11501932 DOI: 10.1515/nanoph-2023-0392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/15/2023] [Indexed: 12/07/2024]
Abstract
Plasmonic nanocavities form very robust sub-nanometer gaps between nanometallic structures and confine light within deep subwavelength volumes to enable unprecedented control of light-matter interactions. However, spherical nanoparticles acquire various polyhedral shapes during their synthesis, which has a significant impact in controlling many light-matter interactions, such as photocatalytic reactions. Here, we focus on nanoparticle-on-mirror nanocavities built from three polyhedral nanoparticles (cuboctahedron, rhombicuboctahedron, decahedron) that commonly occur during the synthesis. Their photonic modes have a very intricate and rich optical behaviour, both in the near- and far-field. Through a recombination technique, we obtain the total far-field produced by a molecule placed within these nanocavities, to reveal how energy couples in and out of the system. This work paves the way towards understanding and controlling light-matter interactions, such as photocatalytic reactions and non-linear vibrational pumping, in such extreme environments.
Collapse
Affiliation(s)
- Kalun Bedingfield
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Eoin Elliott
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, UK
| | - Arsenios Gisdakis
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Nuttawut Kongsuwan
- Thailand Center of Excellence in Physics, Ministry of Higher Education, Science, Research and Innovation, Bangkok10400, Thailand
- Quantum Technology Foundation (Thailand), Bangkok10110, Thailand
| | - Jeremy J. Baumberg
- NanoPhotonics Centre, Cavendish Laboratory, University of Cambridge, CambridgeCB3 0HE, UK
| | - Angela Demetriadou
- School of Physics and Astronomy, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| |
Collapse
|
6
|
Grys DB, Niihori M, Arul R, Sibug-Torres SM, Wyatt EW, de Nijs B, Baumberg JJ. Controlling Atomic-Scale Restructuring and Cleaning of Gold Nanogap Multilayers for Surface-Enhanced Raman Scattering Sensing. ACS Sens 2023; 8:2879-2888. [PMID: 37411019 PMCID: PMC10391707 DOI: 10.1021/acssensors.3c00967] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 06/15/2023] [Indexed: 07/08/2023]
Abstract
We demonstrate the reliable creation of multiple layers of Au nanoparticles in random close-packed arrays with sub-nm gaps as a sensitive surface-enhanced Raman scattering substrate. Using oxygen plasma etching, all the original molecules creating the nanogaps can be removed and replaced with scaffolding ligands that deliver extremely consistent gap sizes below 1 nm. This allows precision tailoring of the chemical environment of the nanogaps which is crucial for practical Raman sensing applications. Because the resulting aggregate layers are easily accessible from opposite sides by fluids and by light, high-performance fluidic sensing cells are enabled. The ability to cyclically clean off analytes and reuse these films is shown, exemplified by sensing of toluene, volatile organic compounds, and paracetamol, among others.
Collapse
Affiliation(s)
- David-Benjamin Grys
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Marika Niihori
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Rakesh Arul
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Sarah May Sibug-Torres
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Elle W. Wyatt
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Bart de Nijs
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics Centre, Cavendish
Laboratory, Department of Physics, University
of Cambridge, JJ Thompson Avenue, Cambridge CB3 0HE, U.K.
| |
Collapse
|
7
|
Chen WH, Wang W, Lin Q, Grys DB, Niihori M, Huang J, Hu S, de Nijs B, Scherman OA, Baumberg JJ. Plasmonic Sensing Assay for Long-Term Monitoring (PSALM) of Neurotransmitters in Urine. ACS NANOSCIENCE AU 2023; 3:161-171. [PMID: 37096231 PMCID: PMC10119978 DOI: 10.1021/acsnanoscienceau.2c00048] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 04/26/2023]
Abstract
A liquid-based surface-enhanced Raman spectroscopy assay termed PSALM is developed for the selective sensing of neurotransmitters (NTs) with a limit of detection below the physiological range of NT concentrations in urine. This assay is formed by quick and simple nanoparticle (NP) "mix-and-measure" protocols, in which FeIII bridges NTs and gold NPs inside the sensing hotspots. Detection limits of NTs from PreNP PSALM are significantly lower than those of PostNP PSALM, when urine is pretreated by affinity separation. Optimized PSALM enables the long-term monitoring of NT variation in urine in conventional settings for the first time, allowing the development of NTs as predictive or correlative biomarkers for clinical diagnosis.
Collapse
Affiliation(s)
- Wei-Hsin Chen
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Wenting Wang
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
- Melville
Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Qianqi Lin
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - David-Benjamin Grys
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Marika Niihori
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Bart de Nijs
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
| | - Oren A. Scherman
- Melville
Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Jeremy J. Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, J J Thomson Avenue, Cambridge CB3 0HE, U.K.
- JJB,
| |
Collapse
|
8
|
Chen J, Hooley RJ, Zhong W. Applications of Synthetic Receptors in Bioanalysis and Drug Transport. Bioconjug Chem 2022; 33:2245-2253. [PMID: 35362963 DOI: 10.1021/acs.bioconjchem.2c00096] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Synthetic receptors are powerful tools for molecular recognition. They can bind to guests with high selectivity and affinity, and their structures are tunable and diversified. These features, plus the relatively low cost and high simplicity in synthesis and modification, support the feasibility of array-based molecular analysis with synthetic receptors for improved selectivity in the recognition of a wide range of targets. More attractively, host-guest interaction is reversible and guest displacement allows biocompatible and gentle release of the host-bound molecules, simplifying the stimulation designs needed to control analyte sensing, enrichment, and transportation. Here, we highlight a few recent advancements in using synthetic receptors for molecular analysis and manipulation, with the focus on macrocyclic receptors and their applications in displacement sensing, separation, imaging, and drug transport.
Collapse
|
9
|
Elliott E, Bedingfield K, Huang J, Hu S, de Nijs B, Demetriadou A, Baumberg JJ. Fingerprinting the Hidden Facets of Plasmonic Nanocavities. ACS PHOTONICS 2022; 9:2643-2651. [PMID: 35996364 PMCID: PMC9389613 DOI: 10.1021/acsphotonics.2c00116] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Indexed: 05/30/2023]
Abstract
The optical properties of nanogap plasmonic cavities formed by a NanoParticle-on-Mirror (NPoM, or patch antenna) are determined here, across a wide range of geometric parameters including the nanoparticle diameter, gap refractive index, gap thickness, facet size and shape. Full understanding of the confined optical modes allows these nanocavities to be utilized in a wide range of experiments across many fields. We show that the gap thickness t and refractive index n are spectroscopically indistinguishable, accounted for by a single gap parameter G = n/t 0.47. Simple tuning of mode resonant frequencies and strength is found for each quasi-normal mode, revealing a spectroscopic "fingerprint" for each facet shape, on both truncated spherical and rhombicuboctahedral nanoparticles. This is applied to determine the most likely nanoscale morphology of facets hidden below each NPoM in experiment, as well as to optimize the constructs for different applications. Simple scaling relations are demonstrated, and an online tool for general use is provided.
Collapse
Affiliation(s)
- Eoin Elliott
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Kalun Bedingfield
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Junyang Huang
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Shu Hu
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Bart de Nijs
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Angela Demetriadou
- School
of Physics and Astronomy, University of
Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | - Jeremy J Baumberg
- NanoPhotonics
Centre, Cavendish Laboratory, University
of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
10
|
Tay LL, Hulse J, Paroli R. FTIR and Raman Spectroscopic Characterization of Cannabinoids. CAN J CHEM 2022. [DOI: 10.1139/cjc-2021-0352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabinol (CBN) are three key phytochemical components of cannabis. All three have demonstrated phytochemical activity and are implicated in pharmacological use of cannabis. In this paper, we present the FTIR and Raman spectroscopic characterization of THC, CBD and CBN compounds obtained from certified reference materials. Spontaneous Raman, mid-Infrared (MIR) absorption spectra as well as the analogous surface-enhanced counterparts (Surface enhanced Raman spectroscopy (SERS) and surface enhanced Infrared absorption (SEIRA)) of the cannabinoids are discussed in detail here. We have also examined the laser induced photothermal changes that occur in THC and CBD under spontaneous Raman acquisition conditions as revealed in their Raman spectra. Vibrational spectroscopy provides a robust, portable and cost effective analytical approach to quality control for various medicinal and consumer cannabinoid products. The pure compound spectra of the three cannabinoids presented in this work will help end-users to establish better quantitative analysis methods based on these techniques.
Collapse
Affiliation(s)
- Li-Lin Tay
- National Research Council Canada, 6356, Ottawa, Ontario, Canada
| | - John Hulse
- National Research Council Canada, 6356, Ottawa, Ontario, Canada
| | - Ralph Paroli
- National Research Council Canada, 6356, Ottawa, Canada
| |
Collapse
|
11
|
Kovalets NP, Kozhina EP, Razumovskaya IV, Bedin SA, Piryazev AA, Grigoriev YV, Naumov AV. Toward single-molecule surface-enhanced Raman scattering with novel type of metasurfaces synthesized by crack-stretching of metallized track-etched membranes. J Chem Phys 2022; 156:034902. [DOI: 10.1063/5.0078451] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Affiliation(s)
- N. P. Kovalets
- Federal State Budgetary Educational Institution of Higher Education (Moscow Pedagogical State University), Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
| | - E. P. Kozhina
- Lebedev Physical Institute RAS, Leninsky Prosp. 53, 119991 Moscow, Russia
| | - I. V. Razumovskaya
- Federal State Budgetary Educational Institution of Higher Education (Moscow Pedagogical State University), Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
| | - S. A. Bedin
- Federal State Budgetary Educational Institution of Higher Education (Moscow Pedagogical State University), Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
- Lebedev Physical Institute RAS, Leninsky Prosp. 53, 119991 Moscow, Russia
- Center of Crystallography and Photonics of RAS, Leninskii Prosp. 59, 119333 Moscow, Russia
| | - A. A. Piryazev
- Department of Chemistry, Moscow State University, 119991 Moscow, Russia
- IPCP RAS, Semenov Prospect 1, Chernogolovka 141432, Russia
| | - Yu. V. Grigoriev
- Center of Crystallography and Photonics of RAS, Leninskii Prosp. 59, 119333 Moscow, Russia
| | - A. V. Naumov
- Federal State Budgetary Educational Institution of Higher Education (Moscow Pedagogical State University), Malaya Pirogovskaya St. 1-1, 119991 Moscow, Russia
- Lebedev Physical Institute RAS, Leninsky Prosp. 53, 119991 Moscow, Russia
- Laboratory for Spectroscopy of Electronic Spectra of Molecules, Institute for Spectroscopy RAS, 108840 Troitsk, Moscow, Russia
| |
Collapse
|
12
|
Grys DB, de Nijs B, Huang J, Scherman OA, Baumberg JJ. SERSbot: Revealing the Details of SERS Multianalyte Sensing Using Full Automation. ACS Sens 2021; 6:4507-4514. [PMID: 34882398 PMCID: PMC8715530 DOI: 10.1021/acssensors.1c02116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
![]()
Surface-enhanced
Raman spectroscopy (SERS) is considered an attractive
candidate for quantitative and multiplexed molecular sensing of analytes
whose chemical composition is not fully known. In principle, molecules
can be identified through their fingerprint spectrum when binding
inside plasmonic hotspots. However, competitive binding experiments
between methyl viologen (MV2+) and its deuterated isomer
(d8-MV2+) here show that determining
individual concentrations by extracting peak intensities from spectra
is not possible. This is because analytes bind to different binding
sites inside and outside of hotspots with different affinities. Only
by knowing all binding constants and geometry-related factors, can
a model revealing accurate concentrations be constructed. To collect
sufficiently reproducible data for such a sensitive experiment, we
fully automate measurements using a high-throughput SERS optical system
integrated with a liquid handling robot (the SERSbot). This now allows
us to accurately deconvolute analyte mixtures through independent
component analysis (ICA) and to quantitatively map out the competitive
binding of analytes in nanogaps. Its success demonstrates the feasibility
of automated SERS in a wide variety of experiments and applications.
Collapse
Affiliation(s)
- David-Benjamin Grys
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Bart de Nijs
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Junyang Huang
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| | - Oren A. Scherman
- Melville Laboratory for Polymer Synthesis, Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Jeremy J. Baumberg
- Department of Physics, NanoPhotonics Centre, Cavendish Laboratory, JJ Thompson Avenue University of Cambridge, Cambridge CB3 0HE, United Kingdom
| |
Collapse
|
13
|
Kim JM, Lee C, Lee Y, Lee J, Park SJ, Park S, Nam JM. Synthesis, Assembly, Optical Properties, and Sensing Applications of Plasmonic Gap Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006966. [PMID: 34013617 DOI: 10.1002/adma.202006966] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Plasmonic gap nanostructures (PGNs) have been extensively investigated mainly because of their strongly enhanced optical responses, which stem from the high intensity of the localized field in the nanogap. The recently developed methods for the preparation of versatile nanogap structures open new avenues for the exploration of unprecedented optical properties and development of sensing applications relying on the amplification of various optical signals. However, the reproducible and controlled preparation of highly uniform plasmonic nanogaps and the prediction, understanding, and control of their optical properties, especially for nanogaps in the nanometer or sub-nanometer range, remain challenging. This is because subtle changes in the nanogap significantly affect the plasmonic response and are of paramount importance to the desired optical performance and further applications. Here, recent advances in the synthesis, assembly, and fabrication strategies, prediction and control of optical properties, and sensing applications of PGNs are discussed, and perspectives toward addressing these challenging issues and the future research directions are presented.
Collapse
Affiliation(s)
- Jae-Myoung Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Chungyeon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Yeonhee Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jinhaeng Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - So-Jung Park
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, South Korea
| | - Sungho Park
- Department of Chemistry, Sungkyunkwan University, Suwon, 16419, South Korea
| | - Jwa-Min Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
14
|
Chen GY, Sun YB, Shi PC, Liu T, Li ZH, Luo SH, Wang XC, Cao XY, Ren B, Liu GK, Yang LL, Tian ZQ. Revealing unconventional host-guest complexation at nanostructured interface by surface-enhanced Raman spectroscopy. LIGHT, SCIENCE & APPLICATIONS 2021; 10:85. [PMID: 33875636 PMCID: PMC8055983 DOI: 10.1038/s41377-021-00526-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 03/20/2021] [Accepted: 03/31/2021] [Indexed: 06/12/2023]
Abstract
Interfacial host-guest complexation offers a versatile way to functionalize nanomaterials. However, the complicated interfacial environment and trace amounts of components present at the interface make the study of interfacial complexation very difficult. Herein, taking the advantages of near-single-molecule level sensitivity and molecular fingerprint of surface-enhanced Raman spectroscopy (SERS), we reveal that a cooperative effect between cucurbit[7]uril (CB[7]) and methyl viologen (MV2+2I-) in aggregating Au NPs originates from the cooperative adsorption of halide counter anions I-, MV2+, and CB[7] on Au NPs surface. Moreover, similar SERS peak shifts in the control experiments using CB[n]s but with smaller cavity sizes suggested the occurrence of the same guest complexations among CB[5], CB[6], and CB[7] with MV2+. Hence, an unconventional exclusive complexation model is proposed between CB[7] and MV2+ on the surface of Au NPs, distinct from the well-known 1:1 inclusion complexation model in aqueous solutions. In summary, new insights into the fundamental understanding of host-guest interactions at nanostructured interfaces were obtained by SERS, which might be useful for applications related to host-guest chemistry in engineered nanomaterials.
Collapse
Affiliation(s)
- Gan-Yu Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Yi-Bin Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Pei-Chen Shi
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Tao Liu
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Zhi-Hao Li
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Si-Heng Luo
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China
| | - Xin-Chang Wang
- School of Electronic Science and Engineering (National Model Microelectronics College), Xiamen University, Xiamen, 361005, China
| | - Xiao-Yu Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
- Key Laboratory of Chemical Biology of Fujian Province, Xiamen University, Xiamen, 361005, China
| | - Bin Ren
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Guo-Kun Liu
- State Key Laboratory of Marine Environmental Science, Fujian Provincial Key Laboratory for Coastal Ecology and Environmental Studies, Center for Marine Environmental Chemistry & Toxicology, College of the Environment and Ecology, Xiamen University, Xiamen, 361102, China.
| | - Liu-Lin Yang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| | - Zhong-Qun Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
15
|
Berta D, Szabó I, Scherman OA, Rosta E. Toward Understanding CB[7]-Based Supramolecular Diels-Alder Catalysis. Front Chem 2020; 8:587084. [PMID: 33240848 PMCID: PMC7677497 DOI: 10.3389/fchem.2020.587084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 09/28/2020] [Indexed: 11/16/2022] Open
Abstract
Cucurbiturils (CBs) are robust and versatile macrocyclic compounds, often used as molecular hosts in complex supramolecular systems. In previous work, remarkable catalytic activity has been observed for asymmetric cycloadditions under very mild conditions. Herein, we investigate the nature of supramolecular catalysis using DFT calculations and QM/MM techniques. We discuss induced conformational changes, electrostatic shielding effects from the highly polar aqueous environment and cooperativity in hydrogen bonding of the substrates in explicit water using QM/MM simulation techniques. Our results show little specificity for the chosen molecules, suggesting an excellent opportunity to expand the scope for catalytic use of these supramolecular macrocyclic containers.
Collapse
Affiliation(s)
- Dénes Berta
- Department of Physics and Astronomy, University College London, London, United Kingdom.,Department of Chemistry, King's College London, London, United Kingdom
| | - István Szabó
- Department of Chemistry, King's College London, London, United Kingdom
| | - Oren A Scherman
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | - Edina Rosta
- Department of Physics and Astronomy, University College London, London, United Kingdom.,Department of Chemistry, King's College London, London, United Kingdom
| |
Collapse
|
16
|
Barrow SJ, Palma A, de Nijs B, Chikkaraddy R, Bowman RW, Baumberg JJ, Scherman OA. Nanometer control in plasmonic systems through discrete layer-by-layer macrocycle-cation deposition. NANOSCALE 2020; 12:8706-8710. [PMID: 32270155 DOI: 10.1039/d0nr00902d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we demonstrate that coordination interactions between Fe3+ and cucurbit[7]uril (CB[7]) can be utilised to build up defined nanoscale spacing layers in metallic nanosystems. We begin by characterising the layer-by-layer deposition of CB[7] and FeCl3·6H2O coordination layers through the use of a Quartz-Crystal Microbalance (QCM) and contact angle measurements. We then apply this layered structure to accurately control the spacing, and thus optical properties, of gold nanoparticles in a Nanoparticle-on-Mirror (NPoM) structure, which is demonstrated via normalising plasmon resonance spectroscopy.
Collapse
Affiliation(s)
- Steven J Barrow
- Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | |
Collapse
|
17
|
Sun J, Gong L, Wang W, Gong Z, Wang D, Fan M. Surface‐enhanced Raman spectroscopy for on‐site analysis: A review of recent developments. LUMINESCENCE 2020; 35:808-820. [DOI: 10.1002/bio.3796] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Ji Sun
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Lin Gong
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Wenjun Wang
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Zhengjun Gong
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Dongmei Wang
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
| | - Meikun Fan
- Faculty of Geosciences and Environmental EngineeringSouthwest Jiaotong University Chengdu China
- State‐province Joint Engineering Laboratory of Spatial Information Technology of High‐Speed Rail Safety Chengdu China
| |
Collapse
|