1
|
Park KS, Cha H, Niu J, Soh HT, Lee JH, Pack SP. DNA-controlled protein fluorescence: Design of aptamer-split peptide hetero-modulator for GFP to respond to intracellular ATP levels. Nucleic Acids Res 2024; 52:8063-8071. [PMID: 38917331 DOI: 10.1093/nar/gkae532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 05/15/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Enabling the precise control of protein functions with artificially programmed reaction patterns is beneficial for investigating biological processes. Although several strategies have been established that employ the programmability of nucleic acid, they have been limited to DNA hybridization without external stimuli or target binding. Here, we report an approach for the DNA-mediated control of the tripartite split-GFP assembly via aptamers with responsiveness to intracellular small molecules as stimuli. We designed a novel structure-switching aptamer-peptide conjugate as a hetero modulator for split GFP in response to ATP. By conjugating two peptides (S10/11) derived from the tripartite split-GFP to ATP aptamer, we achieved GFP reassembly using only ATP as a trigger molecule. The response to ATP at ≥4 mM concentrations indicated that it can be applied to respond to intracellular ATP in live cells. Furthermore, our hetero-modulator exhibited high and long-term stability, with a half-life of approximately four days in a serum stability assay, demonstrating resistance to nuclease degradation. We validated that our aptamer-modulator split GFP was successfully reconstituted in the cell in response to intracellular ATP levels. Our aptamer-modulated split GFP platform can be utilized to monitor a wide range of intracellular metabolites by replacing the aptamer sequence.
Collapse
Affiliation(s)
- Ki Sung Park
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
| | - Hanvit Cha
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Jia Niu
- Department of Chemistry, Boston College, Chestnut Hill, MA 02467, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering, Stanford University, Stanford, CA 94305, USA
- Department of Radiology, Stanford University, Stanford, CA 94305, USA
| | - Jin Hyup Lee
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
- Department of Food and Biotechnology, Korea University, Sejong 30019, Republic of Korea
| | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea
- Biological Clock-based Anti-Aging Convergence RLRC, Korea University, Sejong 30019, Republic of Korea
| |
Collapse
|
2
|
Wang H, Zou H, Wang F. Construction of Multiply Guaranteed DNA Sensors for Biological Sensing and Bioimaging Applications. Chembiochem 2024; 25:e202400266. [PMID: 38801028 DOI: 10.1002/cbic.202400266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 05/29/2024]
Abstract
Nucleic acids exhibit exceptional functionalities for both molecular recognition and catalysis, along with the capability of predictable assembly through strand displacement reactions. The inherent programmability and addressability of DNA probes enable their precise, on-demand assembly and accurate execution of hybridization, significantly enhancing target detection capabilities. Decades of research in DNA nanotechnology have led to advances in the structural design of functional DNA probes, resulting in increasingly sensitive and robust DNA sensors. Moreover, increasing attention has been devoted to enhancing the accuracy and sensitivity of DNA-based biosensors by integrating multiple sensing procedures. In this review, we summarize various strategies aimed at enhancing the accuracy of DNA sensors. These strategies involve multiple guarantee procedures, utilizing dual signal output mechanisms, and implementing sequential regulation methods. Our goal is to provide new insights into the development of more accurate DNA sensors, ultimately facilitating their widespread application in clinical diagnostics and assessment.
Collapse
Affiliation(s)
- Hong Wang
- Biological Products Laboratory, Chongqing Institute for Food and Drug Control, Chongqing, 430072, P. R. China
| | - Hanyan Zou
- Biological Products Laboratory, Chongqing Institute for Food and Drug Control, Chongqing, 430072, P. R. China
| | - Fuan Wang
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, P. R. China
| |
Collapse
|
3
|
Kang B, Park SV, Oh SS. Ionic liquid-caged nucleic acids enable active folding-based molecular recognition with hydrolysis resistance. Nucleic Acids Res 2024; 52:73-86. [PMID: 37994697 PMCID: PMC10783497 DOI: 10.1093/nar/gkad1093] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/07/2023] [Indexed: 11/24/2023] Open
Abstract
Beyond storage and transmission of genetic information in cellular life, nucleic acids can perform diverse interesting functions, including specific target recognition and biochemical reaction acceleration; the versatile biopolymers, however, are acutely vulnerable to hydrolysis-driven degradation. Here, we demonstrate that the cage effect of choline dihydrogen phosphate permits active folding of nucleic acids like water, but prevents their phosphodiester hydrolysis unlike water. The choline-based ionic liquid not only serves as a universal inhibitor of nucleases, exceptionally extending half-lives of nucleic acids up to 6 500 000 times, but highly useful tasks of nucleic acids (e.g. mRNA detection of molecular beacons, ligand recognition of aptamers, and transesterification reaction of ribozymes) can be also conducted with well-conserved affinities and specificities. As liberated from the function loss and degradation risk, the presence of undesired and unknown nucleases does not undermine desired molecular functions of nucleic acids without hydrolysis artifacts even in nuclease cocktails and human saliva.
Collapse
Affiliation(s)
- Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Soyeon V Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| |
Collapse
|
4
|
Davydova AS, Vorobyeva MA. Aptasensors Based on Non-Enzymatic Peroxidase Mimics: Current Progress and Challenges. BIOSENSORS 2023; 14:1. [PMID: 38275302 PMCID: PMC10813519 DOI: 10.3390/bios14010001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Immunoassays based on antibodies as recognizing elements and enzymes as signal-generating modules are extensively used now in clinical lab diagnostics, food, and environmental analyses. However, the application of natural enzymes and antibodies has some drawbacks, such as relatively high manufacturing costs, thermal instability, and lot-to-lot variations that lower the reproducibility of results. Oligonucleotide aptamers are able to specifically bind their targets with high affinity and selectivity, so they represent a prospective alternative to protein antibodies for analyte recognition. Their main advantages include thermal stability and long shelf life, cost-efficient chemical synthesis, and negligible batch-to-batch variations. At the same time, a wide variety of non-protein peroxidase mimics are now available that show strong potential to replace protein enzymes. Here, we review and analyze non-protein biosensors that represent a nexus of these two concepts: aptamer-based sensors (aptasensors) with optical detection (colorimetric, luminescent, or fluorescent) based on different peroxidase mimics, such as DNAzymes, nanoparticles, or metal-organic frameworks.
Collapse
Affiliation(s)
- Anna S. Davydova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Akad. Lavrentiev, 8, 630090 Novosibirsk, Russia;
| | | |
Collapse
|
5
|
Kim M, Jo H, Jung GY, Oh SS. Molecular Complementarity of Proteomimetic Materials for Target-Specific Recognition and Recognition-Mediated Complex Functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2208309. [PMID: 36525617 DOI: 10.1002/adma.202208309] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 11/29/2022] [Indexed: 06/02/2023]
Abstract
As biomolecules essential for sustaining life, proteins are generated from long chains of 20 different α-amino acids that are folded into unique 3D structures. In particular, many proteins have molecular recognition functions owing to their binding pockets, which have complementary shapes, charges, and polarities for specific targets, making these biopolymers unique and highly valuable for biomedical and biocatalytic applications. Based on the understanding of protein structures and microenvironments, molecular complementarity can be exhibited by synthesizable and modifiable materials. This has prompted researchers to explore the proteomimetic potentials of a diverse range of materials, including biologically available peptides and oligonucleotides, synthetic supramolecules, inorganic molecules, and related coordination networks. To fully resemble a protein, proteomimetic materials perform the molecular recognition to mediate complex molecular functions, such as allosteric regulation, signal transduction, enzymatic reactions, and stimuli-responsive motions; this can also expand the landscape of their potential bio-applications. This review focuses on the recognitive aspects of proteomimetic designs derived for individual materials and their conformations. Recent progress provides insights to help guide the development of advanced protein mimicry with material heterogeneity, design modularity, and tailored functionality. The perspectives and challenges of current proteomimetic designs and tools are also discussed in relation to future applications.
Collapse
Affiliation(s)
- Minsun Kim
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Hyesung Jo
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Gyoo Yeol Jung
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| | - Seung Soo Oh
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, South Korea
| |
Collapse
|
6
|
Mei W, Zhou Y, Xia L, Liu X, Huang W, Wang H, Zou L, Wang Q, Yang X, Wang K. DNA Tetrahedron-Based Valency Controlled Signal Probes for Tunable Protein Detection. ACS Sens 2023; 8:381-387. [PMID: 36600539 DOI: 10.1021/acssensors.2c02476] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Combined detection of multiple markers related to the same disease could improve the accuracy of disease diagnosis. However, the abundance levels of multiple markers of the same disease varied widely in real samples, making it difficult for the traditional detection method to meet the requirements of a wide detection range. Herein, three kinds of cardiac biomarkers, cardiac troponin I (cTnI), myoglobin (Myo), and C-reaction protein (CRP), which were from the pM level to the μM level in real samples, were selected as model targets. Valency-controlled signal probes based on DNA tetrahedron nanostructures (DTNs) and platinum nanoparticles (PtNPs) were constructed for tunable cardiac biomarker detection. PtNPs with high horseradish peroxidase-like activity and stability served as signal molecules, and DTNs with unique spatial structure and sequence specificity were used for precisely controlling the number of connected PtNPs. By controlling the number of PtNPs connected to DTNs, monovalent, bivalent, and trivalent signal probes were obtained and were used for the detection of cardiac markers in different concentration ranges. The limit of detection of cTnI, Myo, and CRP was 3.0 pM, 0.4 nM, and 6.7 nM, respectively. Furthermore, it performed satisfactorily for the detection of cardiac markers in 10% human serum. It was anticipated that the design of valency-controlled signal probes based on DTNs and nanozymes could be extended to the construction of other multi-target detection platforms, thus providing a basis for the development of a new precision medical detection platform.
Collapse
Affiliation(s)
- Wenjing Mei
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Yuan Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Ling Xia
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaofeng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Weixuanzi Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Hongqiang Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Liyuan Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Qing Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Xiaohai Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha 410082, China
| |
Collapse
|
7
|
Cao L, Meng Z, Tan J, Ying M, Bi M, Liu Y, Tong X, Wei J, Huang L. Self-assembled endogenous DNA nanoparticles for auto-release and expression of the eGFP gene in Bacillus subtilis. Commun Biol 2022; 5:1373. [PMID: 36517556 PMCID: PMC9751278 DOI: 10.1038/s42003-022-04233-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/08/2022] [Indexed: 12/23/2022] Open
Abstract
The development of DNA delivery techniques is critical to promote the wider use of deoxyribonucleic acids as cellular transporters. The present study aimed to develop a type of DNA nanoparticle (citZ-box) to automatically load and release cargo. The restriction enzyme can cleave citZ-boxes at pro-designed sites, and the enhanced green fluorescent protein gene (eGFP) can be delivered into the B. subtilis protoplasts by them. The process of eGFP expression is recorded using a confocal microscope over 4 h. Here, multiscaffold and multimodular designs are used for citZ-box assembly with a DAEDALUS module, DX_cage_design and rem (edge_length, 21), to ensure the structure was predicted as B-type DNA. Finally the citZ-box is estimated to be a 50.7 nm cube. The 3D structure of the citZ-box particle is detected to be approximately 50.3 ± 0.3 nm. DNA nanoparticles prepared as citZ-boxes have great potential as drug carriers with automatic loading and releasing abilities.
Collapse
Affiliation(s)
- Linfeng Cao
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Ziwen Meng
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Junjie Tan
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Ming Ying
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
| | - Meiying Bi
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Yanjun Liu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Xinrui Tong
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Jiaxun Wei
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Lei Huang
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
- Tianjin Key Laboratory of Drug Targeting and Bioimaging, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China.
| |
Collapse
|
8
|
Lee M, Kang B, Lee J, Lee J, Jung ST, Son CY, Oh SS. De novo selected hACE2 mimics that integrate hotspot peptides with aptameric scaffolds for binding tolerance of SARS-CoV-2 variants. SCIENCE ADVANCES 2022; 8:eabq6207. [PMID: 36288301 PMCID: PMC9604513 DOI: 10.1126/sciadv.abq6207] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/07/2022] [Indexed: 06/02/2023]
Abstract
The frequent occurrence of viral variants is a critical problem in developing antiviral prophylaxis and therapy; along with stronger recognition of host cell receptors, the variants evade the immune system-based vaccines and neutralizing agents more easily. In this work, we focus on enhanced receptor binding of viral variants and demonstrate generation of receptor-mimicking synthetic reagents, capable of strongly interacting with viruses and their variants. The hotspot interaction of viruses with receptor-derived short peptides is maximized by aptamer-like scaffolds, the compact and stable architectures of which can be in vitro selected from a myriad of the hotspot peptide-coupled random nucleic acids. We successfully created the human angiotensin-converting enzyme 2 (hACE2) receptor-mimicking hybrid ligand that recruits the hACE2-derived receptor binding domain-interacting peptide to directly interact with a binding hotspot of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Experiencing affinity boosting by ~500% to Omicron, the de novo selected hACE2 mimic exhibited a great binding tolerance to all SARS-CoV-2 variants of concern.
Collapse
Affiliation(s)
- Minjong Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Juhwa Lee
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Jisun Lee
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul 02841, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, South Korea
| | - Sang Taek Jung
- Department of Biomedical Sciences, Graduate School, Korea University, Seoul 02841, South Korea
- BK21 Graduate Program, Department of Biomedical Sciences, Korea University College of Medicine, Seoul 02841, South Korea
| | - Chang Yun Son
- Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
- Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| |
Collapse
|
9
|
Chen X, Chen K, Du Z, Chu H, Zhu L, He X, Xu W. Fusion of binary split allosteric aptasensor for the ultra-sensitive and super-rapid detection of malachite green. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127976. [PMID: 34883379 DOI: 10.1016/j.jhazmat.2021.127976] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/20/2021] [Accepted: 11/30/2021] [Indexed: 05/27/2023]
Abstract
The complicated labeling procedure and high cost of split aptasensors have hitherto limited their application in the detection of hazardous substances. Herein we report the first examples of label-free aptasensors based on the fusion of a binary split G-quadruplex and malachite green (MG) aptamer, transducing recognition events into fluorescent signals through the allosteric regulation of the aptamer to achieve selective and sensitive detection. Specifically, RNA MGA was successfully converted into DNA MGA with comparable affinity and improved stability, thereby overcoming the limitations of poor stability and high expense. We subsequently split the DNA MGA and attached them to a G-rich DNA sequence at the 5' and 3' ends, to construct the binary split allosteric aptasensor. The performance of the binary split aptasensor for MG detection was significantly improved based on proposed allosteric regulation strategy, and the reconfiguration capability of the aptamers upon binding with targets was proven, providing the binary split aptasensor with superior sensitivity and selectivity. This sensing method has a wide dynamic detection range of 5 nmol·L-1 to 500 μmol·L-1, with a low limit of detection (LOD) of 4.17 nmol·L-1, and achieves the ultra-sensitive and super-rapid detection of MG. This newly proposed aptasensor is equipped with the advantages of being label-free, time saving and economical. More importantly, this successful construction of a fused aptasensor expands the principles of split aptasensor design and provides a universal platform for the detection of environmental contaminants.
Collapse
Affiliation(s)
- Xu Chen
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Keren Chen
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zaihui Du
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Huashuo Chu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Longjiao Zhu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wentao Xu
- Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, China Agricultural University, Beijing 100083, China; Key Laboratory of Safety Assessment of Genetically Modified Organism (Food Safety), Key Laboratory of Precision Nutrition and Food Quality, Department of Nutrition and Health, and College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
10
|
Sianglam P, Ngamdee K, Ngeontae W. Simultaneous preconcentration and fluorescence detection of ATP by a hybrid nanocomposite of magnetic nanoparticles incorporated in mixed metal hydroxide. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:188-198. [PMID: 34935797 DOI: 10.1039/d1ay01593a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new approach for increasing the sensitivity of adenosine triphosphate (ATP) detection was demonstrated. The assay was based on the synergetic function of a hybrid nanocomposite (MNPs@MMH) composed of magnetic nanoparticles (MNPs) incorporated in a mixed metal hydroxide (MMH). MNPs@MMH can be utilized as an efficient green extractant and peroxidase catalyst. The trace level of ATP in the sample solution was first extracted by the MNPs@MMH hybrid nanocomposite through the ion exchange properties of MMH and adsorbed on the surface of the MNPs@MMH. The concentration of ATP was related to the fluorescence intensity of 2,3-diaminophenazine (DAP) generated from peroxidase-like activity of the MNPs in the presence of H2O2 and o-phenylenediamine (OPD). In the presence of ATP, the active surface of the MNPs was diminished, and the amount of DAP generated was reduced. Thus, the concentration of ATP was related to the degree of fluorescence decrease compared to the fluorescence intensity of the system without ATP. Based on the proposed strategy, a highly sensitive assay for ATP was achieved. This assay exhibited good selectivity for detection of ATP over derivatives and other common anions. The proposed assay allowed the detection of ATP in a concentration range of 2.5-20 μM with a detection limit of 0.41 μM.
Collapse
Affiliation(s)
- Pradthana Sianglam
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Kessarin Ngamdee
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Wittaya Ngeontae
- Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
- Department of Chemistry, Center of Excellence for Innovation in Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
- Research Center for Environmental and Hazardous Substance Management (EHSM), Khon Kaen University, Khon Kaen 40002, Thailand
| |
Collapse
|
11
|
Zhao L, Liu J, Bai Y, Feng F, Yang X. Yellow-emission and pH-responsive carbon dots employed for “turn-off” and “turn-off-on” assaying adenosine triphosphate and kanamycin. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127640] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
Han M, Beon J, Lee JY, Oh SS. Systematic Combination of Oligonucleotides and Synthetic Polymers for Advanced Therapeutic Applications. Macromol Res 2021; 29:665-680. [PMID: 34754286 PMCID: PMC8568687 DOI: 10.1007/s13233-021-9093-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/22/2021] [Accepted: 09/25/2021] [Indexed: 11/16/2022]
Abstract
The potential of oligonucleotides is exceptional in therapeutics because of their high safety, potency, and specificity compared to conventional therapeutic agents. However, many obstacles, such as low in vivo stability and poor cellular uptake, have hampered their clinical success. Use of polymeric carriers can be an effective approach for overcoming the biological barriers and thereby maximizing the therapeutic efficacy of the oligonucleotides due to the availability of highly tunable synthesis and functional modification of various polymers. As loaded in the polymeric carriers, the therapeutic oligonucleotides, such as antisense oligonucleotides, small interfering RNAs, microRNAs, and even messenger RNAs, become nuclease-resistant by bypassing renal filtration and can be efficiently internalized into disease cells. In this review, we introduced a variety of systematic combinations between the therapeutic oligonucleotides and the synthetic polymers, including the uses of highly functionalized polymers responding to a wide range of endogenous and exogenous stimuli for spatiotemporal control of oligonucleotide release. We also presented intriguing characteristics of oligonucleotides suitable for targeted therapy and immunotherapy, which can be fully supported by versatile polymeric carriers.
Collapse
Affiliation(s)
- Moohyun Han
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Jiyun Beon
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| | - Ju Young Lee
- Research Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology (KRICT), Ulsan, 44429 Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science Technology (POSTECH), Pohang, Gyeongbuk, 37673 Korea
| |
Collapse
|
13
|
Park G, Kang B, Park SV, Lee D, Oh SS. A unified computational view of DNA duplex, triplex, quadruplex and their donor-acceptor interactions. Nucleic Acids Res 2021; 49:4919-4933. [PMID: 33893806 PMCID: PMC8136788 DOI: 10.1093/nar/gkab285] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/07/2021] [Accepted: 04/14/2021] [Indexed: 01/09/2023] Open
Abstract
DNA can assume various structures as a result of interactions at atomic and molecular levels (e.g., hydrogen bonds, π–π stacking interactions, and electrostatic potentials), so understanding of the consequences of these interactions could guide development of ways to produce elaborate programmable DNA for applications in bio- and nanotechnology. We conducted advanced ab initio calculations to investigate nucleobase model structures by componentizing their donor-acceptor interactions. By unifying computational conditions, we compared the independent interactions of DNA duplexes, triplexes, and quadruplexes, which led us to evaluate a stability trend among Watson–Crick and Hoogsteen base pairing, stacking, and even ion binding. For a realistic solution-like environment, the influence of water molecules was carefully considered, and the potassium-ion preference of G-quadruplex was first analyzed at an ab initio level by considering both base-base and ion-water interactions. We devised new structure factors including hydrogen bond length, glycosidic vector angle, and twist angle, which were highly effective for comparison between computationally-predicted and experimentally-determined structures; we clarified the function of phosphate backbone during nucleobase ordering. The simulated tendency of net interaction energies agreed well with that of real world, and this agreement validates the potential of ab initio study to guide programming of complicated DNA constructs.
Collapse
Affiliation(s)
- Gyuri Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Byunghwa Kang
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Soyeon V Park
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| | - Donghwa Lee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea
| | - Seung Soo Oh
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea.,Institute for Convergence Research and Education in Advanced Technology (I-CREATE), Yonsei University, Incheon 21983, South Korea.,School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, South Korea
| |
Collapse
|
14
|
Liu L, Yuan M, Jin Y, Zhou G, Li T, Li L, Peng H, Chen W. Tunable Dual-Effector Allostery System for Nucleic Acid Analysis with Enhanced Sensitivity and an Extended Dynamic Range. Anal Chem 2021; 93:8170-8177. [PMID: 34096261 DOI: 10.1021/acs.analchem.1c00055] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In the last few years, studies have demonstrated the existence of dual-effector allosteric cooperativity in nature and the mechanism underlying enhanced activation/inhibition performance. In this work, we design an artificial dual-effector allostery system for the construction of a dynamic biosensor that can achieve nucleic acid detection with superior sensitivity and across an extraordinary broad detection range. Our dual-effector allostery-regulated biosensor is based on the multibranched hybridization chain reaction (mHCR) involving three hairpins (H1, H2, and H3). In the presence of the target nucleic acid, the mHCR is initiated via cascading strand displacement events. The products of mHCR are then captured on the electrode surface based on the mechanism of the multivalent proximity ligation assay (mPLA) and the multivalent binding assay (mBA). The subsequent conjugation of streptavidin-modified horseradish peroxidase (SA-HRP) can lead to an increase in the electrochemical signal. Importantly, two distinct allosteric activation sites and two distinct allosteric inhibition sites in H1 are designed to fine-tune the nucleic acid detection sensitivity and the dynamic range. Using this new dual-effector allostery tool, we report the detection of nucleic acid at a dynamic range spanning 10-1012 aM, 11 orders of magnitude showing the broadest dynamic range reported to date with an allosteric regulation biosensor construct.
Collapse
Affiliation(s)
- Liangliang Liu
- Institute of Bast Fiber Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, P. R. China
| | - Mengmeng Yuan
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Yuxia Jin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Guobao Zhou
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Tuqiang Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Lei Li
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China
| | - Huaping Peng
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| | - Wei Chen
- Department of Pharmaceutical Analysis, Faculty of Pharmacy, Fujian Medical University, Fuzhou 350108, P. R. China
| |
Collapse
|
15
|
A ratiometric fluorescence strategy based on dual-signal response of carbon dots and o-phenylenediamine for ATP detection. Microchem J 2021. [DOI: 10.1016/j.microc.2021.105976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
16
|
Cozma I, McConnell EM, Brennan JD, Li Y. DNAzymes as key components of biosensing systems for the detection of biological targets. Biosens Bioelectron 2021; 177:112972. [DOI: 10.1016/j.bios.2021.112972] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 12/11/2022]
|
17
|
Zakashansky JA, Imamura AH, Salgado DF, Romero Mercieca HC, Aguas RFL, Lao AM, Pariser J, Arroyo-Currás N, Khine M. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:874-883. [PMID: 33576354 DOI: 10.1039/d1ay00041a] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Using the children's toy, Shrinky-Dink©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 1 ag mL-1 of the S1 subunit of the spike protein.
Collapse
Affiliation(s)
- Julia A Zakashansky
- Materials Science and Engineering, University of California - Irvine, Irvine, California 92697, USA.
| | - Amanda H Imamura
- Instituto de Química de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, 13566-590 Brazil
| | - Darwin F Salgado
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | | | - Raphael F L Aguas
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Angelou M Lao
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Joseph Pariser
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| | - Netzahualcóyotl Arroyo-Currás
- Department of Pharmacology and Molecular Sciences, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA and Department of Chemical and Biomolecular Engineering, Whiting School of Engineering, & Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Michelle Khine
- Biomedical Engineering, University of California - Irvine, Irvine, California 92697, USA
| |
Collapse
|
18
|
Shaban SM, Kim DH. Recent Advances in Aptamer Sensors. SENSORS (BASEL, SWITZERLAND) 2021; 21:979. [PMID: 33540523 PMCID: PMC7867169 DOI: 10.3390/s21030979] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/24/2021] [Accepted: 01/26/2021] [Indexed: 02/07/2023]
Abstract
Recently, aptamers have attracted attention in the biosensing field as signal recognition elements because of their high binding affinity toward specific targets such as proteins, cells, small molecules, and even metal ions, antibodies for which are difficult to obtain. Aptamers are single oligonucleotides generated by in vitro selection mechanisms via the systematic evolution of ligand exponential enrichment (SELEX) process. In addition to their high binding affinity, aptamers can be easily functionalized and engineered, providing several signaling modes such as colorimetric, fluorometric, and electrochemical, in what are known as aptasensors. In this review, recent advances in aptasensors as powerful biosensor probes that could be used in different fields, including environmental monitoring, clinical diagnosis, and drug monitoring, are described. Advances in aptamer-based colorimetric, fluorometric, and electrochemical aptasensing with their advantages and disadvantages are summarized and critically discussed. Additionally, future prospects are pointed out to facilitate the development of aptasensor technology for different targets.
Collapse
Affiliation(s)
- Samy M. Shaban
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Petrochemicals Department, Egyptian Petroleum Research Institute, Cairo 11727, Egypt
| | - Dong-Hwan Kim
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea;
- Biomedical Institute for Convergence at SKKU (BICS), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
19
|
Zhang W, Wang C, Peng M, Ren G, Li K, Lin Y. ATP-responsive laccase@ZIF-90 as a signal amplification platform to achieve indirect highly sensitive online detection of ATP in rat brain. Chem Commun (Camb) 2021; 56:6436-6439. [PMID: 32393954 DOI: 10.1039/d0cc02021d] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A novel electrochemical online system for indirect, highly sensitive and selective online monitoring of ATP in the cerebral microdialysate is presented based on the particular reaction of ATP with zeolitic imidazole framework-90 (ZIF-90) encapsulated laccase microcrystals (laccase@ZIF-90) and the natural catalytic activity of laccase.
Collapse
Affiliation(s)
- Wang Zhang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Chao Wang
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Meihong Peng
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Guoyuan Ren
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Kai Li
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| | - Yuqing Lin
- Department of Chemistry, Capital Normal University, Beijing, 100048, China.
| |
Collapse
|
20
|
Zakashansky JA, Imamura AH, Salgado DF, Romero Mercieca HC, Aguas RFL, Lao AM, Pariser J, Arroyo-Currás N, Khine M. Detection of the SARS-CoV-2 spike protein in saliva with Shrinky-Dink© electrodes. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2020. [PMID: 33236028 DOI: 10.1101/2020.11.14.20231811] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Using the children's toy, Shrinky-Dink ©, we present an aptamer-based electrochemical (E-AB) assay that recognizes the spike protein of SARS-CoV-2 in saliva for viral infection detection. The low-cost electrodes are implementable at population scale and demonstrate detection down to 0.1 fg mL -1 of the S1 subunit of the spike protein.
Collapse
|