1
|
Fu H, Liu H, Wang X, Zhang W, Zhang H, Luo Y, Deng X, King G, Chen N, Wang L, Wu YA. Reverse Hydrogen Spillover on Metal Oxides for Water-Promoted Catalytic Oxidation Reactions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407534. [PMID: 38973643 DOI: 10.1002/adma.202407534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 06/25/2024] [Indexed: 07/09/2024]
Abstract
Understanding the water-involved mechanism on metal oxide surface and the dynamic interaction of water with active sites is crucial in solving water poisoning in catalytic reactions. Herein, this work solves this problem by designing the water-promoted function of metal oxides in the ethanol oxidation reaction. In situ multimodal spectroscopies unveil that the competitive adsorption of water-dissociated *OH species with O2 at Sn active sites results in water poisoning and the sluggish proton transfer in CoO-SnO2 imparts water-resistant effect. Carbon material as electron donor and proton transport channel optimizes the Co active sites and expedites the reverse hydrogen spillover from CoO to SnO2. The water-promoted function arises from spillover protons facilitating O2 activation on the SnO2 surface, leading to crucial *OOH intermediate formation for catalyzing C-H and C-C cleavage. Consequently, the tailored CoO-C-SnO2 showcases a remarkable 60-fold enhancement in ethanol oxidation reaction compared to bare SnO2 under high-humidity conditions.
Collapse
Affiliation(s)
- Hao Fu
- School of Chemistry and Chemical Engineering, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China
| | - Hongjie Liu
- School of Chemistry and Chemical Engineering, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China
| | - Xiyang Wang
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, N2L 3G1, Canada
| | - Wenhua Zhang
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, 230029, P. R. China
| | - Hui Zhang
- State Key Laboratory of Functional Materials for Informatics, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, 200050, P. R. China
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, P. R. China
| | - Yunhong Luo
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, 201210, P. R. China
| | - Xianwang Deng
- School of Chemistry and Chemical Engineering, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China
| | - Graham King
- Canadian Light Source, Saskatoon, S7N 2V3, Canada
| | - Ning Chen
- Canadian Light Source, Saskatoon, S7N 2V3, Canada
| | - Liwei Wang
- School of Chemistry and Chemical Engineering, Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Center of China, School of Marine Sciences, Guangxi University, Nanning, 530004, P. R. China
| | - Yimin A Wu
- Department of Mechanical and Mechatronics Engineering, Waterloo Institute for Nanotechnology, Materials Interface Foundry, University of Waterloo, Waterloo, N2L 3G1, Canada
| |
Collapse
|
2
|
Ma Y, Li W, Zhang W, Kong L, Yu C, Tang C, Zhu Z, Chen Y, Jiang L. Bioinspired multi-scale interface design for wet gas sensing based on rational water management. MATERIALS HORIZONS 2024; 11:3996-4014. [PMID: 38938180 DOI: 10.1039/d4mh00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2024]
Abstract
Natural organisms have evolved multi-scale wet gas sensing interfaces with optimized mass transport pathways in biological fluid environments, which sheds light on developing artificial counterparts with improved wet gas sensing abilities and practical applications. Herein, we highlighted current advances in wet gas sensing taking advantage of optimized mass transport pathways endowed by multi-scale interface design. Common moisture resistance (e.g., employing moisture resistant sensing materials, post-modifying moisture resistant coatings, physical heating for moisture resistance, and self-removing hydroxyl groups) and moisture absorption (e.g., employing moisture absorption sensing materials and post-modifying moisture absorption coatings) strategies for wet gas sensing were discussed. Then, the design principles of bioinspired multi-scale wet gas sensing interfaces were provided, including macro-level condensation mediation, micro/nano-level transport pathway adjustment and molecular level moisture-proof design. Finally, perspectives on constructing bioinspired multi-scale wet gas sensing interfaces were presented, which will not only deepen our understanding of the underlying principles, but also promote practical applications.
Collapse
Affiliation(s)
- Yutian Ma
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Weifeng Li
- National Key Laboratory of Automotive Chassis Integration and Bionics, Jilin University, Changchun 130022, China
| | - Weifang Zhang
- College of Environmental and Resource Sciences, Fujian Normal University, Fujian 350117, China
| | - Lei Kong
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Chengyue Yu
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
- College of Chemistry and Material Science, Shandong Agriculture University, Tai'an 271018, China
| | - Cen Tang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongpeng Zhu
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| | - Yupeng Chen
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Jiang
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China.
- School of Nano Science and Technology, Suzhou Institute for Advanced Research, University of Science and Technology of China, Jiangsu 215123, China
| |
Collapse
|
3
|
Tan X, Wang L, Chen X, Zhang H, Guo J, Dong Z, Qian L, Chen Z, He C. Ultrasensitive triethylamine gas sensors with ZnSe nanospheres/nest-like Cr-doped MoO 3. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134709. [PMID: 38823107 DOI: 10.1016/j.jhazmat.2024.134709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/11/2024] [Accepted: 05/22/2024] [Indexed: 06/03/2024]
Abstract
Developing high-sensitivity TEA sensors has extremely important significance for human health. Design of three-dimensional (3D) nanostructures assembled from one-dimensional nanomaterials can effectively improve sensing performance. In this work, a nest-like structure assembled by Cr-doped MoO3 (Cr-MoO3) nanorods with relatively higher specific surface area was prepared. In order to improve the sensing performance, Cr-MoO3 skeleton was combined with ZnSe nanospheres of different mass ratios as sensing materials (ZnSe/Cr-MoO3), and the successful construction of the heterojunction structure was supported by various spectroscopies and charge density calculation. The prepared composite with an optimal moiety ratio showed very high response values of 371 and 1301 for 10 ppm and 50 ppm for TEA at 200 °C, respectively. Simultaneously, the composite sensor also exhibited a low detection limit (1.7 ppb). The improvement of the sensing performance of ZnSe/Cr-MoO3 was attributed to the formation of oxygen vacancies induced by Cr doping, the 3D nest-like structure provided an efficient network for charge transport/collection and the n-n heterojunctions between Cr-MoO3 nanorods and ZnSe nanospheres. The simulation analysis based on density functional theory (DFT) calculations indicated that the heterojunctions could effectively enhance the adsorption energy of TEA and the more charges transferring from TEA to the Cr-MoO3 nanorods.
Collapse
Affiliation(s)
- Xiangyun Tan
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Li Wang
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Xi Chen
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Haoliang Zhang
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Jiacheng Guo
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Zhihu Dong
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China
| | - Libing Qian
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Zhiyuan Chen
- Hubei Key Laboratory of Radiation Chemistry and Functional Materials, School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, China
| | - Chunqing He
- Key Laboratory of Nuclear Solid-State Physics Hubei Province, School of Physics and Technology, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Miao J, Li X, Fan Y, Zhu S, Wang W, Fan H. Oxygen vacancies induced by lanthanum-doped indium oxide nanofibers for promoted temperature-dependent triethylamine and formaldehyde sensing. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133148. [PMID: 38056275 DOI: 10.1016/j.jhazmat.2023.133148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/15/2023] [Accepted: 11/29/2023] [Indexed: 12/08/2023]
Abstract
A novel TEA and HCHO dual-function temperature-dependent sensing material (3La-In2O3) with ultra-high sensitivity was developed via a facile electrospinning process. Though rare earth doped in In2O3-based sensors have been widely reported, the low sensitivity, poor selectivity and high operating temperature remain restrict their application. Herein, the In2O3 nanofibers with different contents of La3+ ions are firstly obtained by a facile electrospinning process. The sensing performance investigation confirms that the 3% La/In molar ratio of La3+ doped in In2O3 nanofibers are more appropriate as the sensing material for TEA and HCHO detection. The 3La-In2O3 exhibits greatest response value of 3721.60-10 ppm TEA and 1469.65-10 ppm HCHO at their best working temperature (100 ℃ and 160 ℃), approximately 23.85-fold and 10.85-fold higher than that of pristine In2O3 nanofibers. In addition, the excellent selectivity, repeatability, and long-term stability ensure the further application of the 3La-In2O3-based sensor in actual environment. The promoted sensing performance is mainly ascribed to the more oxygen vacancies, the increasing specific surface area, the smaller grain size of In2O3 nanofibers induced by La3+ doping. The DFT results demonstrate the beneficial effect of La and oxygen vacancies on the improved target gas adsorption energy.
Collapse
Affiliation(s)
- Jinwei Miao
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xiaomin Li
- Frontiers Science Center for Flexible Electronics, Institute of Flexible Electronics, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Yongbo Fan
- Department of Materials Science and Engineering, The University of Sheffield, Sheffield S1 3JD, United Kingdom.
| | - Shuwen Zhu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Weijia Wang
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Huiqing Fan
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China.
| |
Collapse
|
5
|
Shao S, Yan L, Zhang L, Zhang J, Li Z, Kim HW, Kim SS. Utilizing Data Mining for the Synthesis of Functionalized Tungsten Oxide with Enhanced Oxygen Vacancies for Highly Sensitive Detection of Triethylamine. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6098-6112. [PMID: 38266747 DOI: 10.1021/acsami.3c16021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
The optimal combination of metal ions and ligands for sensing materials was estimated by using a data-driven model developed in this research. This model utilized advanced computational algorithms and a data set of 100,000 literature pieces. The semiconductor metal oxide (SMO) that is most suitable for detecting triethylamine (TEA) with the highest probability was identified by using the Word2vec model, which employed the maximum likelihood method. The loss function of the probability distribution was minimized in this process. Based on the analysis, a novel hierarchical nanostructured tungsten-based coordination with 2,5-dihydroxyterephthalic acid (W-DHTA) was synthesized. This synthesis involved a postsynthetic hydrothermal treatment (psHT) and the self-assembly of tungsten oxide nanorods. The tungsten oxide nanorods had a significant number of oxygen vacancies. Various techniques were used to characterize the synthesized material, and its sensing performance toward volatile organic compound (VOC) gases was evaluated. The results showed that the functionalized tungsten oxide exhibited an exceptionally high sensitivity and selectivity toward TEA gas. Even in a highly disturbed environment, the detection limit for TEA gas was as low as 40 parts per billion (ppb). Furthermore, our findings suggest that the control of oxygen vacancies in sensing materials plays a crucial role in enhancing the sensitivity and selectivity of gas sensors. This approach was supported by the utilization of density functional theory (DFT) computation and machine learning algorithms to assess and analyze the performance of sensor devices, providing a highly efficient and universally applicable research methodology for the development and design of next-generation functional materials.
Collapse
Affiliation(s)
- Shaofeng Shao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Liangwei Yan
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Lei Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Jun Zhang
- College of Physics, Centre for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Zuoxi Li
- Institute of Materials Science and Devices, School of Material Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, China
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
6
|
Shao S, Zhang L, Zhang J, Ma B, Kim HW, Kim SS. Three-Dimensional van der Waals Heterostructure-Based Nanocages as Supersensitive 3-Hydroxy-2-butanone Gas Sensors at Room Temperature. ACS Sens 2023; 8:228-242. [PMID: 36630305 DOI: 10.1021/acssensors.2c02089] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
3-Hydroxy-2-butanone is one of the biomarkers of Listeria monocytogenes, which is quite important for the intelligent detection of 3H-2B. However, it is still a challenge to fabricate sensing materials obtaining excellent sensitivity and selectivity under the ppb-level detection limit. Herein, a plasma-assisted synthetic approach was proposed for the construction of hierarchical nanostructures and the simultaneous loading of TAPP-COFs, which could reduce interlayer interaction and convert the metallized sites on the surface of predesigned porphyrin rings into quantum nanoparticles. These multichannel pathways of Co-TAPP-COFs@SnO2@MWCNTs nanocages contributed to the gas adsorption and diffusion, thus enhancing the sensing behavior. The nanocages exhibited a highly specific sensing performance toward 3H-2B with the highest sensitivity (Ra/Rg = 100.9 to 0.5 ppm) in all reported sensing materials. The 3H-2B sensor presented outstanding long-term stability, and the detection limit was 100 ppb at room temperature. Furthermore, the synthesized materials were integrated into the sensing module connecting to an Internet of Things platform, providing rapid and real-time detection of 3H-2B. We also applied machine learning methods to analyze the nanocage-based sensors and found that the combined effects of modified sites on the heterointerfaces contributed to the improvement of the sensing performance.
Collapse
Affiliation(s)
- Shaofeng Shao
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
| | - Lei Zhang
- School of Chemistry and Materials Science, Institute of Advanced Materials and Flexible Electronics (IAMFE), Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
| | - Jun Zhang
- College of Physics, Centre for Marine Observation and Communications, Qingdao University, Qingdao, Shandong 266071, China
| | - Bo Ma
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, Jiangsu 211816, China
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 22212, Republic of Korea
| |
Collapse
|
7
|
Zhang R, Liu C, Wang P, Li Y, Su Y, Dai J. A room-temperature formaldehyde sensor based on hematite for breast cancer diagnosis. Analyst 2023; 148:248-254. [PMID: 36477164 DOI: 10.1039/d2an01796b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Formaldehyde (HCHO) is regarded as one kind of indoor pollutant. Additionally, HCHO serves as a biomarker in the exhaled breath of breast cancer patients. Early warning and management are crucial for the environment and human health. Thus, we have elaborately synthesized hematite (α-Fe2O3) employing a facet-engineering hydrothermal strategy using the fine-tuned solvent composition, with special attention to the effect of different exposed surfaces on HCHO detection. The spindle-like α-Fe2O3 nanocrystals with the (012) facet exposed exhibited impressively higher response towards HCHO at room temperature than that of the disk-like α-Fe2O3 with mainly the (001) facet exposed, partly due to the abundant vacancy oxygen and adsorbed oxygen of high-index facets of α-Fe2O3. More importantly, our experimental results coincide with theoretical calculations. Overall, the surface engineering strategy could be extended to a versatile approach for HCHO detection.
Collapse
Affiliation(s)
- Rui Zhang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Chuanqun Liu
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Pu Wang
- School of Environmental Science and Technology, Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), Dalian University of Technology, Dalian, 116024, China
| | - Yang Li
- Department of Electronic Systems, Norwegian University of Science and Technology, NO-7491, Trondheim, Norway
| | - Yue Su
- Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100864, China
| | - Jianxun Dai
- School of Optoelectronic Engineering and Instrumentation Science, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
8
|
Zhu X, Chang X, Tang S, Chen X, Gao W, Niu S, Li J, Jiang Y, Sun S. Humidity-Tolerant Chemiresistive Gas Sensors Based on Hydrophobic CeO 2/SnO 2 Heterostructure Films. ACS APPLIED MATERIALS & INTERFACES 2022; 14:25680-25692. [PMID: 35605189 DOI: 10.1021/acsami.2c03575] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The accelerated evolution of the Internet of Things has brought new challenges to the gas sensors, which are required to work persistently under harsh conditions, like high humidity. However, currently, it is quite challenging to solve the hindrance of the trade-off between gas-sensing performance and anti-humidity ability of the chemiresistive gas sensors. Herein, hydrophobic inorganic CeO2/SnO2 heterostructure films were prepared by depositing the CeO2 layers with a thickness of a few nanometers onto the SnO2 film via a magnetron sputtering method. The sensors based on the CeO2/SnO2 heterostructure films demonstrated excellent gas-sensing performance toward trimethylamine (TEA) with high response, wide detection range (0.04-500 ppm), low record detection limit (0.04 ppm), ideal reproducibility, and long-term stability, while concurrently possessing promising anti-humidity ability. A portable, wireless TEA-sensing system containing the CeO2/SnO2 sensor was constructed to realize the real-time monitoring of trace concentration of the volatiles released from a fish. This work provides a novel strategy to prepare advanced chemiresistive gas sensors for humidity-independent detection of harmful gases and vapors and will accelerate their commercialization process in the field of food safety and public health.
Collapse
Affiliation(s)
- Xiaojie Zhu
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xueting Chang
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Sikai Tang
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Xiaoqiu Chen
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Weixiang Gao
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shicong Niu
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Junfeng Li
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Yingchang Jiang
- Institute of Marine Materials Science and Engineering, College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shibin Sun
- College of Logistics Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
9
|
Yang J, Han W, Jiang B, Wang X, Sun Y, Wang W, Lou R, Ci H, Zhang H, Lu G. Electrospinning Derived NiO/NiFe 2O 4 Fiber-in-Tube Composite for Fast Triethylamine Detection under Different Humidity. ACS Sens 2022; 7:995-1007. [PMID: 35377609 DOI: 10.1021/acssensors.1c02462] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Designing high-performance triethylamine gas sensors with the stable gas response and low resistance variation in air under a wide relative humidity range is expected for human health and environmental surveillance. Here, a novel porous NiO/NiFe2O4 fiber-in-tube nanostructure is prepared by the electrospinning process. The characterizations related to microstructure and surface morphology are carried out. Meanwhile, the gas sensing performance of the porous fiber-in-tube NiO/NiFe2O4 materials is evaluated and compared systematically. The results indicate that the introduction of NiO as the second component can not only reduce the baseline resistance of NiFe2O4 gas sensors dramatically but also optimize the gas sensing performance to a significant extent. Especially, the fabricated sensor based on the NiO/NiFe2O4 fiber-in-tube with a Ni/Fe molar ratio of 1.5 exhibits the best performance. The gas response while detecting 50 ppm triethylamine at 300 °C is about 3.6 times higher than that with Ni/Fe molar ratio of 0.5. Moreover, the response values become more stable, and the baseline resistance has a lower variation under a wide relative humidity range, demonstrating the excellent humidity resistance. These phenomena might be ascribed to the distinctive fiber-in-tube nanostructure as well as the heterojunction between NiFe2O4 and NiO.
Collapse
Affiliation(s)
- Jiaqi Yang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Wenjiang Han
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Bin Jiang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Xi Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Yanfeng Sun
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Wenyang Wang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Ruilin Lou
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Hedi Ci
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Hong Zhang
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors of Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012, People’s Republic of China
| |
Collapse
|
10
|
Liu J, Zhang L, Fan J, Yu J. Semiconductor Gas Sensor for Triethylamine Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104984. [PMID: 34894075 DOI: 10.1002/smll.202104984] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/25/2021] [Indexed: 05/25/2023]
Abstract
With the demanding detection of unique toxic gas, semiconductor gas sensors have attracted tremendous attention due to their intriguing features, such as, high sensitivity, online detection, portability, ease of use, and low cost. Triethylamine, a typical gas of volatile organic compounds, is an important raw material for industrial development, but it is also a hazard to human health. This review presents a concise compilation of the advances in triethylamine detection based on chemiresistive sensors. Specifically, the testing system and sensing parameters are described in detail. Besides, the sensing mechanism with characterizing tactics is analyzed. The research status based on various chemiresistive sensors is also surveyed. Finally, the conclusion and challenges, as well as some perspectives toward this area, are presented.
Collapse
Affiliation(s)
- Jingjing Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Liuyang Zhang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiajie Fan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| |
Collapse
|
11
|
Wei J, Zhao M, Wang C, Wang J, Ye JM, Wei YC, Li ZY, Zhao R, Liu GZ, Geng YH, Wang R, Xiao HD, Li Y, Li CY, Gao ZQ, Gao J. Vacuum Based Gas Sensing Material Characterization System for Precise and Simultaneous Measurement of Optical and Electrical Responses. SENSORS 2022; 22:s22031014. [PMID: 35161761 PMCID: PMC8839427 DOI: 10.3390/s22031014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/19/2022] [Accepted: 01/26/2022] [Indexed: 11/16/2022]
Abstract
Gas sensing performance characterization systems are essential for the research and development of gas sensing materials and devices. Although existing systems are almost completely automatically operated, the accuracies of gas concentration control and of pressure control and the ability to simultaneously detect different sensor signals still require improvement. In this study, a high-precision gas sensing material characterization system is developed based on vacuum technology, with the objective of enabling the precise and simultaneous measurement of electrical responses. Because of the implementation of vacuum technology, the gas concentration control accuracy is improved more than 1600 times, whereas the pressure of the test ambient condition can be precisely adjusted between vacuum and 1.2 bar. The vacuum-assisted gas-exchanging mechanism also enables the sensor response time to be determined more accurately. The system is capable of performing sensitivity, selectivity, and stability tests and can control the ambient relative humidity in a precise manner. More importantly, the levels of performance of three different optical signal measurement set-ups were investigated and compared in terms of detection range, linearity, noise, and response time, based on which of their scopes of application were proposed. Finally, single-period and cyclical tests were performed to examine the ability of the system to detect optical and electrical responses simultaneously, both at a single wavelength and in a spectral region.
Collapse
Affiliation(s)
- Jie Wei
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
| | - Meng Zhao
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
- Correspondence: (M.Z.); (C.W.)
| | - Cong Wang
- School of Information and Communication, Harbin Institute of Technology, Harbin 150001, China; (Y.-C.W.); (Z.-Y.L.); (Z.-Q.G.)
- Correspondence: (M.Z.); (C.W.)
| | - Jun Wang
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (R.Z.); (G.-Z.L.); (J.G.)
| | - Jian-Min Ye
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
| | - Yu-Chen Wei
- School of Information and Communication, Harbin Institute of Technology, Harbin 150001, China; (Y.-C.W.); (Z.-Y.L.); (Z.-Q.G.)
| | - Zhe-Yi Li
- School of Information and Communication, Harbin Institute of Technology, Harbin 150001, China; (Y.-C.W.); (Z.-Y.L.); (Z.-Q.G.)
| | - Run Zhao
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (R.Z.); (G.-Z.L.); (J.G.)
| | - Guo-Zhen Liu
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (R.Z.); (G.-Z.L.); (J.G.)
| | - Yan-Hong Geng
- Suzhou Institute of Metrology, Suzhou 215009, China; (Y.-H.G.); (R.W.)
| | - Rui Wang
- Suzhou Institute of Metrology, Suzhou 215009, China; (Y.-H.G.); (R.W.)
| | - Hui-Dong Xiao
- Changchun New Industries Optoelectronics Technology Co., Ltd., Changchun 130103, China;
| | - Ying Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
| | - Chao-Ya Li
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (J.-M.Y.); (Y.L.); (C.-Y.L.)
| | - Zhi-Qiang Gao
- School of Information and Communication, Harbin Institute of Technology, Harbin 150001, China; (Y.-C.W.); (Z.-Y.L.); (Z.-Q.G.)
| | - Ju Gao
- School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou 215009, China; (J.W.); (R.Z.); (G.-Z.L.); (J.G.)
- School for Optoelectronic Engineering, Zaozhuang University, Zaozhuang 277160, China
| |
Collapse
|
12
|
Zhou S, Ji J, Qiu T, Wang L, Ni W, Li S, Yan W, Ling M, Liang C. Boosting selective H2 sensing of ZnO derived from ZIF-8 by rGO functionalization. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01374b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
H2 sensors have attracted considerable attention for safety warning of traditional industries and energy storing systems. This ZnO/rGO composite demonstrated excellent H2 sensing performances, good baseline stability and excellent selectivity.
Collapse
Affiliation(s)
- Shiyu Zhou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Jiapeng Ji
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tong Qiu
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
| | - Liguang Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Wenbin Ni
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Sheng Li
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211800, China
| | - Wenjun Yan
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- School of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Min Ling
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| | - Chengdu Liang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China
- Institute of Zhejiang University-Quzhou, 78 Jiuhua Boulevard North, Quzhou 324000, China
| |
Collapse
|
13
|
|
14
|
Li Z, Liu X, Zhou M, Zhang S, Cao S, Lei G, Lou C, Zhang J. Plasma-induced oxygen vacancies enabled ultrathin ZnO films for highly sensitive detection of triethylamine. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125757. [PMID: 34088211 DOI: 10.1016/j.jhazmat.2021.125757] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 03/02/2021] [Accepted: 03/21/2021] [Indexed: 05/26/2023]
Abstract
Metal oxide semiconductor (MOS) thin films hold great promise for electronic devices such as gas sensors. However, the low surface activity of pristine MOS often leads to inferior sensitivity and the sensitization mechanism of ultrathin MOS films has received rare attention. Herein, we report a high performance gas sensor based on plasma-etched ZnO thin films. The ultrathin ZnO films (20 nm) were deposited on SiO2 wafers by atomic layer deposition (ALD), which enables high-throughput production of sensor devices. The ZnO sensor shows typical n-type conductivity, which is highly variable to the exposure of triethylamine (TEA). Annealing temperature of the films is found to impact the sensor response, revealing calcination at a moderate temperature, i.e. 700 °C, leads to the best response. Further treatment by Ar plasma results in a remarkable decrease of sensor working temperature from 300 °C of untreated films to 250 °C and nearly 4-fold enhancement in the sensor response to 10 ppm TEA. Notably, the plasma-treated ZnO sensor also shows decent response even at room temperature (RT), which has been seldom reported for ZnO-based sensors. Structure and mechanism investigations reveal that the superior sensor properties are derived from the abundant oxygen vacancies generated by Ar plasma etching.
Collapse
Affiliation(s)
- Zishuo Li
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Xianghong Liu
- College of Physics, Qingdao University, Qingdao 266071, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| | - Miao Zhou
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Shoulong Zhang
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Shize Cao
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Guanglu Lei
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Chengming Lou
- College of Physics, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- College of Physics, Qingdao University, Qingdao 266071, China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China.
| |
Collapse
|