1
|
Chang S, Koo JH, Yoo J, Kim MS, Choi MK, Kim DH, Song YM. Flexible and Stretchable Light-Emitting Diodes and Photodetectors for Human-Centric Optoelectronics. Chem Rev 2024; 124:768-859. [PMID: 38241488 DOI: 10.1021/acs.chemrev.3c00548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Optoelectronic devices with unconventional form factors, such as flexible and stretchable light-emitting or photoresponsive devices, are core elements for the next-generation human-centric optoelectronics. For instance, these deformable devices can be utilized as closely fitted wearable sensors to acquire precise biosignals that are subsequently uploaded to the cloud for immediate examination and diagnosis, and also can be used for vision systems for human-interactive robotics. Their inception was propelled by breakthroughs in novel optoelectronic material technologies and device blueprinting methodologies, endowing flexibility and mechanical resilience to conventional rigid optoelectronic devices. This paper reviews the advancements in such soft optoelectronic device technologies, honing in on various materials, manufacturing techniques, and device design strategies. We will first highlight the general approaches for flexible and stretchable device fabrication, including the appropriate material selection for the substrate, electrodes, and insulation layers. We will then focus on the materials for flexible and stretchable light-emitting diodes, their device integration strategies, and representative application examples. Next, we will move on to the materials for flexible and stretchable photodetectors, highlighting the state-of-the-art materials and device fabrication methods, followed by their representative application examples. At the end, a brief summary will be given, and the potential challenges for further development of functional devices will be discussed as a conclusion.
Collapse
Affiliation(s)
- Sehui Chang
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Ja Hoon Koo
- Department of Semiconductor Systems Engineering, Sejong University, Seoul 05006, Republic of Korea
- Institute of Semiconductor and System IC, Sejong University, Seoul 05006, Republic of Korea
| | - Jisu Yoo
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
| | - Min Seok Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Moon Kee Choi
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Graduate School of Semiconductor Materials and Devices Engineering, Center for Future Semiconductor Technology (FUST), UNIST, Ulsan 44919, Republic of Korea
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University (SNU), Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, SNU, Seoul 08826, Republic of Korea
- Interdisciplinary Program for Bioengineering, SNU, Seoul 08826, Republic of Korea
| | - Young Min Song
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
- Department of Materials Science and Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan 44919, Republic of Korea
- Artificial Intelligence (AI) Graduate School, GIST, Gwangju 61005, Republic of Korea
| |
Collapse
|
2
|
Bisht BP, Toutam V, Dhakate SR. 3D Printed Lattice Template by Material Extrusion Technique for Fabrication of Pixelated Photodetector. 3D PRINTING AND ADDITIVE MANUFACTURING 2023; 10:1394-1404. [PMID: 38116210 PMCID: PMC10726183 DOI: 10.1089/3dp.2022.0386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Rigid and flexible, pixelated ultraviolet photodetectors (PD) based on ZnO have been fabricated by material extrusion 3D printing technique. The photoresponse is studied in an out-of-plane configuration. An open lattice structure is printed using PLA over ITO/Glass substrate for rigid, and TPU over ITO/PET substrate for flexible PDs. ZnO slurry is filled selectively into the columnar matrix by the microdispensing technique. The optical detector printed on ITO/Glass substrate shows a sensitivity of 25 and responsivity of 1.55 nA/mW with a rise and decay time of 1.6 and 0.6 s, respectively. Similarly, the flexible PD printed using TPU lattice shows a sensitivity of 9.5 and responsivity of 0.38 nA/mW with a rise and decay time of 1.8 and 0.6 s, respectively. The charge transport mechanism is studied using band diagram analysis. 3D printed open lattice structure is found to be a potential template for sensor fabrication. This work demonstrates the capability of material extrusion 3D printing with an open lattice structure for the fabrication of high-resolution pixelated PDs.
Collapse
Affiliation(s)
- Bhanu Prakash Bisht
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory, New Delhi, India
- Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Vijaykumar Toutam
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory, New Delhi, India
- Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| | - Sanjay R. Dhakate
- Academy of Scientific and Innovative Research (AcSIR), CSIR-National Physical Laboratory, New Delhi, India
- Advanced Materials and Device Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
| |
Collapse
|
3
|
Hu J, Chen J, Ma T, Li Z, Hu J, Ma T, Li Z. Research advances in ZnO nanomaterials-based UV photode tectors: a review. NANOTECHNOLOGY 2023; 34:232002. [PMID: 36848670 DOI: 10.1088/1361-6528/acbf59] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Ultraviolet photodetectors (UV PDs) have always been the research focus of semiconductor optoelectronic devices due to their wide application fields and diverse compositions. As one of the best-known n-type metal oxides in third-generation semiconductor electronic devices, ZnO nanostructures and their assembly with other materials have received extensive research. In this paper, the research progress of different types of ZnO UV PDs is reviewed, and the effects of different nanostructures on ZnO UV PDs are summarized in detail. In addition, physical effects such as piezoelectric photoelectric effect, pyroelectric effect, and three ways of heterojunction, noble metal local surface plasmon resonance enhancement and formation of ternary metal oxides on the performance of ZnO UV PDs were also investigated. The applications of these PDs in UV sensing, wearable devices, and optical communication are displayed. Finally, the possible opportunities and challenges for the future development of ZnO UV PDs are prospected.
Collapse
Affiliation(s)
- Jinning Hu
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Jun Chen
- Key Laboratory of Advanced Displaying Materials and Devices, Ministry of Industry and Information Technology, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Teng Ma
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Zhenhua Li
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - J Hu
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - T Ma
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| | - Z Li
- School of Science, Nanjing University of Science and Technology, Nanjing 210094, People's Republic of China
| |
Collapse
|
4
|
Li J, Reimers A, Dang KM, Brunk MGK, Drewes J, Hirsch UM, Willems C, Schmelzer CEH, Groth T, Nia AS, Feng X, Adelung R, Sacher WD, Schütt F, Poon JKS. 3D printed neural tissues with in situ optical dopamine sensors. Biosens Bioelectron 2023; 222:114942. [PMID: 36493722 DOI: 10.1016/j.bios.2022.114942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/15/2022] [Accepted: 11/21/2022] [Indexed: 11/28/2022]
Abstract
Engineered neural tissues serve as models for studying neurological conditions and drug screening. Besides observing the cellular physiological properties, in situ monitoring of neurochemical concentrations with cellular spatial resolution in such neural tissues can provide additional valuable insights in models of disease and drug efficacy. In this work, we demonstrate the first three-dimensional (3D) tissue cultures with embedded optical dopamine (DA) sensors. We developed an alginate/Pluronic F127 based bio-ink for human dopaminergic brain tissue printing with tetrapodal-shaped-ZnO microparticles (t-ZnO) additive as the DA sensor. DA quenches the autofluorescence of t-ZnO in physiological environments, and the reduction of the fluorescence intensity serves as an indicator of the DA concentration. The neurons that were 3D printed with the t-ZnO showed good viability, and extensive 3D neural networks were formed within one week after printing. The t-ZnO could sense DA in the 3D printed neural network with a detection limit of 0.137 μM. The results are a first step toward integrating tissue engineering with intensiometric biosensing for advanced artificial tissue/organ monitoring.
Collapse
Affiliation(s)
- Jianfeng Li
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada.
| | - Armin Reimers
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ka My Dang
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Michael G K Brunk
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Jonas Drewes
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany
| | - Ulrike M Hirsch
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Christian Willems
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Walter-Hülse-Straße 1, 06120, Halle, Germany
| | - Thomas Groth
- Department Biomedical Materials, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, 06120, Halle, Germany
| | - Ali Shaygan Nia
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Xinliang Feng
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Faculty of Chemistry and Food Chemistry & Center for Advancing Electronics Dresden, Technische Universität Dresden, Dresden, 01062, Germany
| | - Rainer Adelung
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Wesley D Sacher
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada
| | - Fabian Schütt
- Institute for Materials Science, Kiel University, 24143, Kiel, Germany; Kiel Nano, Surface and Interface Science KiNSIS, Kiel University, Christian-Albrechts-Platz 4, D-24118 Kiel, Germany
| | - Joyce K S Poon
- Max Planck Institute of Microstructure Physics, Weinberg 2, Halle, 06120, Germany; Max Planck-University of Toronto Centre for Neural Science and Technology, Canada; Department of Electrical and Computer Engineering, University of Toronto, 10 King's College Road, Toronto, Canada.
| |
Collapse
|
5
|
Nguyen TMH, Shin SG, Choi HW, Bark CW. Recent advances in self-powered and flexible UVC photodetectors. EXPLORATION (BEIJING, CHINA) 2022; 2:20210078. [PMID: 37325501 PMCID: PMC10190973 DOI: 10.1002/exp.20210078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 04/14/2022] [Indexed: 06/17/2023]
Abstract
Ultraviolet-C (UVC) radiation is employed in various applications, including irreplaceable applications in military and civil fields, such as missile guidance, flame detection, partial discharge detection, disinfection, and wireless communication. Although most modern electronics are based on Si, UVC detection technology remains a unique exception because the short wavelength of UV radiation makes efficient detection with Si difficult. In this review, recent challenges in obtaining ideal UVC photodetectors with various materials and various forms are introduced. An ideal photodetector must satisfy the following requirements: high sensitivity, fast response speed, high on/off photocurrent ratio, good regional selectivity, outstanding reproducibility, and superior thermal and photo stabilities. UVC detection is still in its infancy compared to the detection of UVA as well as other photon spectra, and recent research has focused on different key components, including the configuration, material, and substrate, to acquire battery-free, super-sensitive, ultra-stable, ultra-small, and portable UVC photodetectors. We introduce and discuss the strategies for fabricating self-powered UVC photodetectors on flexible substrates in terms of the structure, material, and direction of incoming radiation. We also explain the physical mechanisms of self-powered devices with various architectures. Finally, we present a brief outlook that discusses the challenges and future strategies for deep-UVC photodetectors.
Collapse
Affiliation(s)
- Thi My Huyen Nguyen
- Department of Electrical EngineeringGachon UniversitySeongnamGyeonggiRepublic of Korea
| | - Seong Gwan Shin
- Department of Electrical EngineeringGachon UniversitySeongnamGyeonggiRepublic of Korea
| | - Hyung Wook Choi
- Department of Electrical EngineeringGachon UniversitySeongnamGyeonggiRepublic of Korea
| | - Chung Wung Bark
- Department of Electrical EngineeringGachon UniversitySeongnamGyeonggiRepublic of Korea
| |
Collapse
|
6
|
Hegde C, Lim CHJ, Teng TH, Liu D, Kim YJ, Yan Q, Li H. In Situ Synthesis and Microfabrication of High Entropy Alloy and Oxide Compounds by Femtosecond Laser Direct Writing under Ambient Conditions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203126. [PMID: 36026538 DOI: 10.1002/smll.202203126] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Synthesis and coating of multi-metal oxides (MMOs) and alloys on conductive substrates are indispensable to electrochemical applications, yet demand multiple, resource-intensive, and time-consuming processes. Herein, an alternative approach to the synthesis and coating of alloys and MMOs by femtosecond laser direct writing (FsLDW) is reported. A solution-based precursor ink is deposited and dried on the substrate and illuminated by a femtosecond laser. During the illumination, dried precursor ink is transformed to MMO/alloys and is simultaneously bonded to the substrate. The formulation of the alloy and MMO precursor ink for laser processing is universally applicable to a large family of oxides and alloys. The process is conducted at room temperature and in an open atmosphere. To demonstrate, a large family of 57 MMOs and alloys are synthesized from a group of 13 elements. As a proof of concept, Ni0.24 Co0.23 Cu0.24 Fe0.15 Cr0.14 high entropy alloy synthesized on stainless-steel foil by FsLDW is used for the oxygen evolution reaction, which achieves a current density of 10 mA cm-2 at a significantly low overpotential of 213 mV. Further, FsLDW can also achieve microfabrication of alloys/MMO with feature sizes down to 20 µm.
Collapse
Affiliation(s)
- Chidanand Hegde
- Singapore Centre for 3D Printing, Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Chin Huat Joel Lim
- Singapore Centre for 3D Printing, Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Tan Hui Teng
- Department of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Daobin Liu
- Department of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Young-Jin Kim
- Department of Mechanical Engineering Korea Advanced Institute of Science and Technology, 291 Science Town, Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Qingyu Yan
- Department of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Hua Li
- Singapore Centre for 3D Printing, Department of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
7
|
Ouyang X, Su R, Ng DWH, Han G, Pearson DR, McAlpine MC. 3D Printed Skin-Interfaced UV-Visible Hybrid Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201275. [PMID: 35818683 PMCID: PMC9443467 DOI: 10.1002/advs.202201275] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Photodetectors that are intimately interfaced with human skin and measure real-time optical irradiance are appealing in the medical profiling of photosensitive diseases. Developing compliant devices for this purpose requires the fabrication of photodetectors with ultraviolet (UV)-enhanced broadband photoresponse and high mechanical flexibility, to ensure precise irradiance measurements across the spectral band critical to dermatological health when directly applied onto curved skin surfaces. Here, a fully 3D printed flexible UV-visible photodetector array is reported that incorporates a hybrid organic-inorganic material system and is integrated with a custom-built portable console to continuously monitor broadband irradiance in-situ. The active materials are formulated by doping polymeric photoactive materials with zinc oxide nanoparticles in order to improve the UV photoresponse and trigger a photomultiplication (PM) effect. The ability of a stand-alone skin-interfaced light intensity monitoring system to detect natural irradiance within the wavelength range of 310-650 nm for nearly 24 h is demonstrated.
Collapse
Affiliation(s)
- Xia Ouyang
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
- Sino‐German College of Intelligent ManufacturingShenzhen Technology UniversityShenzhen518118P. R. China
| | - Ruitao Su
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Daniel Wai Hou Ng
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - Guebum Han
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| | - David R. Pearson
- Department of DermatologyUniversity of MinnesotaMinneapolisMN55455USA
| | - Michael C. McAlpine
- Department of Mechanical EngineeringUniversity of MinnesotaMinneapolisMN55455USA
| |
Collapse
|
8
|
Nguyen TMH, Lee SK, Kim S, Bark CW. Practical Demonstration of Deep-Ultraviolet Detection with Wearable and Self-Powered Halide Perovskite-Based Photodetector. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57609-57618. [PMID: 34807569 DOI: 10.1021/acsami.1c18099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Flexible and self-powered photodetectors (PDs) have become one of the most popular topics, attracting researchers in the field of optoelectronic applications. In this study, for the first time, we demonstrate partial discharge detection in a practical environment with a prepared flexible device. Poly(vinylidene fluoride) (PVDF) is utilized as a highly transparent material in the UVC region, to create a flexible substrate with the antihumidity property. A detector that uses a mixed-halide perovskite (FAPbI3)1-x(MAPbBr3)x as the photoactive material is constructed in a vertical structure on the as-prepared hydrophobic PVDF substrate. The fabricated device exhibits good performance with a fast response speed (trise = 82 ms, tfall = 64 ms) and a high detectivity of 7.21 × 1010 Jones at zero bias under 254 nm UV illumination, along with superior mechanical flexibility at various bending angles. Additionally, the air-exposure stability and reproducibility of the as-prepared device exhibit almost the original performance after 6 weeks of storage. For practical applications, we demonstrate a facile and sensitive detection for UVC leakage from a germicidal lamp and simulated a partial discharge system using our PD without energy consumption. These results indicate that this new approach may be useful and convenient for the detection of the partial discharge as well as for several practical applications.
Collapse
Affiliation(s)
- Thi My Huyen Nguyen
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Shin Kyu Lee
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| | - Sangmo Kim
- School of Intelligent Mechatronics Engineering, Sejong University, Gwangjin-gu, Seoul 05006, South Korea
| | - Chung Wung Bark
- Department of Electrical Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, South Korea
| |
Collapse
|
9
|
Bunea AC, Dediu V, Laszlo EA, Pistriţu F, Carp M, Iliescu FS, Ionescu ON, Iliescu C. E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. MICROMACHINES 2021; 12:1091. [PMID: 34577734 PMCID: PMC8470991 DOI: 10.3390/mi12091091] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Real-time "on-body" monitoring of human physiological signals through wearable systems developed on flexible substrates (e-skin) is the next target in human health control and prevention, while an alternative to bulky diagnostic devices routinely used in clinics. The present work summarizes the recent trends in the development of e-skin systems. Firstly, we revised the material development for e-skin systems. Secondly, aspects related to fabrication techniques were presented. Next, the main applications of e-skin systems in monitoring, such as temperature, pulse, and other bio-electric signals related to health status, were analyzed. Finally, aspects regarding the power supply and signal processing were discussed. The special features of e-skin as identified contribute clearly to the developing potential as in situ diagnostic tool for further implementation in clinical practice at patient personal levels.
Collapse
Affiliation(s)
- Alina-Cristina Bunea
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Violeta Dediu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Edwin Alexandru Laszlo
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Florian Pistriţu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Mihaela Carp
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
- Faculty of Electrical and Mechanical Engineering, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
- Academy of Romanian Scientists, 010071 Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
10
|
UV-Responsive Screen-Printed Porous ZnO Nanostructures on Office Paper for Sustainable and Foldable Electronics. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9080192] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The fabrication of low-cost, flexible, and recyclable electronic devices has been the focus of many research groups, particularly for integration in wearable technology and the Internet of Things (IoT). In this work, porous zinc oxide (ZnO) nanostructures are incorporated as a UV sensing material into the composition of a sustainable water-based screen-printable ink composed of carboxymethyl cellulose (CMC). The formulated ink is used to fabricate flexible and foldable UV sensors on ubiquitous office paper. The screen-printed CMC/ZnO UV sensors operate under low voltage (≤2 V) and reveal a stable response over several on/off cycles of UV light exposure. The devices reach a response current of 1.34 ± 0.15 mA and a rise and fall time of 8.2 ± 1.0 and 22.0 ± 2.3 s, respectively. The responsivity of the sensor is 432 ± 48 mA W−1, which is the highest value reported in the literature for ZnO-based UV sensors on paper substrates. The UV-responsive devices display impressive mechanical endurance under folding, showing a decrease in responsivity of only 21% after being folded 1000 times. Their low-voltage operation and extreme folding stability indicate a bright future for low-cost and sustainable flexible electronics, showing potential for low-power wearable applications and smart packaging.
Collapse
|
11
|
Lee Y, Kim SY, Kim DY, Lee S. Highly Sensitive UV Photodiode Composed of β-Polyfluorene/YZnO Nanorod Organic-Inorganic Hybrid Heterostructure. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1486. [PMID: 32751143 PMCID: PMC7466385 DOI: 10.3390/nano10081486] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 07/22/2020] [Accepted: 07/25/2020] [Indexed: 01/23/2023]
Abstract
The highly sensitive ultra-violet (UV) photodiode was demonstrated on the organic-inorganic hybrid heterostructure of β-phase p-type polyfluorene (PFO)/n-type yttrium-doped zinc oxide nanorods (YZO-NRs). The device was fabricated through a simple fabrication technique of β-phase PFO coating onto YZO-NRs that had been directly grown on graphene by the hydrothermal synthesis method. Under UV illumination (λ = 365 nm), the device clearly showed excellent photoresponse characteristics (e.g., high quantum efficiency ~690%, high photodetectivity ~3.34 × 1012 cm·Hz1/2·W-1, and fast response time ~0.17 s). Furthermore, the ratio of the photo current-to-dark current exceeds 103 even under UV illumination with a small optical power density of 0.6 mW/cm2. We attribute such superb photoresponse characteristics to both Y incorporation into YZO-NRs and conformation of β-phase PFO. Namely, Y dopants could effectively reduce surface states at YZO-NRs, and β-phase PFO might increase the photocarrier conductivity in PFO. The results suggest that the β-phase p-PFO/n-YZO-NR hybrid heterostructure holds promise for high-performance UV photodetectors.
Collapse
Affiliation(s)
- Youngmin Lee
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04623, Korea; (Y.L.); (D.Y.K.)
| | - Soo Youn Kim
- Division of Physics & Semiconductor Science, Dongguk University-Seoul, Seoul 04623, Korea;
| | - Deuk Young Kim
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04623, Korea; (Y.L.); (D.Y.K.)
- Division of Physics & Semiconductor Science, Dongguk University-Seoul, Seoul 04623, Korea;
| | - Sejoon Lee
- Quantum-Functional Semiconductor Research Center, Dongguk University-Seoul, Seoul 04623, Korea; (Y.L.); (D.Y.K.)
- Division of Physics & Semiconductor Science, Dongguk University-Seoul, Seoul 04623, Korea;
| |
Collapse
|