1
|
Cabrera-Villamizar L, Campano C, López-Rubio A, Fabra MJ, Prieto MA. Tailoring the structural and physicochemical properties of rice straw cellulose-based cryogels by cell-mediated polyhydroxyalkanoate deposition. Carbohydr Polym 2024; 346:122604. [PMID: 39245490 DOI: 10.1016/j.carbpol.2024.122604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/05/2024] [Accepted: 08/08/2024] [Indexed: 09/10/2024]
Abstract
This study presents a novel biotechnological approach for creating water vapor-resistant cryogels with improved integrity. Rice straw cellulose was transformed into nanofibrils through TEMPO-mediated oxidation and high-pressure homogenization. The resulting cryogels remained firm even when immersed in aqueous media, whose pores were used by live cell to deposit polyhydroxyalkanoate (PHA) particles inside them. This novel method allowed the compatibilization of PHA within the cellulosic fibers. As a consequence, the water sorption capacity was decreased by up to 6 times having just 4 % of PHA compared to untreated cryogels, preserving the cryogel density and elasticity. Additionally, this technique can be adapted to various bacterial strains and PHA types, allowing for further optimization. It was demonstrated that the amount and type of PHA (medium chain length and small chain length-PHA) used affects the properties for the cryogels, especially the water vapor sorption behavior and the compressive strength. Compared to traditional coating methods, this cell-mediated approach not only allows to distribute PHA on the surface of the cryogel, but also ensures polymer penetration throughout the cryogel due to bacterial self-movement. This study opens doors for creating cryogels with tunable water vapor sorption and other additional functionalities through the use of specialized PHA variants.
Collapse
Affiliation(s)
- Laura Cabrera-Villamizar
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain.
| | - Cristina Campano
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain; Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB), CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| | - Amparo López-Rubio
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain.
| | - María José Fabra
- Food Safety and Preservation Department, Institute of Agrochemistry and Food Technology (IATA), CSIC, Carrer del Catedràtic Agustín Escardino Benlloch, 7, 46980, Valencia, Spain; Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain.
| | - M Auxiliadora Prieto
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy-Spanish National Research Council (SusPlast), CSIC, Madrid 28006, Spain; Polymer Biotechnology Group, Biological Research Centre Margarita Salas, Spanish National Research Council (CIB), CSIC, C. Ramiro de Maeztu, 9, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Wei S, Wan C, Huang Q, Chai H, Chai Y, Li X, Wu Y. 3D cellulose network confining MXene/MnO 2 enables flexible wet spinning microfibers for high-performance fiber-shaped Zn-ion capacitors. Int J Biol Macromol 2024; 276:134152. [PMID: 39098457 DOI: 10.1016/j.ijbiomac.2024.134152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/17/2024] [Accepted: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Fiber-shaped Zn-ion capacitors (FSZICs) have shown great potential in wearable electronics due to their long cycle life, high energy density, and good flexibility. Nevertheless, it is still a critical challenge to develop a conductive fiber with long size and high mechanical properties as the FSZIC cathode using sustainable and low-cost materials. Herein, regenerated cellulose (RC) -based conductive microfibers are prepared by a simple, continuous, and scalable wet spinning process. The 3D nanoporous networks of RC caused by physical self-cross-linking allow MXene and MnO2 to be uniformly and firmly embedded. The rapid extrusion and limited drying result in the highly aligned structure of the fibers, endowing the hybrid fiber with an ultra-high tensile strength (145.83 Mpa) and Young's modulus (1672.11 Mpa). MXene/MnO2-RC-based FSZIC demonstrates a high specific capacitance of 110.01 mF cm-3, an energy density of 22.0 mWh cm-3 at 0.57 A cm-3 and excellent cycling stability with 90.5 % capacity retention after 5000 cycles. This work would lead to a great potential of cellulose for application in next-generation green and wearable electronics.
Collapse
Affiliation(s)
- Song Wei
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China; Christopher Ingold Laboratory, Department of Chemistry, University College London, London WC1H0A, UK
| | - Caichao Wan
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| | - Qiongtao Huang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Huayun Chai
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yaling Chai
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Xuanze Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Yiqiang Wu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China.
| |
Collapse
|
3
|
Zhang Z, Kong Y, Gao J, Han X, Lian Z, Liu J, Wang WJ, Yang X. Engineering strong man-made cellulosic fibers: a review of the wet spinning process based on cellulose nanofibrils. NANOSCALE 2024. [PMID: 38465763 DOI: 10.1039/d3nr06126d] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
With the goal of sustainable development, manufacturing continuous high-performance fibers based on sustainable resources is an emerging research direction. However, compared to traditional synthetic fibers, plant fibers have limited length/diameter and uncontrollable natural defects, while regenerated cellulose fibers such as viscose and Lyocell suffer from inferior mechanical properties. Wet-spun fibers based on nanocelluloses especially cellulose nanofibrils (CNFs) offer superior mechanical performance since CNFs are the fundamental high-performance building blocks of plant cell walls. This review aims to summarize the progress of making CNF wet-spun fibers, emphasizing on the whole wet spinning process including spinning suspension preparation, spinning, coagulation, washing, drying and post-stretching steps. By establishing the relationships between the nano-scale assembling structure and the macroscopic changes in the CNF dope from gels to dried fibers, effective methods and strategies to improve the mechanical properties of the final fibers are analyzed and proposed. Based on this, the opportunities and challenges for potential industrial-scale production are discussed.
Collapse
Affiliation(s)
- Zihuan Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Yuying Kong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Junqi Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Xiao Han
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Zechun Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Jiamin Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
| | - Wen-Jun Wang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| | - Xuan Yang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P.R. China.
- Institute of Zhejiang University-Quzhou, Quzhou, 324000, P.R. China
| |
Collapse
|
4
|
Construction of PVA-lignosulfonate hydrogels for improved mechanical performances and all-in-one flexible supercapacitors. Int J Biol Macromol 2023; 225:1494-1504. [PMID: 36436604 DOI: 10.1016/j.ijbiomac.2022.11.206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 11/09/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
All-in-one supercapacitors are one of the best candidates for realizing flexible supercapacitors because of their outstanding flexibility and stability. The pursuit of improved electrochemical performance while meeting the requirements of flexible functionalization has always been a long-term goal. To this aim, lignosulfonate (LS) can be used in the field of all-in-one supercapacitors and contribute to its unique three-dimensional structure and abundant functional groups. By doping a small amount of LS, a simple approach is developed to achieve a one-step improvement in electrochemical performance and flexible functional design in this study. PVA-lignosulfonate hydrogel (PLH) obtains a compact and regular three-dimensional porous structure, higher ionic conductivity (0.17 S/cm), bending flexibility, and compression resistance. Polyaniline (PANI) based solid-state supercapacitors PANI-PVA and PANI-PLH show specific capacitance values of 505 and 558 mF/cm2, respectively, at a current density of 0.5 mA/cm2. After 5000 charge-discharge cycles, the capacitance retention rate increases from 53 % to 73 %, and the PANI-PLH can maintain the stability of electrochemical performance under bending, folding, puncturing, and squeezing. After 1600 times folding, the capacity remains almost 100 %. This study presents a one-step optimization for the construction of functional and high-performance all-in-one supercapacitors in a simple way and a novel idea for the potential application of the high-value lignin.
Collapse
|
5
|
Nanocellulose and its derived composite electrodes toward supercapacitors: Fabrication, properties, and challenges. JOURNAL OF BIORESOURCES AND BIOPRODUCTS 2022. [DOI: 10.1016/j.jobab.2022.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
6
|
Hu W, Xiang R, Lin J, Cheng Y, Lu C. Lignocellulosic Biomass-Derived Carbon Electrodes for Flexible Supercapacitors: An Overview. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4571. [PMID: 34443094 PMCID: PMC8401572 DOI: 10.3390/ma14164571] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 12/31/2022]
Abstract
With the increasing demand for high-performance electronic devices in smart textiles, various types of flexible/wearable electronic device (i.e., supercapacitors, batteries, fuel cells, etc.) have emerged regularly. As one of the most promising wearable devices, flexible supercapacitors from a variety of electrode materials have been developed. In particular, carbon materials from lignocellulosic biomass precursor have the characteristics of low cost, natural abundance, high specific surface area, excellent electrochemical stability, etc. Moreover, their chemical structures usually contain a large number of heteroatomic groups, which greatly contribute to the capacitive performance of the corresponding flexible supercapacitors. This review summarizes the working mechanism, configuration of flexible electrodes, conversion of lignocellulosic biomass-derived carbon electrodes, and their corresponding electrochemical properties in flexible/wearable supercapacitors. Technology challenges and future research trends will also be provided.
Collapse
Affiliation(s)
- Wenxin Hu
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Ruifang Xiang
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Jiaxian Lin
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Yu Cheng
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| | - Chunhong Lu
- Key Laboratory of Textile Science & Technology, Donghua University, Ministry of Education, Shanghai 201620, China; (W.H.); (R.X.); (J.L.); (Y.C.)
- College of Textiles, Donghua University, Shanghai 201620, China
| |
Collapse
|
7
|
Wang L, Ezazi NZ, Liu L, Ajdary R, Xiang W, Borghei M, Santos HA, Rojas OJ. Microfibers synthesized by wet-spinning of chitin nanomaterials: mechanical, structural and cell proliferation properties. RSC Adv 2020; 10:29450-29459. [PMID: 35521134 PMCID: PMC9059162 DOI: 10.1039/d0ra06178f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 08/03/2020] [Indexed: 12/20/2022] Open
Abstract
Partially deacetylated chitin nanofibers (ChNF) were isolated from shell residues derived from crab biomass and used to prepare hydrogels, which were easily transformed into continuous microfibers by wet-spinning. We investigated the effect of ChNF solid content, extrusion rate and coagulant type, which included organic (acetone) and alkaline (NaOH and ammonia) solutions, on wet spinning. The properties of the microfibers and associated phenomena were assessed by tensile strength, quartz crystal microgravimetry, dynamic vapor sorption (DVS), thermogravimetric analysis and wide-angle X-ray scattering (WAXS). The as-spun microfibers (14 GPa stiffness) comprised hierarchical structures with fibrils aligned in the lateral direction. The microfibers exhibited a remarkable water sorption capacity (up to 22 g g-1), while being stable in the wet state (50% of dry strength), which warrants consideration as biobased absorbent systems. In addition, according to cell proliferation and viability of rat cardiac myoblast H9c2 and mouse bone osteoblast K7M2, the wet-spun ChNF microfibers showed excellent results and can be considered as fully safe for biomedical uses, such as in sutures, wound healing patches and cell culturing.
Collapse
Affiliation(s)
- Ling Wang
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
| | - Nazanin Zanjanizadeh Ezazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI 00014 Helsinki Finland
| | - Liang Liu
- College of Chemical Engineering, Nanjing Forestry University Nanjing 210037 China
| | - Rubina Ajdary
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
| | - Wenchao Xiang
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
| | - Maryam Borghei
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki FI 00014 Helsinki Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki FI 00014 Helsinki Finland
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University P. O. Box 16300 00076 Aalto Finland
- Bioproducts Institute, Department of Chemical and Biological Engineering, Department of Chemistry and Wood Science, University of British Columbia 2360 East Mall Vancouver V6T 1Z3 BC Canada
| |
Collapse
|