1
|
Han J, Hamza F, Guo J, Sayed M, Pyo SH, Xu Y. Advanced technological approaches and market status analysis of xylose bioconversion and utilization: Xylooligosacharides and xylonic acid as emerging products. Biotechnol Adv 2025; 79:108509. [PMID: 39732443 DOI: 10.1016/j.biotechadv.2024.108509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 12/30/2024]
Abstract
The efficient conversion of xylose is a short board of cask effect to lignocellulosic biorefining, by markedly affecting the total economic and environmental benefits. Based on a comprehensive analysis of the current commercial status of traditional xylose utilization and industrial technology development, this review outlines new technological avenues for the efficient utilization of xylose from lignocellulosic biomass, focusing on super prebiotic xylo-oligosaccharides and multifunctional platform compound xylonic acid. Firstly, the traditional products that can be derived from lignocellulosic xylose, including xylitol (447.88 billion USD in 2022), furfural (662 million USD in 2023), and bioethanol (46.18 billion USD in 2022), are introduced along with the current market status and latest production technologies. Then, the discussion covers the industrial development and production methods of xylo-oligosaccharides, and highlights the potential of xylonic acid, focusing on innovative whole-cell catalysis in a sealed oxygen supply-bioreactor system. Finally, other directions for efficient and high-value utilization of lignocellulosic xylose are summarized, including lactic acid, succinic acid, and 2,3-butanediol. This review aims to provide new perspectives on the utilization and valorization of xylose by summarizing main traditional industrial products and emerging products, thereby promoting the development of the entire lignocellulosic biomass field.
Collapse
Affiliation(s)
- Jian Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Faqiha Hamza
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Jianming Guo
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China
| | - Mahmoud Sayed
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden
| | - Sang-Hyun Pyo
- Division of Biotechnology, Department of Chemistry, Center for Chemistry and Chemical Engineering, Lund University, 22100 Lund, Sweden.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Province Key Laboratory of Green Bio-based Fuels and Chemicals, Nanjing 210037, China.
| |
Collapse
|
2
|
Caldwell A, Su X, Jin Q, Hemphill P, Jaha D, Nard S, Tiriveedhi V, Huang H, OHair J. Food Waste from Campus Dining Hall as a Potential Feedstock for 2,3-Butanediol Production via Non-Sterilized Fermentation. Foods 2024; 13:452. [PMID: 38338586 PMCID: PMC10855077 DOI: 10.3390/foods13030452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/11/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Food waste is a major issue that is increasingly affecting our environment. More than one-third of food is wasted, resulting in over $400 billion in losses to the U.S. economy. While composting and other small recycling practices are encouraged from person-to-person, it is not enough to balance the net loss of 80 million tons per year. Currently, one of the most promising routes for reducing food waste is through microbial fermentation, which can convert the waste into valuable bioproducts. Among the compounds produced from fermentation, 2,3-butanediol (2,3-BDO) has gained interest recently due to its molecular structure as a building block for many other derivatives used in perfumes, synthetic rubber, fumigants, antifreeze agents, fuel additives, and pharmaceuticals. Waste feedstocks, such as food waste, are a potential source of renewable energy due to their lack of cost and availability. Food waste also possesses microbial requirements for growth such as carbohydrates, proteins, fats, and more. However, food waste is highly inconsistent and the variability in composition may hinder its ability to be a stable source for bioproducts such as 2,3-BDO. This current study focuses specifically on post-consumer food waste and how 2,3-BDO can be produced through a non-model organism, Bacillus licheniformis YNP5-TSU during non-sterile fermentation. From the dining hall at Tennessee State University, 13 food waste samples were collected over a 6-month period and the compositional analysis was performed. On average, these samples consisted of fat (19.7%), protein (18.7%), ash (4.8%), fiber (3.4%), starch (27.1%), and soluble sugars (20.9%) on a dry basis with an average moisture content of 34.7%. Food waste samples were also assessed for their potential production of 2,3-BDO during non-sterile thermophilic fermentation, resulting in a max titer of 12.12 g/L and a 33% g/g yield of 2,3-BDO/carbohydrates. These findings are promising and can lead to the better understanding of food waste as a defined feedstock for 2,3-BDO and other fermentation end-products.
Collapse
Affiliation(s)
- Alicia Caldwell
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Xueqian Su
- Department of Food Science and Technology, College of Agriculture & Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Qing Jin
- School of Food and Agriculture, College of Earth, Life, and Health Sciences, University of Maine, Orono, ME 04469, USA
| | - Phyllicia Hemphill
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Doaa Jaha
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Sonecia Nard
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Venkataswarup Tiriveedhi
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Haibo Huang
- Department of Food Science and Technology, College of Agriculture & Life Sciences, Virginia Tech, Blacksburg, VA 24061, USA
| | - Joshua OHair
- Department of Biological Sciences, College of Life & Physical Sciences, Tennessee State University, Nashville, TN 37209, USA
| |
Collapse
|