1
|
Galani A, Sipkema D, Sousa DZ. Hot prospects: harnessing thermophilic microbes for syngas fermentation. Trends Biotechnol 2025:S0167-7799(25)00162-3. [PMID: 40425413 DOI: 10.1016/j.tibtech.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Revised: 04/21/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025]
Abstract
Syngas fermentation is emerging as a promising avenue for the sustainable production of fuels and chemicals. Primarily consisting of carbon monoxide (CO), hydrogen, and carbon dioxide, syngas can be produced by the gasification of sustainable feedstocks such as waste or biomass. Mesophilic carboxydotrophs, microorganisms capable of using CO, have received considerable attention and commercial success in the context of syngas fermentation. However, exploration of their thermophilic counterparts with the advantages of higher growth rates, improved tolerance to contaminants, and enhanced robustness remains limited. Capitalising on these unique attributes could improve the efficiency, productivity, and sustainability of syngas fermentation. This review summarises and explores carboxydotrophic thermophiles, assessing both promises and challenges associated with their application in syngas fermentation processes.
Collapse
Affiliation(s)
- Anastasia Galani
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands; Centre for Living Technologies, EWUU Alliance, Utrecht, The Netherlands.
| |
Collapse
|
2
|
Sitara A, Hocq R, Horvath J, Pflügl S. Industrial biotechnology goes thermophilic: Thermoanaerobes as promising hosts in the circular carbon economy. BIORESOURCE TECHNOLOGY 2024; 408:131164. [PMID: 39069138 DOI: 10.1016/j.biortech.2024.131164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/19/2024] [Accepted: 07/24/2024] [Indexed: 07/30/2024]
Abstract
Transitioning away from fossil feedstocks is imperative to mitigate climate change, and necessitates the utilization of renewable, alternative carbon and energy sources to foster a circular carbon economy. In this context, lignocellulosic biomass and one-carbon compounds emerge as promising feedstocks that could be renewably upgraded by thermophilic anaerobes (thermoanaerobes) via gas fermentation or consolidated bioprocessing to value-added products. In this review, the potential of thermoanaerobes for cost-efficient, effective and sustainable bioproduction is discussed. Metabolic and bioprocess engineering approaches are reviewed to draw a comprehensive picture of current developments and future perspectives for the conversion of renewable feedstocks to chemicals and fuels of interest. Selected bioprocessing scenarios are outlined, offering practical insights into the applicability of thermoanaerobes at a large scale. Collectively, the potential advantages of thermoanaerobes regarding process economics could facilitate an easier transition towards sustainable bioprocesses with renewable feedstocks.
Collapse
Affiliation(s)
- Angeliki Sitara
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Rémi Hocq
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; CIRCE Biotechnologie GmbH, Kerpengasse 125, 1210 Vienna, Austria
| | - Josef Horvath
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Stefan Pflügl
- Institute of Chemical, Environmental and Bioscience Engineering, Research Area Biochemical Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria; Christian Doppler Laboratory for Optimized Expression of Carbohydrate-active Enzymes, Institute of Chemical, Environmental and Bioscience Engineering, Technische Universität Wien, Gumpendorfer Straße 1a, 1060 Vienna, Austria.
| |
Collapse
|
3
|
Figueras J, Benbelkacem H, Dumas C, Buffiere P. Syngas biomethanation: Study of process performances at high syngas flow rate in pressurized stirred column. BIORESOURCE TECHNOLOGY 2023; 376:128936. [PMID: 36948426 DOI: 10.1016/j.biortech.2023.128936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/18/2023]
Abstract
Syngas biomethanation is a promising technology for waste to energy conversion. However, it had not yet been tested at high syngas flow rates. The aim of this study was to assess the possibility for syngas biomethanation to reach high methane productivity at higher syngas inflow rate. A pressurized stirred column was implemented. The syngas inflow rate was gradually increased, and two different increase strategies were compared. The highest methane productivity achieved yet with syngas-biomethanation was obtained, with 23.2 LCH4/L/d, with high conversion efficiencies of 89% for H2 and 82% for CO. The mass transfer performances of the process were investigated, and the existence of a biological enhancement factor was observed. Considering an enhancement factor in bioprocesses is a pioneering concept that could change the way we design bioreactor to improve mass transfer. The high methane productivity obtained in this study paves the way for the process industrialization.
Collapse
Affiliation(s)
- J Figueras
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France; ENOSIS, 31100 Toulouse, France.
| | - H Benbelkacem
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - C Dumas
- TBI, University of Toulouse, INSA, INRAE, CNRS, Toulouse, France
| | - P Buffiere
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| |
Collapse
|
4
|
Postacchini P, Menin L, Piazzi S, Grimalt-Alemany A, Patuzzi F, Baratieri M. Syngas Biomethanation by Co-digestion With Brewery Spent Yeast in a Lab-scale Reactor. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
|
5
|
Paniagua S, Lebrero R, Muñoz R. Syngas biomethanation: Current state and future perspectives. BIORESOURCE TECHNOLOGY 2022; 358:127436. [PMID: 35680093 DOI: 10.1016/j.biortech.2022.127436] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 06/15/2023]
Abstract
In regions highly dependent on fossil fuels imports, biomethane represents a promising biofuel for the transition to a bio-based circular economy. While biomethane is typically produced via anaerobic digestion and upgrading, biomethanation of the synthesis gas (syngas) derived from the gasification of recalcitrant solid waste has emerged as a promising alternative. This work presents a comprehensive and in-depth analysis of the state-of-the-art and most recent advances in the field, compiling the potential of this technology along with the bottlenecks requiring further research. The key design and operational parameters governing syngas production and biomethanation (e.g. organic feedstock, gasifier design, microbiology, bioreactor configuration, etc.) are critically analysed.
Collapse
Affiliation(s)
- Sergio Paniagua
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raquel Lebrero
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain
| | - Raúl Muñoz
- Institute of Sustainable Processes, Dr. Mergelina s/n, 47011 Valladolid, Spain; Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
6
|
Luo J, Li Y, Li H, Li Y, Lin L, Li Y, Huang W, Cao J, Wu Y. Deciphering the key operational factors and microbial features associated with volatile fatty acids production during paper wastes and sewage sludge co-fermentation. BIORESOURCE TECHNOLOGY 2022; 344:126318. [PMID: 34775055 DOI: 10.1016/j.biortech.2021.126318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/06/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
This work explored the feasibility of paper waste (PW)/sewage sludge (SS) co-fermentation for volatile fatty acids (VFAs) production, and disclosed its correlation with the key operational parameters (i.e., pH and PW/SS ratio). The results indicated that the maximal VFAs was 251.55 mg COD/g TSS at optimal conditions, which was approximately 10-folds of sole SS fermentation. PW feeding contributed to the bioavailable substrates and C/N balance during co-fermentation process. The pH exhibited evident impacts on organics solubilization/hydrolysis, in which acidic pH was more beneficial for carbohydrates metabolism while alkaline pH was better for proteins. Under optimal operational conditions, the metabolic functions associated with VFAs production (i.e., substrate membrane transport, intracellular metabolism and VFAs biosynthesis) were up-regulated. Moreover, functional microorganisms (i.e., Saccharofermentans and Bacteroides) responsible for VFAs generation were enriched. This work provided an innovative approach to recovery valuable products from biowastes, and in-depth understandings of microbial features in PW/SS co-fermentation systems.
Collapse
Affiliation(s)
- Jingyang Luo
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yuxiao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Han Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yibing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Lifang Lin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yi Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Wenxuan Huang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Jiashun Cao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, 1 Xikang Road, Nanjing 210098, PR China; College of Environment, Hohai University, 1 Xikang Road, Nanjing 210098, PR China
| | - Yang Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Abstract
Climate neutral and sustainable energy sources will play a key role in future energy production. Biomethanation by gas to gas conversion of flue gases is one option with regard to renewable energy production. Here, we performed the conversion of synthetic carbon monoxide (CO)-containing flue gases to methane (CH4) by artificial hyperthermophilic archaeal co-cultures, consisting of Thermococcus onnurineus and Methanocaldococcus jannaschii, Methanocaldococcus vulcanius, or Methanocaldococcus villosus. Experiments using both chemically defined and complex media were performed in closed batch setups. Up to 10 mol% CH4 was produced by converting pure CO or synthetic CO-containing industrial waste gases at a high rate using a co-culture of T. onnurineus and M. villosus. These findings are a proof of principle and advance the fields of Archaea Biotechnology, artificial microbial ecosystem design and engineering, industrial waste-gas recycling, and biomethanation.
Collapse
|
8
|
Conversion of Carbon Monoxide to Chemicals Using Microbial Consortia. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 180:373-407. [PMID: 34811579 DOI: 10.1007/10_2021_180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Syngas, a gaseous mixture of CO, H2 and CO2, can be produced by gasification of carbon-containing materials, including organic waste materials or lignocellulosic biomass. The conversion of bio-based syngas to chemicals is foreseen as an important process in circular bioeconomy. Carbon monoxide is also produced as a waste gas in many industrial sectors (e.g., chemical, energy, steel). Often, the purity level of bio-based syngas and waste gases is low and/or the ratios of syngas components are not adequate for chemical conversion (e.g., by Fischer-Tropsch). Microbes are robust catalysts to transform impure syngas into a broad spectrum of products. Fermentation of CO-rich waste gases to ethanol has reached commercial scale (by axenic cultures of Clostridium species), but production of other chemical building blocks is underexplored. Currently, genetic engineering of carboxydotrophic acetogens is applied to increase the portfolio of products from syngas/CO, but the limited energy metabolism of these microbes limits product yields and applications (for example, only products requiring low levels of ATP for synthesis can be produced). An alternative approach is to explore microbial consortia, including open mixed cultures and synthetic co-cultures, to create a metabolic network based on CO conversion that can yield products such as medium-chain carboxylic acids, higher alcohols and other added-value chemicals.
Collapse
|
9
|
Figueras J, Benbelkacem H, Dumas C, Buffiere P. "Biomethanation of syngas by enriched mixed anaerobic consortium in pressurized agitated column". BIORESOURCE TECHNOLOGY 2021; 338:125548. [PMID: 34284292 DOI: 10.1016/j.biortech.2021.125548] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/06/2021] [Accepted: 07/09/2021] [Indexed: 06/13/2023]
Abstract
In a circular economy approach, heterogeneous wastes can be upgraded to energy in the form of syngas via pyrogasification, and then to methane via biomethanation. Working at high pressure is a promising approach to intensify the process and to reduce gas-liquid transfer limitations. However, raising the pressure could lead to reaching the CO inhibition threshold of the microorganisms involved in syngas-biomethanation. To investigate the impact on pressure on the process, a 10L continuous stirred tank reactor working at 4 bars and 55 °C was implemented. Syngas (40% CO, 40% H2, 20% CO2) biomethanation was performed successfully and methane productivity as high as 6.8 mmolCH4/Lreactor/h with almost full conversion of CO (97%) and H2 (98%) was achieved. CO inhibition was investigated and carboxydotrophs appeared less resistant to high CO exposition than methanogens.
Collapse
Affiliation(s)
- J Figueras
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - H Benbelkacem
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France
| | - C Dumas
- TBI, University of Toulouse, INSA, INRAE, CNRS, Toulouse, France
| | - P Buffiere
- Univ Lyon, INSA Lyon, DEEP, EA7429, 69621 Villeurbanne, France.
| |
Collapse
|
10
|
Duan H, He P, Shao L, Lü F. Functional genome-centric view of the CO-driven anaerobic microbiome. THE ISME JOURNAL 2021; 15:2906-2919. [PMID: 33911204 PMCID: PMC8443622 DOI: 10.1038/s41396-021-00983-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 03/17/2021] [Accepted: 04/09/2021] [Indexed: 02/02/2023]
Abstract
CO is a promising substrate for producing biochemicals and biofuels through mixed microbial cultures, where carboxydotrophs play a crucial role. The previous investigations of mixed microbial cultures focused primarily on overall community structures, but under-characterized taxa and intricate microbial interactions have not yet been precisely explicated. Here, we undertook DNA-SIP based metagenomics to profile the anaerobic CO-driven microbiomes under 95 and 35% CO atmospheres. The time-series analysis of the isotope-labeled amplicon sequencing revealed the essential roles of Firmicutes and Proteobacteria under high and low CO pressure, respectively, and Methanobacterium was the predominant archaeal genus. The functional enrichment analysis based on the isotope-labeled metagenomes suggested that the microbial cultures under high CO pressure had greater potential in expressing carboxylate metabolism and citrate cycle pathway. The genome-centric metagenomics reconstructed 24 discovered and 24 under-characterized metagenome-assembled genomes (MAGs), covering more than 94% of the metagenomic reads. The metabolic reconstruction of the MAGs described their potential functions in the CO-driven microbiomes. Some under-characterized taxa might be versatile in multiple processes; for example, under-characterized Rhodoplanes sp. and Desulfitobacterium_A sp. could encode the complete enzymes in CO oxidation and carboxylate production, improving functional redundancy. Finally, we proposed the putative microbial interactions in the conversion of CO to carboxylates and methane.
Collapse
Affiliation(s)
- Haowen Duan
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, China.
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, China.
| |
Collapse
|
11
|
Li X, Henson MA. Dynamic metabolic modelling predicts efficient acetogen-gut bacterium cocultures for CO-to-butyrate conversion. J Appl Microbiol 2021; 131:2899-2917. [PMID: 34008274 DOI: 10.1111/jam.15155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/19/2021] [Accepted: 05/04/2021] [Indexed: 12/19/2022]
Abstract
AIMS While gas-fermenting acetogens have been engineered to secrete non-native metabolites such as butyrate, acetate remains the most thermodynamically favourable product. An alternative to metabolic engineering is to exploit native capabilities for CO-to-acetate conversion by coculturing an acetogen with a second bacterium that provides efficient acetate-butyrate conversion. METHODS AND RESULTS We used dynamic metabolic modelling to computationally evaluate the CO-to-butyrate conversion capabilities of candidate coculture systems by exploiting the diversity of human gut bacteria for anaerobic synthesis of butyrate from acetate and ethanol. A preliminary screening procedure based on flux balance analysis was developed to identify 48 gut bacteria which satisfied minimal growth rate and acetate-to-butyrate conversion requirements when cultured on minimal medium containing acetate and a simple sugar not consumed by the paired acetogen. A total of 170 acetogen/gut bacterium/sugar combinations were dynamically simulated for continuous growth using a 70/30 CO/CO2 feed gas mixture and minimal medium computationally determined for each combination. CONCLUSIONS While coculture systems involving the acetogens Eubacterium limosum or Blautia producta yielded low butyrate productivities and CO-to-ethanol conversion had minimal impact on system performance, dynamic simulations predicted a large number of promising coculture designs with Clostridium ljungdahlii or C. autoethanogenum as the CO-to-acetate converter. Pairings with the gut bacterium Clostridium hylemonae or Roseburia hominis were particularly promising due to their ability to generate high butyrate productivities over a range of dilution rates with a variety of sugars. The higher specific acetate secretion rate of C. ljungdahlii proved more beneficial than the elevated growth rate of C. autoethanogenum for coculture butyrate productivity. SIGNIFICANCE AND IMPACT OF THE STUDY Our study demonstrated that metabolic modelling could provide useful insights into coculture design that can guide future experimental studies. More specifically, our predictions generated several favourable designs, which could serve as the first coculture systems realized experimentally.
Collapse
Affiliation(s)
- X Li
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| | - M A Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
12
|
Salma A, Abdallah R, Fourcade F, Amrane A, Djelal H. A New Approach to Produce Succinic Acid Through a Co-Culture System. Appl Biochem Biotechnol 2021; 193:2872-2892. [PMID: 33937964 DOI: 10.1007/s12010-021-03572-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/08/2021] [Indexed: 01/04/2023]
Abstract
Microorganisms can produce a wide range of bio-based chemicals that can be used in various industrial applications as molecules of interest. In the present work, an analysis of the power production by pure culture, co-culture, and sequential culture was performed. In this study, both the mono-culture and the co-culture strategies of Actinobacillus succinogenes with Saccharomyces cerevisiae as carbon sources to produce succinic acid using glucose and fructose were examined. The cultures were performed in batch mode and a great attention was paid to the co-culture system to improve the biosynthetic pathway between A. succinogenes and S. cerevisiae by combining these two strains in a single fermentation process. Under microaerobic and anaerobic conditions, the process was characterized in terms of sugars concentration, cell density, metabolites, yield (mol-C products/ mol-C sugars), the temperature conditions for productivity, and pH. The results showed that the process could consume glucose and fructose and could adapt to different concentrations of the two sugars more quickly than by a single organism and the best results were obtained in a sequential co-culture recording 0.27 mol L-1 of succinic acid concentration and a volumetric productivity of 0.3 g L-1 h-1. Under the investigated operating conditions, the combination of these two strains in a single reactor produced a significant amount of succinic acid (0.70 mol-C SA/mol-C substrates). A simultaneous and sequential co-culture strategy can be a powerful new approach in the field of bio-based chemical production.
Collapse
Affiliation(s)
- Alaa Salma
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Rawa Abdallah
- Centre Azm pour la Recherche en Biotechnologie et ses Applications, Rue El Mitein, LBA3B, Universite Libanaise, EDST, Tripoli, Lebanon
| | - Florence Fourcade
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Abdeltif Amrane
- University Rennes, Ecole Nationale Supérieure de Chimie de Rennes, CNRS, ISCR, UMR6226, F-3500, Rennes, France
| | - Hayet Djelal
- UniLaSalle-Ecole des Métiers de l'Environnement, Avenue Robert Schuman, Campus de Ker Lann, 35 170, Rennes, France.
| |
Collapse
|
13
|
Status Update on Bioelectrochemical Systems: Prospects for Carbon Electrode Design and Scale-Up. Catalysts 2021. [DOI: 10.3390/catal11020278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Bioelectrochemical systems (BES) employ enzymes, subcellular structures or whole electroactive microorganisms as biocatalysts for energy conversion purposes, such as the electrosynthesis of value-added chemicals and power generation in biofuel cells. From a bioelectrode engineering viewpoint, customizable nanostructured carbonaceous matrices have recently received considerable scientific attention as promising electrode supports due to their unique properties attractive to bioelectronics devices. This review demonstrates the latest advances in the application of nano- and micro-structured carbon electrode assemblies in BES. Specifically, in view of the gradual increase in the commercial applicability of these systems, we aim to address the stability and scalability of different BES designs and to highlight their potential roles in a circular bioeconomy.
Collapse
|
14
|
Diender M, Parera Olm I, Sousa DZ. Synthetic co-cultures: novel avenues for bio-based processes. Curr Opin Biotechnol 2021; 67:72-79. [PMID: 33517194 DOI: 10.1016/j.copbio.2021.01.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/07/2021] [Indexed: 02/06/2023]
Abstract
In nature, microorganisms live in multi-species communities allowing microbial interactions. These interactions are lost upon establishing a pure culture, increasing the metabolic burden and limiting the metabolic potential of the isolated microbe. In the past years, synthetic microbial co-cultivation, using well-defined consortia of two or more microbes, was increasingly explored for innovative applications in biotechnology. As such, interspecies interactions take place without the complexity of an open mixed culture, minimizing undesired side reactions. Ultimately, synthetic co-cultivation allows to take well-characterized microbes 'off-the-shelf' to create ecosystems with improved process capabilities. This review highlights some of the recent developments on co-cultivation, focusing on waste-to-chemicals conversions. It also addresses fundamental knowledge on microbial interactions deriving from these studies, which is important to further develop our ability to engineer functional co-cultures for bioproduction.
Collapse
Affiliation(s)
- Martijn Diender
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Ivette Parera Olm
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Diana Z Sousa
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands.
| |
Collapse
|
15
|
Influence of Liquid-to-Gas Ratio on the Syngas Fermentation Efficiency: An Experimental Approach. Bioengineering (Basel) 2020; 7:bioengineering7040138. [PMID: 33142703 PMCID: PMC7712742 DOI: 10.3390/bioengineering7040138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 10/16/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022] Open
Abstract
Syngas fermentation by methanogens is a novel process to purify biogas. Methanogens are able to ferment non-desirable CO2, H2, and CO to methane. However, to use methanogens on an industrial scale, more research has to be done. There are studies that discuss the growth of methanogens on syngas in combination with acetate. In this research, growth of methanogens on syngas as sole carbon source is discussed. Effluent of an anaerobic fed-batch was selectively cultivated with syngas in 400 mL Eppendorf© bioreactors. After a period of 7 days, fifteen 120 mL flasks were filled with three different liquid-to-gas ratios (1:1, 1:3, 1:5). Results showed that different liquid-to-gas ratios change the metabolic preference of the anaerobic microbial community. Moreover, complete conversion in a four-to-eight-day period, via the carboxidotrophic pathway, was observed in all three liquid-to-gas ratios.
Collapse
|
16
|
Li C, Zhu X, Angelidaki I. Carbon monoxide conversion and syngas biomethanation mediated by different microbial consortia. BIORESOURCE TECHNOLOGY 2020; 314:123739. [PMID: 32615449 DOI: 10.1016/j.biortech.2020.123739] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
Syngas biomethanation is an attractive process for extending application of gasification products. In the present study, anaerobic sludges from three methanogenic reactors feeding cattle manure (CS), sewage sludge (SS) and gaseous H2/CO2 (GS) were used to investigate the effect of microbial consortia composition on syngas biomethanation. The results showed that CS presented the highest CO consumption rate due to its highest relative abundance of CO consuming bacteria. The CO was mainly converted to acetate, and syntrophic acetate oxidization (SAO) bacteria converted acetate to H2/CO2 for hydrogenotrophic methanogenesis in CS and SS. However, acetate was accumulated in GS for lacking acetoclastic methanogens and SAO bacteria, leading to lower biomethanation efficiency. Additionally, adding stoichiometric H2 could convert CO and CO2 to nearly pure methane, while, the CO consumption rate declined in H2 added systems. The results present novel insights into microbial consortia on CO conversion and syngas biomethanation.
Collapse
Affiliation(s)
- Chunxing Li
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| | - Xinyu Zhu
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark.
| | - Irini Angelidaki
- Department of Environmental Engineering, Technical University of Denmark, Kgs. Lyngby DK-2800, Denmark
| |
Collapse
|
17
|
Bhatt AH, Ren ZJ, Tao L. Value Proposition of Untapped Wet Wastes: Carboxylic Acid Production through Anaerobic Digestion. iScience 2020; 23:101221. [PMID: 32563151 PMCID: PMC7305404 DOI: 10.1016/j.isci.2020.101221] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Accepted: 05/28/2020] [Indexed: 02/02/2023] Open
Abstract
Although traditional anaerobic digestion (AD) process to produce methane-rich biogas from wet waste is deep-rooted, high carbon footprint and its low value as compared with other renewable sources demand advanced strategies to avoid its production. An emerging conversion pathway to arrest methanogenesis for producing value-added fuels and chemicals instead of biogas is sought as a sustainable alternative. This research provides a comprehensive analysis on current technology development, process challenges, applications, and economics for producing high-value short-chain carboxylic acids from AD of wet wastes. We show that (1) the theoretical energy yields of acids equal or exceed biogas, and (2) the cost of these acids is competitive with those produced from chemical markets, making this economically viable for mass production. With global abundance of wet waste feedstocks, this process of short-chain acid production provides a promising alternative to conventional biogas production technology, while achieving waste management and carbon mitigation goals.
Collapse
Affiliation(s)
- Arpit H Bhatt
- Strategic Energy Analysis Center, National Renewable Energy Laboratory, Golden, CO 80401, USA
| | - Zhiyong Jason Ren
- Civil and Environmental Engineering, Princeton University, Princeton, NJ 08544, USA
| | - Ling Tao
- National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO 80401, USA.
| |
Collapse
|
18
|
Fukuyama Y, Inoue M, Omae K, Yoshida T, Sako Y. Anaerobic and hydrogenogenic carbon monoxide-oxidizing prokaryotes: Versatile microbial conversion of a toxic gas into an available energy. ADVANCES IN APPLIED MICROBIOLOGY 2020; 110:99-148. [PMID: 32386607 DOI: 10.1016/bs.aambs.2019.12.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Carbon monoxide (CO) is a gas that is toxic to various organisms including humans and even microbes; however, it has low redox potential, which can fuel certain microbes, namely, CO oxidizers. Hydrogenogenic CO oxidizers utilize an energy conservation system via a CO dehydrogenase/energy-converting hydrogenase complex to produce hydrogen gas, a zero emission fuel, by CO oxidation coupled with proton reduction. Biochemical and molecular biological studies using a few model organisms have revealed their enzymatic reactions and transcriptional response mechanisms using CO. Biotechnological studies for CO-dependent hydrogen production have also been carried out with these model organisms. In this chapter, we review recent advances in the studies of these microbes, which reveal their unique and versatile metabolic profiles and provides future perspectives on ecological roles and biotechnological applications. Over the past decade, the number of isolates has doubled (37 isolates in 5 phyla, 20 genera, and 32 species). Some of the recently isolated ones show broad specificity to electron acceptors. Moreover, accumulating genomic information predicts their unique physiologies and reveals their phylogenomic relationships with novel potential hydrogenogenic CO oxidizers. Combined with genomic database surveys, a molecular ecological study has unveiled the wide distribution and low abundance of these microbes. Finally, recent biotechnological applications of hydrogenogenic CO oxidizers have been achieved via diverse approaches (e.g., metabolic engineering and co-cultivation), and the identification of thermophilic facultative anaerobic CO oxidizers will promote industrial applications as oxygen-tolerant biocatalysts for efficient hydrogen production by genomic engineering.
Collapse
Affiliation(s)
- Yuto Fukuyama
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masao Inoue
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Kimiho Omae
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Takashi Yoshida
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Yoshihiko Sako
- Laboratory of Marine Microbiology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan.
| |
Collapse
|
19
|
Li X, Henson MA. Metabolic modeling of bacterial co-culture systems predicts enhanced carbon monoxide-to-butyrate conversion compared to monoculture systems. Biochem Eng J 2019; 151. [PMID: 32863734 DOI: 10.1016/j.bej.2019.107338] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We used metabolic modeling to computationally investigate the potential of bacterial coculture system designs for CO conversion to the platform chemical butyrate. By taking advantage of the native capabilities of wild-type strains, we developed two anaerobic coculture designs by combining Clostridium autoethanogenum for CO-to-acetate conversion with bacterial strains that offer high acetate-to-butyrate conversion capabilities: the environmental bacterium the human gut bacteriumEubacterium rectale. When grown in continuous stirred tank reactor on a 70/0/30 CO/H2/N2 gas mixture, the C. autoethanogenum-C Kluyveri co-culture was predicted to offer no mprovement in butyrate volumetric productivity compared to an engineered C. autoethanogenum monoculture despite utilizing vinyl acetate as a secondary carbon source for C. kluyveri growth enhancement. A coculture consisting of C. autoethanogenum and C. kluyveri engineered in silico to eliminate hexanoate synthesis was predicted to enhance both butyrate productivity and titer. The C. autoethanogenum-E. rectale coculture offered similar improvements in butyrate productivity without the need for metabolic engineering when glucose was provided as a secondary carbon source to enhance E. rectale growth. A bubble column model developed to assess the potential for large-scale butyrate production of the C. autoethanogenum-E. rectale design predicted that a 40/30/30 CO/H2/N2 gas mixture and a 5 m column length would be preferred to enhance C. autoethanogenum growth and counteract CO inhibitory effects on E. rectale.
Collapse
Affiliation(s)
- Xiangan Li
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| | - Michael A Henson
- Department of Chemical Engineering and Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
20
|
Lee CR, Kim C, Song YE, Im H, Oh YK, Park S, Kim JR. Co-culture-based biological carbon monoxide conversion by Citrobacter amalonaticus Y19 and Sporomusa ovata via a reducing-equivalent transfer mediator. BIORESOURCE TECHNOLOGY 2018; 259:128-135. [PMID: 29549832 DOI: 10.1016/j.biortech.2018.02.129] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Revised: 02/27/2018] [Accepted: 02/28/2018] [Indexed: 06/08/2023]
Abstract
The biological conversion of carbon monoxide (CO) has been highlighted for the development of a C1 gas biorefinery process. Despite this, the toxicity and low reducing equivalent of CO uptake make biological conversion difficult. The use of synthetic co-cultures is an alternative way of enhancing the performance of CO bioconversion. This study evaluated a synthetic co-culture consisting of Citrobacter amalonaticus Y19 and Sporomusa ovata for acetate production from CO. In this consortium, the CO2 and H2 produced by the water-gas shift reaction of C. amalonaticus Y19, were utilized further by S. ovata. Higher acetate production was achieved in the co-culture system compared to the monoculture counterparts. Furthermore, syntrophic cooperation via various reducing equivalent carriers provided new insights into the synergistic metabolic benefits with a toxic and refractory substrate, such as CO. This study also suggests an appropriate model for examining the syntrophic interaction between microbial species in a mixed community.
Collapse
Affiliation(s)
- Cho Rong Lee
- School of Chemical and Biomolecular Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Young Eun Song
- School of Chemical and Biomolecular Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Hyeonsung Im
- School of Chemical and Biomolecular Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - You-Kwan Oh
- School of Chemical and Biomolecular Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea
| | - Sunghoon Park
- School of Energy and Chemical Engineering, UNIST, Ulsan, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, 63 Busandeahak-ro, Geumjeong-Gu, Busan 46241, Republic of Korea.
| |
Collapse
|