1
|
Zhang Z, Hong P, Li Z, Li B, Chen T, Shen Y, Yang X, Ye Y, Wang Y, Lin Z. Expediting genome synthesis of Corynebacterium glutamicum with an artificial chromosome vector. Trends Biotechnol 2025:S0167-7799(25)00082-4. [PMID: 40155267 DOI: 10.1016/j.tibtech.2025.02.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/16/2025] [Accepted: 02/25/2025] [Indexed: 04/01/2025]
Abstract
Recent advances in genome synthesis have relied on scalable DNA assembly and delivery, and efficient recombination techniques. While these methods have enabled rapid progress for Escherichia coli and yeast, they are often inadequate for other microorganisms. Here, we devised a Corynebacterium glutamicum artificial chromosome (CAC), which combines a replicating system from a closely related strain with an innate partitioning system. This CAC vector can efficiently deliver DNA fragments up to 56 kb and maintain stability in C. glutamicum. Leveraging the CAC vector, we developed CAC Excision Enhanced Recombination (CACEXER), a streamlined strategy for iterative genome replacements in C. glutamicum. Using this approach, we integrated 361 kb (11%) of synthetic DNA into the genome, creating semi-synCG-A. This strain paves the way to establish C. glutamicum as the third industrial microorganism, alongside E. coli and Saccharomyces cerevisiae, to undergo large-scale genome synthesis.
Collapse
Affiliation(s)
- Zhanhua Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Peixiong Hong
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Zebin Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Baitao Li
- BGI Research, Shenzhen, Guangdong 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong 518120, China
| | - Tai Chen
- BGI Research, Changzhou, Jiangsu 213299, China
| | - Yue Shen
- BGI Research, Shenzhen, Guangdong 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong 518120, China; BGI Research, Changzhou, Jiangsu 213299, China
| | - Xiaofeng Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China
| | - Yanrui Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| | - Yun Wang
- BGI Research, Shenzhen, Guangdong 518083, China; Guangdong Provincial Key Laboratory of Genome Read and Write, BGI-Shenzhen, Shenzhen, Guangdong 518120, China; BGI Research, Changzhou, Jiangsu 213299, China.
| | - Zhanglin Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
2
|
Kanoh K, Su'etsugu M. Real-time analysis of initiation regulation systems during the progression of the reconstituted chromosomal replication cycle. Sci Rep 2025; 15:4727. [PMID: 39922869 PMCID: PMC11807186 DOI: 10.1038/s41598-025-88988-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 02/03/2025] [Indexed: 02/10/2025] Open
Abstract
Chromosome replication in Escherichia coli is primarily regulated at the initiation stage, where the DnaA protein activates replication at the chromosomal origin, oriC. Both DnaA and oriC undergo feedback regulation based on replication progression. Previously, we reconstituted the entire replication cycle using 26 purified proteins in a system termed replication cycle reaction (RCR). This system enables the exponential propagation of oriC circular DNA through autonomous replication cycles. In this study, we integrated regulatory mechanisms into the RCR and analyzed their effects on DNA propagation using real-time detection. The oriC sequestration system involves SeqA binding to hemimethylated oriC-generated during nascent DNA synthesis to prevent reinitiation. SeqA inhibited RCR, but the addition of Dam methylase relieved this inhibition. In the DnaA regulation system, active ATP-DnaA is inactivated by Hda in association with the DNA-loaded clamp, converting it to ADP-DnaA. Reactivation occurs through nucleotide exchange facilitated by the DnaA-reactivating sequence (DARS). Hda suppressed replication in RCR, while DARS restored activity. These results demonstrate that regulatory mechanisms controlling replication initiation in the RCR system faithfully replicate the cell cycle regulation of chromosome replication observed in vivo.
Collapse
Affiliation(s)
- Koki Kanoh
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan
- Moderna Enzymatics Co., Ltd., 2-3-8 Shinkiba, Koto-ku, Tokyo, 136-0082, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo, 171-8501, Japan.
| |
Collapse
|
3
|
Qin C, Zhao B, Wang Y, Li Z, Li T, Zhao Y, Wang W, Zhao Y. Extracellular vesicles miR-31-5p promotes pancreatic cancer chemoresistance via regulating LATS2-Hippo pathway and promoting SPARC secretion from pancreatic stellate cells. J Extracell Vesicles 2024; 13:e12488. [PMID: 39104296 DOI: 10.1002/jev2.12488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 07/01/2024] [Indexed: 08/07/2024] Open
Abstract
Pancreatic cancer remains one of the most lethal malignant diseases. Gemcitabine-based chemotherapy is still one of the first-line systemic treatments, but chemoresistance occurs in the majority of patients. Recently, accumulated evidence has demonstrated the role of the tumour microenvironment in promoting chemoresistance. In the tumour microenvironment, pancreatic stellate cells (PSCs) are among the main cellular components, and extracellular vesicles (EVs) are common mediators of cell‒cell communication. In this study, we showed that SP1-transcribed miR-31-5p not only targeted LATS2 in pancreatic cancer cells but also regulated the Hippo pathway in PSCs through EV transfer. Consequently, PSCs synthesized and secreted protein acidic and rich in cysteins (SPARC), which was preferentially expressed in stromal cells, stimulating Extracellular Signal regulated kinase (ERK) signalling in pancreatic cancer cells. Therefore, pancreatic cancer cell survival and chemoresistance were improved due to both the intrinsic Hippo pathway regulated by miR-31-5p and external SPARC-induced ERK signalling. In mouse models, miR-31-5p overexpression in pancreatic cancer cells promoted the chemoresistance of coinjected xenografts. In a tissue microarray, pancreatic cancer patients with higher miR-31-5p expression had shorter overall survival. Therefore, miR-31-5p regulates the Hippo pathway in multiple cell types within the tumour microenvironment via EVs, ultimately contributing to the chemoresistance of pancreatic cancer cells.
Collapse
Affiliation(s)
- Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P. R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
- National Science and Technology Key Infrastructure on Translational Medicine in Peking Union Medical College Hospital, Beijing, P. R. China
| |
Collapse
|
4
|
Nyerges A, Chiappino-Pepe A, Budnik B, Baas-Thomas M, Flynn R, Yan S, Ostrov N, Liu M, Wang M, Zheng Q, Hu F, Chen K, Rudolph A, Chen D, Ahn J, Spencer O, Ayalavarapu V, Tarver A, Harmon-Smith M, Hamilton M, Blaby I, Yoshikuni Y, Hajian B, Jin A, Kintses B, Szamel M, Seregi V, Shen Y, Li Z, Church GM. Synthetic genomes unveil the effects of synonymous recoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.16.599206. [PMID: 38915524 PMCID: PMC11195188 DOI: 10.1101/2024.06.16.599206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Engineering the genetic code of an organism provides the basis for (i) making any organism safely resistant to natural viruses and (ii) preventing genetic information flow into and out of genetically modified organisms while (iii) allowing the biosynthesis of genetically encoded unnatural polymers1-4. Achieving these three goals requires the reassignment of multiple of the 64 codons nature uses to encode proteins. However, synonymous codon replacement-recoding-is frequently lethal, and how recoding impacts fitness remains poorly explored. Here, we explore these effects using whole-genome synthesis, multiplexed directed evolution, and genome-transcriptome-translatome-proteome co-profiling on multiple recoded genomes. Using this information, we assemble a synthetic Escherichia coli genome in seven sections using only 57 codons to encode proteins. By discovering the rules responsible for the lethality of synonymous recoding and developing a data-driven multi-omics-based genome construction workflow that troubleshoots synthetic genomes, we overcome the lethal effects of 62,007 synonymous codon swaps and 11,108 additional genomic edits. We show that synonymous recoding induces transcriptional noise including new antisense RNAs, leading to drastic transcriptome and proteome perturbation. As the elimination of select codons from an organism's genetic code results in the widespread appearance of cryptic promoters, we show that synonymous codon choice may naturally evolve to minimize transcriptional noise. Our work provides the first genome-scale description of how synonymous codon changes influence organismal fitness and paves the way for the construction of functional genomes that provide genetic firewalls from natural ecosystems and safely produce biopolymers, drugs, and enzymes with an expanded chemistry.
Collapse
Affiliation(s)
- Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Bogdan Budnik
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | | | - Regan Flynn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Shirui Yan
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- BGI Research, Shenzhen 518083, China
| | - Nili Ostrov
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Min Liu
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | | | | | | | | | - Alexandra Rudolph
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Dawn Chen
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Jenny Ahn
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Owen Spencer
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Angela Tarver
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Miranda Harmon-Smith
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Matthew Hamilton
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ian Blaby
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yasuo Yoshikuni
- DOE Joint Genome Institute (JGI), Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Behnoush Hajian
- Center for the Development of Therapeutics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Adeline Jin
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | - Balint Kintses
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Monika Szamel
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Viktoria Seregi
- Institute of Biochemistry, HUN-REN Biological Research Centre, Szeged, 6726, Hungary
| | - Yue Shen
- BGI Research, Shenzhen 518083, China
- BGI Research, Changzhou 213299, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen 518083, China
| | - Zilong Li
- GenScript USA Inc., Piscataway, NJ 08854, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| |
Collapse
|
5
|
Mahdizade Ari M, Dadgar L, Elahi Z, Ghanavati R, Taheri B. Genetically Engineered Microorganisms and Their Impact on Human Health. Int J Clin Pract 2024; 2024:6638269. [PMID: 38495751 PMCID: PMC10944348 DOI: 10.1155/2024/6638269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 11/20/2023] [Accepted: 02/12/2024] [Indexed: 03/19/2024] Open
Abstract
The emergence of antibiotic-resistant strains, the decreased effectiveness of conventional therapies, and the side effects have led researchers to seek a safer, more cost-effective, patient-friendly, and effective method that does not develop antibiotic resistance. With progress in synthetic biology and genetic engineering, genetically engineered microorganisms effective in treatment, prophylaxis, drug delivery, and diagnosis have been developed. The present study reviews the types of genetically engineered bacteria and phages, their impacts on diseases, cancer, and metabolic and inflammatory disorders, the biosynthesis of these modified strains, the route of administration, and their effects on the environment. We conclude that genetically engineered microorganisms can be considered promising candidates for adjunctive treatment of diseases and cancers.
Collapse
Affiliation(s)
- Marzie Mahdizade Ari
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Leila Dadgar
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Elahi
- Department of Microbiology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Microbial Biotechnology Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | | | - Behrouz Taheri
- Department of Biotechnology, School of Medicine, Ahvaz Jundishapour University of medical Sciences, Ahvaz, Iran
| |
Collapse
|
6
|
Gao H, Qiu Z, Wang X, Zhang X, Zhang Y, Dai J, Liang Z. Recent advances in genome-scale engineering in Escherichia coli and their applications. ENGINEERING MICROBIOLOGY 2024; 4:100115. [PMID: 39628784 PMCID: PMC11611031 DOI: 10.1016/j.engmic.2023.100115] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/12/2023] [Accepted: 09/14/2023] [Indexed: 12/06/2024]
Abstract
Owing to the rapid advancement of genome engineering technologies, the scale of genome engineering has expanded dramatically. Genome editing has progressed from one genomic alteration at a time that could only be employed in few species, to the simultaneous generation of multiple modifications across many genomic loci in numerous species. The development and recent advances in multiplex automated genome engineering (MAGE)-associated technologies and clustered regularly interspaced short palindromic repeats and their associated protein (CRISPR-Cas)-based approaches, together with genome-scale synthesis technologies offer unprecedented opportunities for advancing genome-scale engineering in a broader range. These approaches provide new tools to generate strains with desired phenotypes, understand the complexity of biological systems, and directly evolve a genome with novel features. Here, we review the recent major advances in genome-scale engineering tools developed for Escherichia coli, focusing on their applications in identifying essential genes, genome reduction, recoding, and beyond.
Collapse
Affiliation(s)
- Hui Gao
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhichao Qiu
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Regenerative Medicine Program, Bellvitge Institute for Biomedical Research (IDIBELL) and Program for Clinical Translation of Regenerative Medicine in Catalonia (P-CMRC), L’ Hospitalet de Llobregat, Barcelona 08908, Spain
- Faculty of Pharmacy and Food Science, Barcelona University, Barcelona 08028, Spain
| | - Xuan Wang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Xiyuan Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Yujia Zhang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
- College of Life Sciences, Northwest A&F University, Shaanxi 712100, China
| | - Junbiao Dai
- CAS Key Laboratory of Quantitative Engineering Biology, Guangdong Provincial Key Laboratory of Synthetic Genomics and Shenzhen Key Laboratory of Synthetic Genomics. Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Key Laboratory of Synthetic Biology, Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518120, China
| | - Zhuobin Liang
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
7
|
Matteau D, Duval A, Baby V, Rodrigue S. Mesoplasma florum: a near-minimal model organism for systems and synthetic biology. Front Genet 2024; 15:1346707. [PMID: 38404664 PMCID: PMC10884336 DOI: 10.3389/fgene.2024.1346707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/24/2024] [Indexed: 02/27/2024] Open
Abstract
Mesoplasma florum is an emerging model organism for systems and synthetic biology due to its small genome (∼800 kb) and fast growth rate. While M. florum was isolated and first described almost 40 years ago, many important aspects of its biology have long remained uncharacterized due to technological limitations, the absence of dedicated molecular tools, and since this bacterial species has not been associated with any disease. However, the publication of the first M. florum genome in 2004 paved the way for a new era of research fueled by the rise of systems and synthetic biology. Some of the most important studies included the characterization and heterologous use of M. florum regulatory elements, the development of the first replicable plasmids, comparative genomics and transposon mutagenesis, whole-genome cloning in yeast, genome transplantation, in-depth characterization of the M. florum cell, as well as the development of a high-quality genome-scale metabolic model. The acquired data, knowledge, and tools will greatly facilitate future genome engineering efforts in M. florum, which could next be exploited to rationally design and create synthetic cells to advance fundamental knowledge or for specific applications.
Collapse
Affiliation(s)
- Dominick Matteau
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Anthony Duval
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Vincent Baby
- Centre de diagnostic vétérinaire de l'Université de Montréal, Université de Montréal, Saint-Hyacinthe, QC, Canada
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
8
|
Li Z. Study on the Construction and Application of Engineering Bacteria. LECTURE NOTES IN COMPUTER SCIENCE 2024:329-342. [DOI: 10.1007/978-3-031-64636-2_25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Zürcher JF, Kleefeldt AA, Funke LFH, Birnbaum J, Fredens J, Grazioli S, Liu KC, Spinck M, Petris G, Murat P, Rehm FBH, Sale JE, Chin JW. Continuous synthesis of E. coli genome sections and Mb-scale human DNA assembly. Nature 2023; 619:555-562. [PMID: 37380776 PMCID: PMC7614783 DOI: 10.1038/s41586-023-06268-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 05/26/2023] [Indexed: 06/30/2023]
Abstract
Whole-genome synthesis provides a powerful approach for understanding and expanding organism function1-3. To build large genomes rapidly, scalably and in parallel, we need (1) methods for assembling megabases of DNA from shorter precursors and (2) strategies for rapidly and scalably replacing the genomic DNA of organisms with synthetic DNA. Here we develop bacterial artificial chromosome (BAC) stepwise insertion synthesis (BASIS)-a method for megabase-scale assembly of DNA in Escherichia coli episomes. We used BASIS to assemble 1.1 Mb of human DNA containing numerous exons, introns, repetitive sequences, G-quadruplexes, and long and short interspersed nuclear elements (LINEs and SINEs). BASIS provides a powerful platform for building synthetic genomes for diverse organisms. We also developed continuous genome synthesis (CGS)-a method for continuously replacing sequential 100 kb stretches of the E. coli genome with synthetic DNA; CGS minimizes crossovers1,4 between the synthetic DNA and the genome such that the output for each 100 kb replacement provides, without sequencing, the input for the next 100 kb replacement. Using CGS, we synthesized a 0.5 Mb section of the E. coli genome-a key intermediate in its total synthesis1-from five episomes in 10 days. By parallelizing CGS and combining it with rapid oligonucleotide synthesis and episome assembly5,6, along with rapid methods for compiling a single genome from strains bearing distinct synthetic genome sections1,7,8, we anticipate that it will be possible to synthesize entire E. coli genomes from functional designs in less than 2 months.
Collapse
Affiliation(s)
- Jérôme F Zürcher
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Askar A Kleefeldt
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Louise F H Funke
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Department of Biomedical Engineering, National University of Singapore, Singapore, Singapore
| | - Jakob Birnbaum
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Julius Fredens
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Synthetic Biology for Clinical and Technological Innovation, Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Simona Grazioli
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Kim C Liu
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Martin Spinck
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Pierre Murat
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Fabian B H Rehm
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Julian E Sale
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
10
|
Li Z, Qin C, Zhao B, Wang Y, Li T, Zhao Y, Wang W. DHX38 restricts chemoresistance by regulating the alternative pre-mRNA splicing of RELL2 in pancreatic ductal adenocarcinoma. PLoS Genet 2023; 19:e1010847. [PMID: 37506056 PMCID: PMC10381071 DOI: 10.1371/journal.pgen.1010847] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Accepted: 06/27/2023] [Indexed: 07/30/2023] Open
Abstract
Intron retention plays an important role in cancer progression and chemotherapy resistance and seems to be essential for the maintenance of genome stability in cancer. Here, our goal was to analyze the role of receptor expressed in lymphoid tissue (Relt)-like 2 (RELL2) intron 4 retention in promoting pancreatic ductal adenocarcinoma (PDAC) progression. Our results showed that intron retention (IR) occurs at the fourth intron of RELL2 transcript in gemcitabine resistant PDAC cells, however, the regulatory mechanism and the clinical implications of IR of RELL2 are unclear. Firstly, we found that RELL2 plays an anti-oncogenic role in PDAC by performing in vitro functional assays including cell proliferation, GEM cytotoxicity assay and apoptosis. Subsequently, we identified the upstream gene of RELL2, DEAH-Box Helicase 38 (DHX38), and demonstrated the direct interaction between DHX38 and RELL2 by RIP-qPCR. We also found that altered expression of DHX38 resulted in corresponding changes in intron 4 retention of RELL2. Importantly, we unveiled that overexpression of DHX38 on the basis of knocking down of the fourth intron of RELL2 resulted in an impaired intron 4 intention. Overall, our study identified a new IR site in PDAC, which could be a possible target for PDAC therapy.
Collapse
Affiliation(s)
- Zeru Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Cheng Qin
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Bangbo Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yuanyang Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Tianyu Li
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Yutong Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| | - Weibin Wang
- Department of General Surgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, P.R. China
- Key Laboratory of Research in Pancreatic Tumor, Chinese Academy of Medical Sciences, Beijing, P.R. China
| |
Collapse
|
11
|
Rauti R, Navok S, Biran D, Tadmor K, Leichtmann-Bardoogo Y, Ron EZ, Maoz BM. Insight on Bacterial Newborn Meningitis Using a Neurovascular-Unit-on-a-Chip. Microbiol Spectr 2023; 11:e0123323. [PMID: 37222614 PMCID: PMC10269748 DOI: 10.1128/spectrum.01233-23] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023] Open
Abstract
Understanding the pathogenesis of bacterial infections is critical for combatting them. For some infections, animal models are inadequate and functional genomic studies are not possible. One example is bacterial meningitis, a life-threatening infection with high mortality and morbidity. Here, we used the newly developed, physiologically relevant, organ-on-a-chip platform integrating the endothelium with neurons, closely mimicking in vivo conditions. Using high-magnification microscopy, permeability measurements, electrophysiological recordings, and immunofluorescence staining, we studied the dynamic by which the pathogens cross the blood-brain barrier and damage the neurons. Our work opens up possibilities for performing large-scale screens with bacterial mutant libraries for identifying the virulence genes involved in meningitis and determining the role of these genes, including various capsule types, in the infection process. These data are essential for understanding and therapy of bacterial meningitis. Moreover, our system offers possibilities for the study of additional infections-bacterial, fungal, and viral. IMPORTANCE The interactions of newborn meningitis (NBM) with the neurovascular unit are very complex and are hard to study. This work presents a new platform to study NBM in a system that enables monitoring of multicellular interactions and identifies processes that were not observed before.
Collapse
Affiliation(s)
- Rossana Rauti
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Urbino, Italy
| | - Sharon Navok
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Dvora Biran
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Keshet Tadmor
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | | | - Eliora Z. Ron
- The Shmunis School of Biomedicine and Cancer Research, Tel Aviv University, Tel Aviv, Israel
| | - Ben M. Maoz
- Department of Biomedical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- The Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
12
|
Zhu MC, Cui YZ, Wang JY, Xu H, Li BZ, Yuan YJ. Cross-species microbial genome transfer: a Review. Front Bioeng Biotechnol 2023; 11:1183354. [PMID: 37214278 PMCID: PMC10194841 DOI: 10.3389/fbioe.2023.1183354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer.
Collapse
|
13
|
Han F, Xu B, Lu N, Caliari A, Lu H, Xia Y, Su'etsugu M, Xu J, Yomo T. Optimization and compartmentalization of a cell-free mixture of DNA amplification and protein translation. Appl Microbiol Biotechnol 2022; 106:8139-8149. [PMID: 36355086 DOI: 10.1007/s00253-022-12278-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/30/2022] [Accepted: 11/04/2022] [Indexed: 11/11/2022]
Abstract
Recent studies have shown that the reconstituted cell-free DNA replisome and in vitro transcription and translation systems from Escherichia coli are highly important in applied and synthetic biology. To date, no attempt has been made to combine those two systems. Here, we study the performance of the mixed two separately exploited systems commercially available as RCR and PURE systems. Regarding the genetic information flow from DNA to proteins, mixtures with various ratios of RCR/PURE gave low protein expression, possibly due to the well-known conflict between replication and transcription or inappropriate buffer conditions. To further increase the compatibility of the two systems, rationally designed reaction buffers with a lower concentration of nucleoside triphosphates in 50 mM HEPES (pH7.6) were evaluated, showing increased performance from RCR/PURE (85%/15%) in a time-dependent manner. The compatibility was also validated in compartmentalized cell-sized droplets encapsulating the same RCR/PURE soup. Our findings can help to better fine-tune the reaction conditions of RCR-PURE systems and provide new avenues for rewiring the central dogma of molecular biology as self-sustaining systems in synthetic cell models. KEY POINTS: • Commercial reconstituted DNA amplification (RCR) and transcription and translation (PURE) systems hamper each other upon mixing. • A newly optimized buffer with a low bias for PURE was formulated in the RCR-PURE mixture. • The performance and dynamics of RCR-PURE were investigated in either bulk or compartmentalized droplets.
Collapse
Affiliation(s)
- Fuhai Han
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Boying Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.,Tongji University Cancer Center, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 200072, China
| | - Nan Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Adriano Caliari
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Hui Lu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Yang Xia
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo, 171-8501, Japan
| | - Jian Xu
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| | - Tetsuya Yomo
- Laboratory of Biology and Information Science, School of Life Sciences, East China Normal University, Shanghai, 200062, People's Republic of China.
| |
Collapse
|
14
|
Su J, Wang P, Li J, Zhao D, Li S, Fan F, Dai Z, Liao X, Mao Z, Zhang C, Bi C, Zhang X. A CRISPR-based chromosomal-separation technique for Escherichia coli. Microb Cell Fact 2022; 21:235. [DOI: 10.1186/s12934-022-01957-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 10/16/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Natural life systems can be significantly modified at the genomic scale by human intervention, demonstrating the great innovation capacity of genome engineering. Large epi-chromosomal DNA structures were established in Escherichia coli cells, but some of these methods were inconvenient, using heterologous systems, or relied on engineered E. coli strains.
Results
The wild-type model bacterium E. coli has a single circular chromosome. In this work, a novel method was developed to split the original chromosome of wild-type E. coli. With this method, novel E. coli strains containing two chromosomes of 0.10 Mb and 4.54 Mb, and 2.28 Mb and 2.36 Mb were created respectively, designated as E. coli0.10/4.54 and E. coli2.28/2.36. The new chromosomal arrangement was proved by PCR amplification of joint regions as well as a combination of Nanopore and Illumina sequencing analysis. While E. coli0.10/4.54 was quite stable, the two chromosomes of E. coli2.28/2.36 population recombined into a new chromosome (Chr.4.64MMut), via recombination. Both engineered strains grew slightly slower than the wild-type, and their cell shapes were obviously elongated.
Conclusion
Finally, we successfully developed a simple CRISPR-based genome engineering technique for the construction of multi-chromosomal E. coli strains with no heterologous genetic parts. This technique might be applied to other prokaryotes for synthetic biology studies and applications in the future.
Collapse
|
15
|
Liu Y, Feng J, Pan H, Zhang X, Zhang Y. Genetically engineered bacterium: Principles, practices, and prospects. Front Microbiol 2022; 13:997587. [PMID: 36312915 PMCID: PMC9606703 DOI: 10.3389/fmicb.2022.997587] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 09/23/2022] [Indexed: 12/24/2022] Open
Abstract
Advances in synthetic biology and the clinical application of bacteriotherapy enable the use of genetically engineered bacteria (GEB) to combat various diseases. GEB act as a small 'machine factory' in the intestine or other tissues to continuously produce heterologous proteins or molecular compounds and, thus, diagnose or cure disease or work as an adjuvant reagent for disease treatment by regulating the immune system. Although the achievements of GEBs in the treatment or adjuvant therapy of diseases are promising, the practical implementation of this new therapeutic modality remains a grand challenge, especially at the initial stage. In this review, we introduce the development of GEBs and their advantages in disease management, summarize the latest research advances in microbial genetic techniques, and discuss their administration routes, performance indicators and the limitations of GEBs used as platforms for disease management. We also present several examples of GEB applications in the treatment of cancers and metabolic diseases and further highlight their great potential for clinical application in the near future.
Collapse
Affiliation(s)
- Yiting Liu
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Jing Feng
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
| | - Hangcheng Pan
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Xiuwei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| | - Yunlei Zhang
- Department of Respiratory and Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
- Department of Biomedical Engineering, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing, China
- Central Laboratory, Translational Medicine Research Center, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
16
|
Fujita H, Osaku A, Sakane Y, Yoshida K, Yamada K, Nara S, Mukai T, Su’etsugu M. Enzymatic Supercoiling of Bacterial Chromosomes Facilitates Genome Manipulation. ACS Synth Biol 2022; 11:3088-3099. [PMID: 35998348 PMCID: PMC9486964 DOI: 10.1021/acssynbio.2c00353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The physical stability of bacterial chromosomes is important for their in vitro manipulation, while genetic stability is important in vivo. However, extracted naked chromosomes in the open circular form are fragile due to nicks and gaps. Using a nick/gap repair and negative supercoiling reaction (named SCR), we first achieved the negative supercoiling of the whole genomes extracted from Escherichia coli and Vibrio natriegens cells. Supercoiled chromosomes of 0.2-4.6 megabase (Mb) were separated by size using a conventional agarose gel electrophoresis and served as DNA size markers. We also achieved the enzymatic replication of 1-2 Mb chromosomes using the reconstituted E. coli replication-cycle reaction (RCR). Electroporation-ready 1 Mb chromosomes were prepared by a modified SCR performed at a low salt concentration (L-SCR) and directly introduced into commercial electrocompetent E. coli cells. Since successful electroporation relies on the genetic stability of a chromosome in cells, genetically stable 1 Mb chromosomes were developed according to a portable chromosome format (PCF). Using physically and genetically stabilized chromosomes, the democratization of genome synthetic biology will be greatly accelerated.
Collapse
|
17
|
Koster CC, Postma ED, Knibbe E, Cleij C, Daran-Lapujade P. Synthetic Genomics From a Yeast Perspective. Front Bioeng Biotechnol 2022; 10:869486. [PMID: 35387293 PMCID: PMC8979029 DOI: 10.3389/fbioe.2022.869486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic Genomics focuses on the construction of rationally designed chromosomes and genomes and offers novel approaches to study biology and to construct synthetic cell factories. Currently, progress in Synthetic Genomics is hindered by the inability to synthesize DNA molecules longer than a few hundred base pairs, while the size of the smallest genome of a self-replicating cell is several hundred thousand base pairs. Methods to assemble small fragments of DNA into large molecules are therefore required. Remarkably powerful at assembling DNA molecules, the unicellular eukaryote Saccharomyces cerevisiae has been pivotal in the establishment of Synthetic Genomics. Instrumental in the assembly of entire genomes of various organisms in the past decade, the S. cerevisiae genome foundry has a key role to play in future Synthetic Genomics developments.
Collapse
Affiliation(s)
- Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Eline D Postma
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Ewout Knibbe
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Céline Cleij
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
18
|
Ueno H, Sawada H, Soga N, Sano M, Nara S, Tabata KV, Su’etsugu M, Noji H. Amplification of over 100 kbp DNA from Single Template Molecules in Femtoliter Droplets. ACS Synth Biol 2021; 10:2179-2186. [PMID: 34406762 DOI: 10.1021/acssynbio.0c00584] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Reconstitution of the DNA amplification system in microcompartments is the primary step toward artificial cell construction through a bottom-up approach. However, amplification of >100 kbp DNA in micrometer-sized reactors has not yet been achieved. Here, implementing a fully reconstituted replisome of Escherichia coli in micrometer-sized water-in-oil droplets, we developed the in-droplet replication cycle reaction (RCR) system. For a 16 kbp template DNA, the in-droplet RCR system yielded positive RCR signals with a high success rate (82%) for the amplification from single molecule template DNA. The success rate for a 208 kbp template DNA was evidently lower (23%). This study establishes a platform for genome-sized DNA amplification from a single copy of template DNA with the potential to build more complex artificial cell systems comprising a large number of genes.
Collapse
Affiliation(s)
- Hiroshi Ueno
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Hiroki Sawada
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Naoki Soga
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Mio Sano
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Seia Nara
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Kazuhito V. Tabata
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| | - Masayuki Su’etsugu
- Department of Life Science, College of Science, Rikkyo University, Tokyo 171-8501, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, School of Engineering, The University of Tokyo, Tokyo 113-8656, Japan
| |
Collapse
|
19
|
In vitro amplification of whole large plasmids via transposon-mediated oriC insertion. Biotechniques 2021; 71:528-533. [PMID: 34463121 DOI: 10.2144/btn-2021-0068] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
DNA amplification is a fundamental technique in molecular biology. The replication cycle reaction is a new method for amplification of large circular DNA having oriC sequences, which is a replication initiation site of the Escherichia coli chromosome. We here developed a replication cycle reaction-based method useful for amplification of various circular DNAs lacking oriC, even in the absence of any sequence information, via transposon-mediated oriC insertion to the circular DNA template. A 15-kb non-oriC plasmid was amplified from a very small amount of starting DNA (50 fg, 1 fM). The method was also applicable to GC-rich plasmid (69%) or large F-plasmid (230 kb). This method thus provides a powerful tool to amplify various environmental circular DNAs.
Collapse
|
20
|
Yoneji T, Fujita H, Mukai T, Su'etsugu M. Grand scale genome manipulation via chromosome swapping in Escherichia coli programmed by three one megabase chromosomes. Nucleic Acids Res 2021; 49:8407-8418. [PMID: 33907814 PMCID: PMC8421210 DOI: 10.1093/nar/gkab298] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 04/06/2021] [Accepted: 04/10/2021] [Indexed: 11/30/2022] Open
Abstract
In bacterial synthetic biology, whole genome transplantation has been achieved only in mycoplasmas that contain a small genome and are competent for foreign genome uptake. In this study, we developed Escherichia coli strains programmed by three 1-megabase (Mb) chromosomes by splitting the 3-Mb chromosome of a genome-reduced strain. The first split-chromosome retains the original replication origin (oriC) and partitioning (par) system. The second one has an oriC and the par locus from the F plasmid, while the third one has the ori and par locus of the Vibrio tubiashii secondary chromosome. The tripartite-genome cells maintained the rod-shaped form and grew only twice as slowly as their parent, allowing their further genetic engineering. A proportion of these 1-Mb chromosomes were purified as covalently closed supercoiled molecules with a conventional alkaline lysis method and anion exchange columns. Furthermore, the second and third chromosomes could be individually electroporated into competent cells. In contrast, the first split-chromosome was not able to coexist with another chromosome carrying the same origin region. However, it was exchangeable via conjugation between tripartite-genome strains by using different selection markers. We believe that this E. coli-based technology has the potential to greatly accelerate synthetic biology and synthetic genomics.
Collapse
Affiliation(s)
- Tatsuya Yoneji
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Hironobu Fujita
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Takahito Mukai
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| | - Masayuki Su'etsugu
- Department of Life Science, College of Science, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima-ku, Tokyo 171-8501, Japan
| |
Collapse
|
21
|
Grazioli S, Petris G. Synthetic genomics for curing genetic diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2021; 182:477-520. [PMID: 34175051 DOI: 10.1016/bs.pmbts.2021.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
From the beginning of the genome sequencing era, it has become increasingly evident that genetics plays a role in all diseases, of which only a minority are single-gene disorders, the most common target of current gene therapies. However, the majority of people have some kind of health problems resulting from congenital genetic mutations (over 6000 diseases have been associated to genes, https://www.omim.org/statistics/geneMap) and most genetic disorders are rare and only incompletely understood. The vision and techniques applied to the synthesis of genomes may help to address unmet medical needs from a chromosome and genome-scale perspective. In this chapter, we address the potential therapy of genetic diseases from a different outlook, in which we no longer focus on small gene corrections but on higher-order tools for genome manipulation. These will play a crucial role in the next years, as they prelude to a much deeper understanding of the architecture of the human genome and a more accurate modeling of human diseases, offering new therapeutic opportunities.
Collapse
Affiliation(s)
| | - Gianluca Petris
- Medical Research Council Laboratory of Molecular Biology (MRC LMB), Cambridge, United Kingdom.
| |
Collapse
|