1
|
Wei X, Yang L, Chen Z, Xia W, Chen Y, Cao M, He N. Molecular weight control of poly-γ-glutamic acid reveals novel insights into extracellular polymeric substance synthesis in Bacillus licheniformis. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:60. [PMID: 38711141 DOI: 10.1186/s13068-024-02501-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024]
Abstract
BACKGROUND The structural diversity of extracellular polymeric substances produced by microorganisms is attracting particular attention. Poly-gamma-glutamic acid (γ-PGA) is a widely studied extracellular polymeric substance from Bacillus species. The function of γ-PGA varies with its molecular weight (Mw). RESULTS Herein, different endogenous promoters in Bacillus licheniformis were selected to regulate the expression levels of pgdS, resulting in the formation of γ-PGA with Mw values ranging from 1.61 × 103 to 2.03 × 104 kDa. The yields of γ-PGA and exopolysaccharides (EPS) both increased in the pgdS engineered strain with the lowest Mw and viscosity, in which the EPS content was almost tenfold higher than that of the wild-type strain. Subsequently, the compositions of EPS from the pgdS engineered strain also changed. Metabolomics and RT-qPCR further revealed that improving the transportation efficiency of EPS and the regulation of carbon flow of monosaccharide synthesis could affect the EPS yield. CONCLUSIONS Here, we present a novel insight that increased pgdS expression led to the degradation of γ-PGA Mw and changes in EPS composition, thereby stimulating EPS and γ-PGA production. The results indicated a close relationship between γ-PGA and EPS in B. licheniformis and provided an effective strategy for the controlled synthesis of extracellular polymeric substances.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, China.
- The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, People's Republic of China.
| |
Collapse
|
2
|
Zeng W, Liu Y, Shu L, Guo Y, Wang L, Liang Z. Production of ultra-high-molecular-weight poly-γ-glutamic acid by a newly isolated Bacillus subtilis strain and genomic and transcriptomic analyses. Biotechnol J 2024; 19:e2300614. [PMID: 38581093 DOI: 10.1002/biot.202300614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/01/2024] [Accepted: 03/14/2024] [Indexed: 04/08/2024]
Abstract
Poly-γ-glutamic acid (γ-PGA) is a microbial-derived polymer with molecular weight (Mw) from 104 to 107 Da, and the high-Mw (> 7.0 × 105 Da) or ultra-high-Mw (> 5.0 × 106 Da) γ-PGA has important application value as a tissue engineering material, as a flocculant, and as a heavy metal remover. Therefore, how to produce these high-Mw γ-PGAs with low cost and high efficiency has attracted wide attention. In this study, a γ-PGA producer was isolated from the natural environment, and identified and named Bacillus subtilis GXD-20. Then, the ultra-high-Mw (> 6.0 × 106 Da) γ-PGA produced by GXD-20 was characterized. Interestingly, GXD-20 could produce γ-PGA at 42°C, and exhibited a γ-PGA titer of up to 22.29 ± 0.59 g L-1 in a 5-L fermenter after optimization of the fermentation process. Comparative genomic analysis indicated that the specific protein sequence and subcellular localization of PgdS (a γ-PGA-degrading enzyme) were closely related to the ultra-high-Mw of γ-PGA. Transcriptomic analysis revealed that the high γ-PGA titer at 42°C was mainly related to the high expression of genes encoding enzymes for sucrose transportation and utilization, nitrogen transportation, endogenous glutamate synthesis, and γ-PGA synthesis. These results provide new insights into the production of ultra-high-Mw γ-PGA by Bacillus at high temperatures.
Collapse
Affiliation(s)
- Wei Zeng
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Yuanyuan Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Lin Shu
- Key Laboratory of Biochemistry and Molecular Biology (Guilin Medical University), Education Department of Guangxi Zhuang Autonomous Region, School of Intelligent Medicine and Biotechnology, Guilin Medical University, Guilin, Guangxi, China
| | - Yin Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Linye Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| | - Zhiqun Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Microorganism and Enzyme Research Center of Engineering Technology, College of Life Science and Technology, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
3
|
Qiu Y, Xu D, Lei P, Li S, Xu H. Engineering functional homopolymeric amino acids: from biosynthesis to design. Trends Biotechnol 2024; 42:310-325. [PMID: 37775417 DOI: 10.1016/j.tibtech.2023.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/08/2023] [Accepted: 08/31/2023] [Indexed: 10/01/2023]
Abstract
Homopolymeric amino acids (HPAs) are a class of microbial polymers that can be classified into two categories: anionic and cationic HPAs. Notable examples include γ-poly-glutamic acid (γ-PGA) and ε-poly-L-lysine (ε-PL) that have wide-ranging applications in medicine, food, and agriculture. The primary method of manufacture is through microbial synthesis. In recent decades significant efforts have been made to enhance the production of HPAs, specifically focusing on γ-PGA and ε-PL. We comprehensively review current advances in understanding the synthetic mechanisms as well as metabolic engineering and fermentation process techniques to improve the production of HPAs. In addition, we discuss the major challenges and solutions associated with desired structure regulation of HPAs and the development of novel structures.
Collapse
Affiliation(s)
- Yibin Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Delei Xu
- College of Biological and Food Engineering, Changshu Institute of Technology, 99 South Third Ring Road, Changshu 215500, PR China
| | - Peng Lei
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; Nanjing Shineking Biotech Co. Ltd., Nanjing 210061, PR China.
| |
Collapse
|
4
|
Luo Z, Yan Y, Du S, Zhu Y, Pan F, Wang R, Xu Z, Xu X, Li S, Xu H. Recent advances and prospects of Bacillus amyloliquefaciens as microbial cell factories: from rational design to industrial applications. Crit Rev Biotechnol 2023; 43:1073-1091. [PMID: 35997331 DOI: 10.1080/07388551.2022.2095499] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/02/2022] [Indexed: 11/03/2022]
Abstract
Bacillus amyloliquefaciens is one of the most characterized Gram-positive bacteria. This species has unique characteristics that are beneficial for industrial applications, including its utilization of: cheap carbon as a substrate, a transparent genetic background, and large-scale robustness in fermentation. Indeed, the productivity characteristics of B. amyloliquefaciens have been thoroughly analyzed and further optimized through systems biology and synthetic biology techniques. Following the analysis of multiple engineering design strategies, B. amyloliquefaciens is now considered an efficient cell factory capable of producing large quantities of multiple products from various raw materials. In this review, we discuss the significant potential advantages offered by B. amyloliquefaciens as a platform for metabolic engineering and industrial applications. In addition, we systematically summarize the recent laboratory research and industrial application of B. amyloliquefaciens, including: relevant advances in systems and synthetic biology, various strategies adopted to improve the cellular performances of synthetic chemicals, as well as the latest progress in the synthesis of certain important products by B. amyloliquefaciens. Finally, we propose the current challenges and essential strategies to usher in an era of broader B. amyloliquefaciens use as microbial cell factories.
Collapse
Affiliation(s)
- Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zheng Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Xiaoqi Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
5
|
Wei X, Chen Z, Liu A, Yang L, Xu Y, Cao M, He N. Advanced strategies for metabolic engineering of Bacillus to produce extracellular polymeric substances. Biotechnol Adv 2023; 67:108199. [PMID: 37330153 DOI: 10.1016/j.biotechadv.2023.108199] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 05/24/2023] [Accepted: 06/11/2023] [Indexed: 06/19/2023]
Abstract
Extracellular polymeric substances are mainly synthesized via a variety of biosynthetic pathways in bacteria. Bacilli-sourced extracellular polymeric substances, such as exopolysaccharides (EPS) and poly-γ-glutamic acid (γ-PGA), can serve as active ingredients and hydrogels, and have other important industrial applications. However, the functional diversity and widespread applications of these extracellular polymeric substances, are hampered by their low yields and high costs. Biosynthesis of extracellular polymeric substances is very complex in Bacillus, and there is no detailed elucidation of the reactions and regulations among various metabolic pathways. Therefore, a better understanding of the metabolic mechanisms is required to broaden the functions and increase the yield of extracellular polymeric substances. This review systematically summarizes the biosynthesis and metabolic mechanisms of extracellular polymeric substances in Bacillus, providing an in-depth understanding of the relationships between EPS and γ-PGA synthesis. This review provides a better clarification of Bacillus metabolic mechanisms during extracellular polymeric substance secretion and thus benefits their application and commercialization.
Collapse
Affiliation(s)
- Xiaoyu Wei
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China.
| | - Ailing Liu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Lijie Yang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Yiyuan Xu
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China; Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Lab for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen 361005, China.
| |
Collapse
|
6
|
Li Y, Yan Z, Liu J, Song C, Zhu F, Wang S. The evaluation of Bacillus-secreted polyglutamic acid as anti-scaling treatment for circulating cooling water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82762-82771. [PMID: 35752665 DOI: 10.1007/s11356-022-21299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
Polyaspartic acid is considered a green agent for the treatment of circulating cooling water. However, its chemosynthetic process is not green, as it requires significant amounts of energy and causes water pollution. In this work, we identified an analog of polyaspartic acid, namely polyglutamic acid (γ-PGA), which could be directly produced by Bacillus spp., and we explored its performance and scale inhibition mechanism as a scale inhibitor. We found that γ-PGA secreted by B. megaterium with a molecular weight of ~ 70 kDa showed poor scale inhibition, while the γ-PGA secreted by B. licheniformis with a molecular weight of ~ 15 kDa had a 26.87% higher efficiency compared to commercially available polyaspartic acid. The scale inhibition mechanism was explored using the γ-PGA material secreted by B. licheniformis. Fourier transform spectrometer, field emission scanning electron microscopy, and X-ray photoelectron spectroscopy analysis demonstrated that the scale inhibition performance of γ-PGA was due to the combination of its functional groups and Ca2+, which affected the growth process of CaCO3 and inhibited the formation of CaCO3. This study provided deeper insight into scale inhibition performance related to the scale inhibition mechanism.
Collapse
Affiliation(s)
- Yutong Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhen Yan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Jun Liu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Chao Song
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Fanping Zhu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Shuguang Wang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
- Sino-French Research Institute for Ecology and Environment (ISFREE), School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
7
|
Song Y, He S, Jopkiewicz A, Setroikromo R, van Merkerk R, Quax WJ. Development and application of CRISPR-based genetic tools in Bacillus species and Bacillus phages. J Appl Microbiol 2022; 133:2280-2298. [PMID: 35797344 PMCID: PMC9796756 DOI: 10.1111/jam.15704] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 07/02/2022] [Accepted: 07/06/2022] [Indexed: 01/07/2023]
Abstract
Recently, the clustered regularly interspaced short palindromic repeats (CRISPR) system has been developed into a precise and efficient genome editing tool. Since its discovery as an adaptive immune system in prokaryotes, it has been applied in many different research fields including biotechnology and medical sciences. The high demand for rapid, highly efficient and versatile genetic tools to thrive in bacteria-based cell factories accelerates this process. This review mainly focuses on significant advancements of the CRISPR system in Bacillus subtilis, including the achievements in gene editing, and on problems still remaining. Next, we comprehensively summarize this genetic tool's up-to-date development and utilization in other Bacillus species, including B. licheniformis, B. methanolicus, B. anthracis, B. cereus, B. smithii and B. thuringiensis. Furthermore, we describe the current application of CRISPR tools in phages to increase Bacillus hosts' resistance to virulent phages and phage genetic modification. Finally, we suggest potential strategies to further improve this advanced technique and provide insights into future directions of CRISPR technologies for rendering Bacillus species cell factories more effective and more powerful.
Collapse
Affiliation(s)
- Yafeng Song
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands,Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, State Key Laboratory of Applied Microbiology Southern ChinaInstitute of Microbiology, Guangdong Acadamy of SciencesGuangzhouChina
| | - Siqi He
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Anita Jopkiewicz
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Rita Setroikromo
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Ronald van Merkerk
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| | - Wim J. Quax
- Department of Chemical and Pharmaceutical BiologyGroningen Research Institute of Pharmacy, University of GroningenGroningenThe Netherlands
| |
Collapse
|
8
|
Zhu Y, Du S, Yan Y, Pan F, Wang R, Li S, Xu H, Luo Z. Systematic engineering of Bacillus amyloliquefaciens for efficient production of poly-γ-glutamic acid from crude glycerol. BIORESOURCE TECHNOLOGY 2022; 359:127382. [PMID: 35644456 DOI: 10.1016/j.biortech.2022.127382] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/23/2022] [Accepted: 05/24/2022] [Indexed: 06/15/2023]
Abstract
Microbial production of poly-γ-glutamic acid (γ-PGA) from non-food raw materials is a promising alternative to food feedstocks-based biosynthesis. A superior cell factory of Bacillus amyloliquefaciens for the efficient synthesis of γ-PGA from crude glycerol was constructed through systematic metabolic engineering. Firstly, some phase-dependent promoters were screened from B. amyloliquefaciens, which can be used for fine regulation of subsequent metabolic pathways. Secondly, the glycerol utilization pathway and the γ-PGA synthesis pathway were co-optimized utilizing the above-screened promoters, which increased the titer of γ-PGA by 1.75-fold. Then, the titer of γ-PGA increased to 15.6 g/L by engineering transcription factors degU and blocking competitive pathways. Finally, combining these strategies with an optimized fermentation process, 26.4 g/L γ-PGA was obtained from crude glycerol as a single carbon source (a 3.72-fold improvement over the initial strain). Overall, these strategies will have great potential for synthesizing other products from crude glycerol in B. amyloliquefaciens.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
9
|
Zhao M, Hu Y, Yao H, Huang J, Li S, Xu H. Sustainable production and characterization of medium-molecular weight welan gum produced by a Sphingomonas sp. RW. Carbohydr Polym 2022; 289:119431. [DOI: 10.1016/j.carbpol.2022.119431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
10
|
Zhu Y, Hu Y, Yan Y, Du S, Pan F, Li S, Xu H, Luo Z. Metabolic Engineering of Bacillus amyloliquefaciens to Efficiently Synthesize L-Ornithine From Inulin. Front Bioeng Biotechnol 2022; 10:905110. [PMID: 35757793 PMCID: PMC9214239 DOI: 10.3389/fbioe.2022.905110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Bacillus amyloliquefaciens is the dominant strain used to produce γ-polyglutamic acid from inulin, a non-grain raw material. B. amyloliquefaciens has a highly efficient tricarboxylic acid cycle metabolic flux and glutamate synthesis ability. These features confer great potential for the synthesis of glutamate derivatives. However, it is challenging to efficiently convert high levels of glutamate to a particular glutamate derivative. Here, we conducted a systematic study on the biosynthesis of L-ornithine by B. amyloliquefaciens using inulin. First, the polyglutamate synthase gene pgsBCA of B. amyloliquefaciens NB was knocked out to hinder polyglutamate synthesis, resulting in the accumulation of intracellular glutamate and ATP. Second, a modular engineering strategy was applied to coordinate the degradation pathway, precursor competition pathway, and L-ornithine synthesis pathway to prompt high levels of intracellular precursor glutamate for l-ornithine synthesis. In addition, the high-efficiency L-ornithine transporter was further screened and overexpressed to reduce the feedback inhibition of L-ornithine on the synthesis pathway. Combining these strategies with further fermentation optimizations, we achieved a final L-ornithine titer of 31.3 g/L from inulin. Overall, these strategies hold great potential for strengthening microbial synthesis of high value-added products derived from glutamate.
Collapse
Affiliation(s)
- Yifan Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Yifan Yan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Shanshan Du
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Fei Pan
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| | - Zhengshan Luo
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, China.,College of Food Science and Light Industry, Nanjing Tech University, Nanjing, China
| |
Collapse
|
11
|
Call SN, Andrews LB. CRISPR-Based Approaches for Gene Regulation in Non-Model Bacteria. Front Genome Ed 2022; 4:892304. [PMID: 35813973 PMCID: PMC9260158 DOI: 10.3389/fgeed.2022.892304] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/11/2022] [Indexed: 01/08/2023] Open
Abstract
CRISPR interference (CRISPRi) and CRISPR activation (CRISPRa) have become ubiquitous approaches to control gene expression in bacteria due to their simple design and effectiveness. By regulating transcription of a target gene(s), CRISPRi/a can dynamically engineer cellular metabolism, implement transcriptional regulation circuitry, or elucidate genotype-phenotype relationships from smaller targeted libraries up to whole genome-wide libraries. While CRISPRi/a has been primarily established in the model bacteria Escherichia coli and Bacillus subtilis, a growing numbering of studies have demonstrated the extension of these tools to other species of bacteria (here broadly referred to as non-model bacteria). In this mini-review, we discuss the challenges that contribute to the slower creation of CRISPRi/a tools in diverse, non-model bacteria and summarize the current state of these approaches across bacterial phyla. We find that despite the potential difficulties in establishing novel CRISPRi/a in non-model microbes, over 190 recent examples across eight bacterial phyla have been reported in the literature. Most studies have focused on tool development or used these CRISPRi/a approaches to interrogate gene function, with fewer examples applying CRISPRi/a gene regulation for metabolic engineering or high-throughput screens and selections. To date, most CRISPRi/a reports have been developed for common strains of non-model bacterial species, suggesting barriers remain to establish these genetic tools in undomesticated bacteria. More efficient and generalizable methods will help realize the immense potential of programmable CRISPR-based transcriptional control in diverse bacteria.
Collapse
Affiliation(s)
- Stephanie N. Call
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
| | - Lauren B. Andrews
- Department of Chemical Engineering, University of Massachusetts Amherst, Amherst, MA, United States
- Biotechnology Training Program, University of Massachusetts Amherst, Amherst, MA, United States
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA, United States
| |
Collapse
|
12
|
Ma Y, Qiu Y, Yu C, Li S, Xu H. Design and construction of a Bacillus amyloliquefaciens cell factory for hyaluronic acid synthesis from Jerusalem artichoke inulin. Int J Biol Macromol 2022; 205:410-418. [PMID: 35202630 DOI: 10.1016/j.ijbiomac.2022.02.100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/21/2022] [Accepted: 02/16/2022] [Indexed: 11/05/2022]
Abstract
Hyaluronic acid (HA), a high-value biomacromolecule, has wide applications in medical, cosmetic and food fields. Currently, employing the safe-grade microorganisms for de novo biosynthesis of HA from renewable substrates has become a promising alternative. In this study, we established a Bacillus amyloliquefaciens strain as platform for HA production from Jerusalem artichoke inulin. Firstly, the different HA and UDP-GlcUA synthase genes were introduced into B. amyloliquefaciens to construct the HA synthesis pathway. Secondly, the byproduct polysaccharides were removed by knocking sacB and epsA-O using CRISPR/Cas9n system, resulting in a 13% increase in HA production. Finally, 2.89 g/L HA with a high molecular weight of 1.5 MDa was obtained after optimizing fermentation conditions and adding osmotic agents. This study demonstrates the engineered B. amyloliquefaciens can effectively synthesize HA with Jerusalem artichoke inulin and provides a green route for HA production.
Collapse
Affiliation(s)
- Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China
| | - Caiyuan Yu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
13
|
Wang L, Chen S, Yu B. Poly-γ-glutamic acid: Recent achievements, diverse applications and future perspectives. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2021.11.009] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Li X, Bao T, Osire T, Qiao Z, Liu J, Zhang X, Xu M, Yang T, Rao Z. MarR-type transcription factor RosR regulates glutamate metabolism network and promotes accumulation of L-glutamate in Corynebacterium glutamicum G01. BIORESOURCE TECHNOLOGY 2021; 342:125945. [PMID: 34560435 DOI: 10.1016/j.biortech.2021.125945] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
Transcription factors (TFs) perform a crucial function in the regulation of amino acids biosynthesis. Here, TFs involved in L-glutamate biosynthesis in Corynebacterium glutamicum were investigated. Compared to transcriptomic results of C. glutamicum 13032, 7 TFs regulated to glutamate biosynthesis were indentifed in G01 and E01. Among them, RosR was demonstrated to regulate L-glutamate metabolic network by binding to the promoters of glnA, pqo, ilvB, ilvN, ilvC, ldhA, odhA, dstr1, fas, argJ, ak and pta. Overexpression of RosR in G01 resulted in significantly decreased by-products yield and improved L-glutamate titer (130.6 g/L) and yield (0.541 g/g from glucose) in fed-batch fermentation. This study demonstrated the L-glutamate production improved by the expression of TFs in C. glutamicum, which provided a good reference for the transcriptional regulation engineering of strains for amino acid biosynthesis and suggested further metabolic engineering of C. glutamicum for L-glutamate production.
Collapse
Affiliation(s)
- Xiangfei Li
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Teng Bao
- Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH 43210, USA
| | - Tolbert Osire
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhina Qiao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiafeng Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
15
|
Qiu Y, Chen Z, Su E, Wang L, Sun L, Lei P, Xu H, Li S. Recent Strategies for the Biosynthesis of Ergothioneine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:13682-13690. [PMID: 34757754 DOI: 10.1021/acs.jafc.1c05280] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ergothioneine (EGT) is a unique naturally occurring amino acid that is usually biosynthesized by bacteria and fungi. As a food-derived antioxidant and cytoprotectant, it has several physiological benefits and has a wide range of applications in food, medicine, and cosmetics. Traditional production of EGT is mainly through biological extraction or chemical synthesis; however, these methods are inefficient, making large-scale production to meet the growing market demand difficult. Nowadays, the rapid development of synthetic biology has greatly accelerated the research on the EGT production by microbial fermentation. In this paper, the biological characteristics, applications, biosynthesis, separation, and detection methods of EGT were fully reviewed. Furthermore, the approaches and challenges for engineering microbial cells to efficiently synthesize EGT were also discussed. This work provides new ideas and future research potentials in EGT production.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
- Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, P. R. China
| | - Zhonglin Chen
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Libin Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, P. R. China
| |
Collapse
|
16
|
Qiu Y, Ma Y, Huang Y, Li S, Xu H, Su E. Current advances in the biosynthesis of hyaluronic acid with variable molecular weights. Carbohydr Polym 2021; 269:118320. [PMID: 34294332 DOI: 10.1016/j.carbpol.2021.118320] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/05/2021] [Accepted: 06/06/2021] [Indexed: 12/26/2022]
Abstract
Hyaluronic acid (HA) is a naturally formed acidic mucopolysaccharide, with excellent moisturising properties and used widely in the medicine, cosmetics, and food industries. The industrial production of specific molecular weight HA has become imperative. Different biological activities and physiological functions of HA mainly depend on the degree of polymerisation. This article reviews the research status and development prospects of the green biosynthesis and molecular weight regulation of HA. There is an application-based prerequisite of specific molecular weight of HA that could be regulated either during the fermentation process or via a controlled HA degradation process. This work provides an important theoretical basis for the downstream efficient production of diversified HA, which will further accelerate the research applications of HA and provide a good scientific basis and method reference for the study of the molecular weight regulation of similar biopolymers.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China; State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, PR China; Yangzhou Rixing Bio-Tech Co., Ltd., Yangzhou 225601, PR China.
| | - Yanqin Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China
| | - Erzheng Su
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|