1
|
Khadake RM, Arora V, Gupta P, Rode AB. Harnessing Synthetic Riboswitches for Tunable Gene Regulation in Mammalian Cells. Chembiochem 2025; 26:e202401015. [PMID: 39995098 DOI: 10.1002/cbic.202401015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 02/26/2025]
Abstract
RNA switches regulated by specific inducer molecules have become a powerful synthetic biology tool for precise gene regulation in mammalian systems. The engineered RNA switches can be integrated with natural RNA-mediated gene regulatory functions as a modular and customizable approach to probe and control cellular behavior. RNA switches have been used to advance synthetic biology applications, including gene therapy, bio-production, and cellular reprogramming. This review explores recent progress in the design and functional implementation of synthetic riboswitches in mammalian cells based on diverse RNA regulation mechanisms by highlighting recent studies and emerging technologies. We also discuss challenges such as off-target effects, system stability, and ligand delivery in complex biological environments. In conclusion, this review emphasizes the potential of synthetic riboswitches as a platform for customizable gene regulation in diverse biomedical applications.
Collapse
Affiliation(s)
- Rushikesh M Khadake
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Vaani Arora
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Payal Gupta
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| | - Ambadas B Rode
- Laboratory of Synthetic Biology, Regional Centre for Biotechnology (RCB), 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad Rd, Faridabad (NCR Delhi), Haryana, 121001
| |
Collapse
|
2
|
Takahashi H, Ikemoto Y, Ogawa A. Simultaneous Detection of Multiple Analytes at Ambient Temperature Using Eukaryotic Artificial Cells with Modular and Robust Synthetic Riboswitches. ACS Synth Biol 2025; 14:771-780. [PMID: 39729431 PMCID: PMC11934135 DOI: 10.1021/acssynbio.4c00696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/29/2024]
Abstract
Cell-free systems, which can express an easily detectable output (protein) with a DNA or mRNA template, are promising as foundations of biosensors devoid of cellular constraints. Moreover, by encasing them in membranes such as natural cells to create artificial cells, these systems can avoid the adverse effects of environmental inhibitory molecules. However, the bacterial systems generally used for this purpose do not function well at ambient temperatures. We here encapsulated a eukaryotic cell-free system consisting of wheat germ extract (WGE) and a DNA template encoding an analyte-responsive regulatory RNA (called a riboswitch) into giant unilamellar vesicles (GUVs) to create eukaryotic artificial cell-based sensors that function well at ambient temperature. First, we improved our previously reported eukaryotic synthetic riboswitches and WGE for use in GUVs by chimerizing two internal ribosome entry sites and optimizing magnesium concentrations, respectively, both of which increased the expression efficiency in GUVs several fold. Then, a DNA template encoding one of these riboswitches followed by a reporter protein was encapsulated with the optimized GUV-friendly WGE. Importantly, our previously established versatile method allowed for the rational design of highly efficient eukaryotic riboswitches that are responsive to a user-defined analyte. In fact, we utilized this method to successfully create three types of artificial cells, each of which responded to a specific, membrane-permeable analyte with wide-range, analyte-dose dependency and high sensitivity at ambient temperature. Finally, due to their orthogonality and robustness, we were able to mix a cocktail of these artificial cells to achieve simultaneous detection of the three analytes without significant barriers.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Yuri Ikemoto
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
3
|
Ogawa A, Fujikawa M, Tanimoto R, Matsuno K, Uehara R, Inoue H, Takahashi H. Cell-Free Multistep Gene Regulatory Cascades Using Eukaryotic ON-Riboswitches Responsive to in Situ Expressed Protein Ligands. ACS Synth Biol 2025; 14:909-918. [PMID: 39991792 DOI: 10.1021/acssynbio.4c00840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
One of the most pressing challenges in cell-free synthetic biology is to assemble well-controlled genetic circuits. However, no complex circuits have been reported in eukaryotic cell-free systems, unlike the case in bacterial ones, despite several unique advantages of the former. We here developed protein-responsive upregulating riboswitches (ON-riboswitches) that function in wheat germ extract to create multistep gene regulatory cascades. Although the initial two types of ON-riboswitches we first designed were less efficient than desired, we improved one of them by incorporating hybridization switches to successfully construct a pair of highly efficient, protein-responsive ON-riboswitches. Both upregulated expression up to 20-fold through self-cleavage by a hammerhead ribozyme (HHR) in response to the corresponding protein ligands expressed in situ. We then combined them with similar types of HHR-based, small-molecule-responsive ON-riboswitches regulating protein ligand expression, to create four kinds of two-step regulatory cascades. Due to the high orthogonality of all the riboswitches used, we also succeeded in regulating two-step cascades concurrently and even in creating three-step cascades. Interestingly, the switching efficiency of each multistep cascade constructed was equivalent to that of the worst step within it. Therefore, more complex cascades with additional steps could be constructed using other efficient and orthogonal, protein-responsive ON-riboswitches with minimal loss of total switching efficiency, although the reaction conditions must be optimized to prevent a reduction of expression efficiencies. Riboswitch-based cascades fashioned through our proposed strategy would aid in the construction of eukaryotic genetic circuits for programmed cell-free systems or artificial cells with functionalities surpassing those of natural cells.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Riku Tanimoto
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Kiho Matsuno
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Riko Uehara
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Honami Inoue
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
4
|
Ogawa A, Fujikawa M, Onishi K, Takahashi H. Cell-Free Biosensors Based on Modular Eukaryotic Riboswitches That Function in One Pot at Ambient Temperature. ACS Synth Biol 2024; 13:2238-2245. [PMID: 38913391 DOI: 10.1021/acssynbio.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Artificial riboswitches responsive to user-defined analytes can be constructed by successfully inserting in vitro selected aptamers, which bind to the analytes, into untranslated regions of mRNA. Among them, eukaryotic riboswitches are more promising as biosensors than bacterial ones because they function well at ambient temperature. In addition, cell-free expression systems allow the broader use of these riboswitches as cell-free biosensors in an environmentally friendly manner without cellular limitations. The current best cell-free eukaryotic riboswitch regulates eukaryotic canonical translation initiation through self-cleavage mediated by an implanted analyte-responsive ribozyme (i.e., an aptazyme, an aptamer-ribozyme fusion). However, it has critical flaws as a sensor: due to the less-active ribozyme used, self-cleavage and translation reactions must be conducted separately and sequentially, and a different aptazyme has to be selected to change the analyte specificity, even if an aptamer for the next analyte is available. We here stepwise engineered novel types of cell-free eukaryotic riboswitches that harness highly active self-cleavage and thus require no reaction partitioning. Despite the single-step and one-pot reaction, these riboswitches showed higher analyte dose dependency and sensitivities than the current best cell-free eukaryotic riboswitch requiring multistep reactions. In addition, the analyte specificity can be changed in an extremely facile way, simply by aptamer substitution (and the subsequent simple fine-tuning for giant aptamers). Given that cell-free systems can be lyophilized for storage and transport, the present one-pot and thus easy-to-handle cell-free biosensors utilizing eukaryotic riboswitches are expected to be widely used for on-the-spot sensing of analytes at ambient temperature.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Kazuki Onishi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 2-5 Bunkyo, Matsuyama ,Ehime 790-8577, Japan
| |
Collapse
|
5
|
Berzal-Herranz A, Romero-López C. Aptamers' Potential to Fill Therapeutic and Diagnostic Gaps. Pharmaceuticals (Basel) 2024; 17:105. [PMID: 38256938 PMCID: PMC10818422 DOI: 10.3390/ph17010105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
More than 30 years ago, in 1990, three independent research groups published several papers demonstrating that genetics could be performed in vitro in the absence of living organisms or cells [...].
Collapse
Affiliation(s)
- Alfredo Berzal-Herranz
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| | - Cristina Romero-López
- Instituto de Parasitología y Biomedicina López-Neyra, Consejo Superior de Investigaciones Científicas. PTS Granada, Av. del Conocimiento 17, 18016 Granada, Spain
| |
Collapse
|
6
|
Takahashi H, Fujikawa M, Ogawa A. Rational design of eukaryotic riboswitches that up-regulate IRES-mediated translation initiation with high switching efficiency through a kinetic trapping mechanism in vitro. RNA (NEW YORK, N.Y.) 2023; 29:1950-1959. [PMID: 37704221 PMCID: PMC10653380 DOI: 10.1261/rna.079778.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/05/2023] [Indexed: 09/15/2023]
Abstract
In general, riboswitches functioning through a cotranscriptional kinetic trapping mechanism (kt-riboswitches) show higher switching efficiencies in response to practical concentrations of their ligand molecules than eq-riboswitches, which function by an equilibrium mechanism. However, the former have been much more difficult to design due to their more complex mechanism. We here successfully developed a rational strategy for constructing eukaryotic kt-riboswitches that ligand-dependently enhance translation initiation mediated by an internal ribosome entry site (IRES). This was achieved both by utilizing some predicted structural features of a highly efficient bacterial kt-riboswitch identified through screening and by completely decoupling an aptamer domain from the IRES. Three kt-riboswitches optimized through this strategy, each responding to a different ligand, exhibited three- to sevenfold higher induction ratios (up to ∼90) than previously optimized eq-riboswitches regulating the same IRES-mediated translation in wheat germ extract. Because the IRES used functions well in various eukaryotic expression systems, these types of kt-riboswitches are expected to serve as major eukaryotic gene regulators based on RNA. In addition, the present strategy could be applied to the rational construction of other types of kt-riboswitches, including those functioning in bacterial expression systems.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Masahiro Fujikawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
7
|
Ogawa A, Inoue H, Itoh Y, Takahashi H. Facile Expansion of the Variety of Orthogonal Ligand/Aptamer Pairs for Artificial Riboswitches. ACS Synth Biol 2023; 12:35-42. [PMID: 36566430 DOI: 10.1021/acssynbio.2c00475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An RNA aptamer that induces suitable conformational changes upon binding to a user-defined ligand allows us to artificially construct a riboswitch, a ligand-dependent and cis-acting gene regulatory RNA. Although such an aptamer can be obtained through in vitro selection, it is still challenging to rationally expand the variety of orthogonal ligand/aptamer (ligand/riboswitch) pairs. To achieve this in a facile, selection-free way, we herein focused on a specific type of ligand, 6-nt nanosized DNA (nDNA) and its aptamer that was previously selected to construct a eukaryotic artificial riboswitch. Specifically, we merely mutated one or more possible Watson-Crick base pairs in the nDNA/aptamer (nDNA/riboswitch) interactions into another base pair or pairs. Using two sets that each had 16 comprehensive mutations, we obtained three groups of several orthogonal nDNA/riboswitch pairs. These pairs could be used to create complex gene circuits, including multiple simultaneous and/or multistep cascading regulations in synthetic biology.
Collapse
Affiliation(s)
- Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Honami Inoue
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Yu Itoh
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
8
|
Takahashi H, Okubo R, Ogawa A. Eukaryotic artificial ON-riboswitches that respond efficiently to mid-sized short peptides. Bioorg Med Chem Lett 2022; 71:128839. [PMID: 35654302 DOI: 10.1016/j.bmcl.2022.128839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/24/2022] [Accepted: 05/27/2022] [Indexed: 11/02/2022]
Abstract
We chose two types of mid-sized Arg-rich peptides (Rev-pep and Tat-pep) as ligands and used their aptamers to construct efficient eukaryotic ON-riboswitches (ligand-dependently upregulating riboswitches). Due to the aptamers' high affinities, the best Rev-pep-responsive and Tat-pep-responsive riboswitches obtained showed much higher switching efficiencies at low ligand concentrations than small ligand-responsive ON-riboswitches in the same mechanism. In addition, despite the high sequence similarity of Rev-pep and Tat-pep, the two best riboswitches were almost insensitive to each other's peptide ligand. Considering the high responsiveness and specificity along with the versatility of the expression platform used and the applicability of Arg-rich peptides, this orthogonal pair of riboswitches would be widely useful eukaryotic gene regulators or biosensors.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Ryo Okubo
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
9
|
Takahashi H, Ogawa A. Coupled in vitro transcription/translation based on wheat germ extract for efficient expression from PCR-generated templates in short-time batch reactions. Bioorg Med Chem Lett 2021; 52:128412. [PMID: 34634474 DOI: 10.1016/j.bmcl.2021.128412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 09/27/2021] [Accepted: 10/04/2021] [Indexed: 10/20/2022]
Abstract
We successfully constructed a coupled in vitro transcription/translation (cIVTT) system based on wheat germ extract (WGE) for efficient expression from PCR-generated DNA templates in short-time (∼3-h) batch reactions. The productivity of this system under optimized conditions was 85 μg (2.8 nmol) per 1 mL of reaction solution (corresponding to 425 μg per 1 mL of WGE), which was about 9-fold higher than that by the conventional batch method using mRNA as a template. The DNA template concentration required for efficient cIVTT was as low as 2.5 nM, which is much lower than those required for other eukaryotic cIVTT systems to maximize their productivity (30-50 nM). The productivity of the present system with a 2.5 nM template was 80-fold and 4-fold higher than that of a commercially available WGE-based cIVTT system with a 2.5 nM and a 40 nM template, respectively. In addition, the present system functioned well in a liposome (i.e., in an artificial cell) without a loss of productivity. Given that WGE-based systems have the advantage of being suitable for the expression of a broad range of proteins, the present cIVTT system is expected to be widely used in future cell-free synthetic biology.
Collapse
Affiliation(s)
- Hajime Takahashi
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan
| | - Atsushi Ogawa
- Proteo-Science Center, Ehime University, 3 Bunkyo, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
10
|
Tabuchi T, Yokobayashi Y. Cell-free riboswitches. RSC Chem Biol 2021; 2:1430-1440. [PMID: 34704047 PMCID: PMC8496063 DOI: 10.1039/d1cb00138h] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/26/2021] [Indexed: 12/16/2022] Open
Abstract
The emerging community of cell-free synthetic biology aspires to build complex biochemical and genetic systems with functions that mimic or even exceed those in living cells. To achieve such functions, cell-free systems must be able to sense and respond to the complex chemical signals within and outside the system. Cell-free riboswitches can detect chemical signals via RNA-ligand interaction and respond by regulating protein synthesis in cell-free protein synthesis systems. In this article, we review synthetic cell-free riboswitches that function in both prokaryotic and eukaryotic cell-free systems reported to date to provide a current perspective on the state of cell-free riboswitch technologies and their limitations.
Collapse
Affiliation(s)
- Takeshi Tabuchi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| | - Yohei Yokobayashi
- Nucleic Acid Chemistry and Engineering Unit, Okinawa Institute of Science and Technology Graduate University Onna Okinawa 904-0495 Japan
| |
Collapse
|
11
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|