1
|
Barreto JA, Lacôrte E Silva MVM, Marin DC, Brienzo M, Jacobus AP, Contiero J, Gross J. Engineering adaptive alleles for Escherichia coli growth on sucrose using the EasyGuide CRISPR system. J Biotechnol 2025; 403:126-139. [PMID: 40252733 DOI: 10.1016/j.jbiotec.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 04/01/2025] [Accepted: 04/16/2025] [Indexed: 04/21/2025]
Abstract
Adaptive Laboratory Evolution (ALE) is a powerful approach for mining genetic data to engineer industrial microorganisms. This evolution-informed design requires robust genetic tools to incorporate the discovered alleles into target strains. Here, we introduce the EasyGuide CRISPR, a five-plasmid platform that exploits E. coli's natural recombination system to assemble gRNA plasmids from overlapping PCR fragments. The production of gRNAs and donor DNA is further facilitated by using recombination cassettes generated through PCR with 40-60-mer oligos. With the new CRISPR toolkit, we constructed 22 gene edits in E. coli DH5α, most of which corresponded to alleles mapped in E. coli DH5α and E2348/69 ALE populations selected for sucrose propagation. For DH5α ALE, sucrose consumption was supported by the cscBKA operon expression from a high-copy plasmid. During ALE, plasmid integration into the chromosome, or its copy number reduction due to the pcnB deletion, conferred a 30-35 % fitness gain, as demonstrated by CRISPR-engineered strains. A ∼5 % advantage was also associated with a ∼40.4 kb deletion involving fli operons for flagella assembly. In E2348/69 ALE, inactivation of the hfl system suggested selection pressures for maintaining λ-prophage dormancy (lysogeny). We further enhanced our CRISPR toolkit using yeast for in vivo assembly of donors and expression cassettes, enabling the establishment of polyhydroxybutyrate synthesis from sucrose. Overall, our study highlights the importance of combining ALE with streamlined CRISPR-mediated allele editing to advance microbial production using cost-effective carbon sources.
Collapse
Affiliation(s)
- Joneclei Alves Barreto
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Matheus Victor Maso Lacôrte E Silva
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Danieli Canaver Marin
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Michel Brienzo
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Ana Paula Jacobus
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil
| | - Jonas Contiero
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil; São Paulo State University (Unesp), Institute of Biosciences, Rio Claro, SP 13506-900, Brazil
| | - Jeferson Gross
- Sao Paulo State University (Unesp), Institute for Research in Bioenergy, Rio Claro, SP 13500-230, Brazil; PhD Program in Bioenegy, São Paulo State University (Unesp), Rio Claro 13500-230, Brazil.
| |
Collapse
|
2
|
Hueso-Gil A, Calles B, de Lorenzo V. In Vivo Sampling of Intracellular Heterogeneity of Pseudomonas putida Enables Multiobjective Optimization of Genetic Devices. ACS Synth Biol 2023; 12:1667-1676. [PMID: 37196337 PMCID: PMC10278179 DOI: 10.1021/acssynbio.3c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 05/19/2023]
Abstract
The inner physicochemical heterogeneity of bacterial cells generates three-dimensional (3D)-dependent variations of resources for effective expression of given chromosomally located genes. This fact has been exploited for adjusting the most favorable parameters for implanting a complex device for optogenetic control of biofilm formation in the soil bacterium Pseudomonas putida. To this end, a DNA segment encoding a superactive variant of the Caulobacter crescendus diguanylate cyclase PleD expressed under the control of the cyanobacterial light-responsive CcaSR system was placed in a mini-Tn5 transposon vector and randomly inserted through the chromosome of wild-type and biofilm-deficient variants of P. putida lacking the wsp gene cluster. This operation delivered a collection of clones covering a whole range of biofilm-building capacities and dynamic ranges in response to green light. Since the phenotypic output of the device depends on a large number of parameters (multiple promoters, RNA stability, translational efficacy, metabolic precursors, protein folding, etc.), we argue that random chromosomal insertions enable sampling the intracellular milieu for an optimal set of resources that deliver a preset phenotypic specification. Results thus support the notion that the context dependency can be exploited as a tool for multiobjective optimization, rather than a foe to be suppressed in Synthetic Biology constructs.
Collapse
Affiliation(s)
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus
de Cantoblanco, Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus
de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
3
|
Lin NQ, Liang ZB, Wang HS, Wu XY, Zhang LH, Deng YZ. Engineered Sucrose Metabolism Improves the Smut Disease Suppression Potency of Pseudomonas sp. ST4. Appl Environ Microbiol 2023; 89:e0220822. [PMID: 37093016 PMCID: PMC10231245 DOI: 10.1128/aem.02208-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/03/2023] [Indexed: 04/25/2023] Open
Abstract
Sporisorium scitamineum and Ustilago maydis are two fungal pathogens causing severe sugarcane and maize diseases, respectively. Sexual mating of compatible sporidia is essential for these pathogens to form infections dikaryotic mycelia and cause smut diseases. We showed recently that in the presence of exogenous glucose, the Pseudomonas sp. strain ST4 could block the fungal mating and display a strong disease suppression potency on S. scitamineum. With the aim of conferring strain ST4 the ability to metabolize sucrose in plants for glucose production, we identified a strong native promoter pSsrA in strain ST4 and additional promoter elements to facilitate translation and peptide translocation for the construction of a fusion gene encoding sucrose metabolism. The cscA gene encoding sucrose hydrolase from Pseudomonas protegens Pf-5 was fused to the promoter pSsrA, a translational coupler bicistronic design and a Tat signal peptide, which was then cloned into mini-Tn7 transposon. This synthetic gene cassette was integrated into the chromosome of strain ST4, and the resultant engineered strain ST4E was able to hydrolyze sucrose with high efficiency and displayed elevated inhibitory activity on the mating and virulence of S. scitamineum and U. maydis. The findings from this study provide a valuable device and useful clues for the engineering of sucrose metabolism in non- or weak-sucrose-utilizing bacterial strains and present an improved biocontrol agent against plant smut pathogens. IMPORTANCE Sporisorium scitamineum and Ustilago maydis are typical dimorphic fungi causing severe sugarcane and maize smut diseases, respectively. Sexual mating of compatible sporidia is essential for these pathogens to form infections dikaryotic mycelia and cause smut diseases. We previously demonstrated that the biocontrol strain Pseudomonas sp. ST4 could block the fungal mating and displays a strong suppression potency on smut diseases, while it was unable to utilize the host-sourced sucrose for glucose production critical for antifungus efficiency. In this study, we constructed a high-expression gene cassette for minitransposon-mediated genome integration and sucrose hydrolysis in the bacterial periplasmic space. The resultant engineered strain ST4E was able to hydrolyze sucrose and inhibit the mating and hyphal growth of S. scitamineum and U. maydis. These findings provide a valuable tool and useful clues for the engineering of sucrose metabolism in non- or weak-sucrose-utilizing bacterial strains and present an improved biocontrol agent against plant smut pathogens.
Collapse
Affiliation(s)
- Nuo Qiao Lin
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Zhi Bin Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Hui Shan Wang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Xiao Yan Wu
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Lian Hui Zhang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| | - Yi Zhen Deng
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
4
|
Scholz SA, Lindeboom CD, Freddolino L. Genetic context effects can override canonical cis regulatory elements in Escherichia coli. Nucleic Acids Res 2022; 50:10360-10375. [PMID: 36134716 PMCID: PMC9561378 DOI: 10.1093/nar/gkac787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/10/2022] [Accepted: 09/02/2022] [Indexed: 11/12/2022] Open
Abstract
Recent experiments have shown that in addition to control by cis regulatory elements, the local chromosomal context of a gene also has a profound impact on its transcription. Although this chromosome-position dependent expression variation has been empirically mapped at high-resolution, the underlying causes of the variation have not been elucidated. Here, we demonstrate that 1 kb of flanking, non-coding synthetic sequences with a low frequency of guanosine and cytosine (GC) can dramatically reduce reporter expression compared to neutral and high GC-content flanks in Escherichia coli. Natural and artificial genetic context can have a similarly strong effect on reporter expression, regardless of cell growth phase or medium. Despite the strong reduction in the maximal expression level from the fully-induced reporter, low GC synthetic flanks do not affect the time required to reach the maximal expression level after induction. Overall, we demonstrate key determinants of transcriptional propensity that appear to act as tunable modulators of transcription, independent of regulatory sequences such as the promoter. These findings provide insight into the regulation of naturally occurring genes and an independent control for optimizing expression of synthetic biology constructs.
Collapse
Affiliation(s)
- Scott A Scholz
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Chase D Lindeboom
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lydia Freddolino
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
5
|
Genomic landscapes of bacterial transposons and their applications in strain improvement. Appl Microbiol Biotechnol 2022; 106:6383-6396. [PMID: 36094654 DOI: 10.1007/s00253-022-12170-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/19/2022] [Accepted: 09/01/2022] [Indexed: 11/02/2022]
Abstract
Transposons are mobile genetic elements that can give rise to gene mutation and genome rearrangement. Due to their mobility, transposons have been exploited as genetic tools for modification of plants, animals, and microbes. Although a plethora of reviews have summarized families of transposons, the transposons from fermentation bacteria have not been systematically documented, which thereby constrain the exploitation for metabolic engineering and synthetic biology purposes. In this review, we summarize the transposons from the most used fermentation bacteria including Escherichia coli, Bacillus subtilis, Lactococcus lactis, Corynebacterium glutamicum, Klebsiella pneumoniae, and Zymomonas mobilis by literature retrieval and data mining from GenBank and KEGG. We also outline the state-of-the-art advances in basic research and industrial applications especially when allied with other genetic tools. Overall, this review aims to provide valuable insights for transposon-mediated strain improvement. KEY POINTS: • The transposons from the most-used fermentation bacteria are systematically summarized. • The applications of transposons in strain improvement are comprehensively reviewed.
Collapse
|
6
|
Xu X, Rao ZM, Xu JZ, Zhang WG. Enhancement of l-Pipecolic Acid Production by Dynamic Control of Substrates and Multiple Copies of the pipA Gene in the Escherichia coli Genome. ACS Synth Biol 2022; 11:760-769. [PMID: 35073050 DOI: 10.1021/acssynbio.1c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
l-Pipecolic acid is an important rigid cyclic nonprotein amino acid, which is obtained through the conversion of l-lysine catalyzed by l-lysine cyclodeaminase (LCD). To directly produce l-pipecolic acid from glucose by microbial fermentation, in this study, a recombinant Escherichia coli strain with high efficiency of l-pipecolic acid production was constructed. This study involves the dynamic regulation of the substrate concentration and the expression level of the l-lysine cyclodeaminase-coding gene pipA. In terms of substrate concentration, we adopted the l-lysine riboswitch to dynamically regulate the expression of lysP and lysO genes. As a result, the l-pipecolic acid yield was increased about 1.8-fold as compared with the control. In addition, we used chemically inducible chromosomal evolution (CIChE) to realize the presence of multiple copies of the pipA gene on the genome. The resultant E. coli strain XQ-11-4 produced 61 ± 3.4 g/L l-pipecolic acid with a productivity of 1.02 ± 0.06 g/(L·h) and a glucose conversion efficiency (α) of 29.6% in fermentation. This is the first report that discovered multiple copies of pipA gene expression on the genome that improves the efficiency of l-pipecolic acid production in an l-lysine high-producing strain, and these results give us new insight for constructing the other valuable biochemicals derived from l-lysine.
Collapse
Affiliation(s)
- Xin Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Zhi-Ming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Jian-Zhong Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| | - Wei-Guo Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800# Lihu Road, Wuxi 214122, People’s Republic of China
| |
Collapse
|
7
|
Escherichia coli as a platform microbial host for systems metabolic engineering. Essays Biochem 2021; 65:225-246. [PMID: 33956149 DOI: 10.1042/ebc20200172] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 04/14/2021] [Indexed: 12/19/2022]
Abstract
Bio-based production of industrially important chemicals and materials from non-edible and renewable biomass has become increasingly important to resolve the urgent worldwide issues including climate change. Also, bio-based production, instead of chemical synthesis, of food ingredients and natural products has gained ever increasing interest for health benefits. Systems metabolic engineering allows more efficient development of microbial cell factories capable of sustainable, green, and human-friendly production of diverse chemicals and materials. Escherichia coli is unarguably the most widely employed host strain for the bio-based production of chemicals and materials. In the present paper, we review the tools and strategies employed for systems metabolic engineering of E. coli. Next, representative examples and strategies for the production of chemicals including biofuels, bulk and specialty chemicals, and natural products are discussed, followed by discussion on materials including polyhydroxyalkanoates (PHAs), proteins, and nanomaterials. Lastly, future perspectives and challenges remaining for systems metabolic engineering of E. coli are discussed.
Collapse
|