1
|
Lychko I, Padrão I, Eva AV, Domingos CAO, Costa HMAD, Dias AMGC, Roque ACA. Cephalopod proteins for bioinspired and sustainable biomaterials design. Mater Today Bio 2025; 31:101644. [PMID: 40130040 PMCID: PMC11931252 DOI: 10.1016/j.mtbio.2025.101644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 03/04/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
Nature offers a boundless source of inspiration for designing bio-inspired technologies and advanced materials. Cephalopods, including octopuses, squids, and cuttlefish, exhibit remarkable biological adaptations, such as dynamic camouflage for predator evasion and communication, as well as robust prey-capturing tools, including beaks and sucker-ring teeth that operate under extreme mechanical stresses in aqueous environments. Central to these remarkable traits are structural proteins that serve as versatile polymeric materials. From a materials science perspective, proteins present unique opportunities due to their genetically encoded sequences, enabling access to a diversity of sequences and precise control over polymer composition and properties. This intrinsic programmability allows scalable, environmentally sustainable production through recombinant biotechnology, in contrast to petroleum-derived polymers. This review highlights recent advances in understanding cephalopod-specific proteins, emphasizing their potential for creating next-generation bioengineered materials and driving sustainable innovation in biomaterials science.
Collapse
Affiliation(s)
- Iana Lychko
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Inês Padrão
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Afonso Vicente Eva
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Catarina Alexandra Oliveira Domingos
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Henrique Miguel Aljustrel da Costa
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Margarida Gonçalves Carvalho Dias
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| | - Ana Cecília Afonso Roque
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
- Associate Laboratory I4HB – Institute for Health and Bioeconomy, School of Science and Technology, Universidade NOVA de Lisboa, 2829-516, Caparica, Portugal
| |
Collapse
|
2
|
Lay CG, Burks GR, Li Z, Barrick JE, Schroeder CM, Karim AS, Jewett MC. Cell-Free Expression of Soluble Leafhopper Proteins from Brochosomes. ACS Synth Biol 2025; 14:987-994. [PMID: 40052868 DOI: 10.1021/acssynbio.4c00773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
Brochosomes are proteinaceous nanostructures produced by leafhopper insects with superhydrophobic and antireflective properties. Unfortunately, the production and study of brochosome-based materials has been limited by poor understanding of their major constituent subunit proteins, known as brochosomins, as well as their sensitivity to redox conditions due to essential disulfide bonds. Here, we used cell-free gene expression (CFE) to achieve recombinant production and analysis of brochosomin proteins. Through the optimization of redox environment, reaction temperature, and disulfide bond isomerase concentration, we achieved soluble brochosomin yields of up to 341 ± 30 μg/mL. Analysis using dynamic light scattering and transmission electron microscopy revealed distinct aggregation patterns among cell-free mixtures with different expressed brochosomins. We anticipate that the CFE methods developed here will accelerate the ability to change the geometries and properties of natural and modified brochosomes, as well as facilitate the expression and structural analysis of other poorly understood protein complexes.
Collapse
Affiliation(s)
- Caleb G Lay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Gabriel R Burks
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Zheng Li
- Department of Integrative Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Jeffrey E Barrick
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Charles M Schroeder
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Department of Bioengineering, Stanford University, Stanford, California 94305, United States
| |
Collapse
|
3
|
Gao F, Ma X, Tan Y, Zhang B, Yang Y, Nie H, Xu Z. The Effect of Organic Matter from Sewage Sludge as an Interfacial Layer on the Surface of Nano-Al and Fluoride. Molecules 2023; 28:6494. [PMID: 37764270 PMCID: PMC10536677 DOI: 10.3390/molecules28186494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Due to its high reactivity, the nano aluminum particle (n-Al) has attracted more attention in energetic materials but is easily oxidized during processing. In order to realize sewage sludge (SS) resource and n-Al coating, the organic matter was extracted from SS, using the deep eutectic solvent method due to its strong dissolving capacity, and then the organic matter was pretreated by ball milling, which was used as an interfacial layer between n-Al and fluoride. It was found that organic matter was successfully extracted from SS. The main organic matter is proteins. The ball milling method can effectively destroy the secondary structure of proteins to release more active functional groups. During the pretreatment, the Maillard reaction broke the proteins structure to form more active low molecular weight compounds. It was confirmed that n-Al can be coated by PBSP under mild conditions to form a uniform core-shell structure. PFOA can effectively coat the n-Al@PBSP to form n-Al@PBSP/PFOA, which can enhance the combustion of n-Al. The gas phase flame temperature can notably improve to 2892 K. The reaction mechanism between n-Al and coating was analyzed. The results could help SS treatment and provide new insights for n-Al coating and SS-based organic matter recovery and utilization.
Collapse
Affiliation(s)
- Fan Gao
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; (F.G.)
| | - Xueqin Ma
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; (F.G.)
| | - Yi Tan
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; (F.G.)
| | - Bo Zhang
- School of Energy and Environment, Southeast University, Nanjing 210096, China;
| | - Yixing Yang
- Oil &Gas Technology Research Institute, PetroChina Changqing Oilfield Company, Xi’an 710018, China;
| | - Hongqi Nie
- Science and Technology on Combustion, Internal Flow and Thermostructure Laboratory, Northwestern Polytechnical University, Xi’an 710072, China
| | - Zhixiang Xu
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang 212013, China; (F.G.)
| |
Collapse
|
4
|
Seki K, Galindo JL, Karim AS, Jewett MC. A Cell-Free Gene Expression Platform for Discovering and Characterizing Stop Codon Suppressing tRNAs. ACS Chem Biol 2023; 18:1324-1334. [PMID: 37257197 DOI: 10.1021/acschembio.3c00051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Non-canonical amino acids (ncAAs) can be incorporated into peptides and proteins to create new properties and functions. Site-specific ncAA incorporation is typically enabled by orthogonal translation systems comprising a stop codon suppressing tRNA (typically UAG), an aminoacyl-tRNA synthetase, and an ncAA of interest. Unfortunately, methods to discover and characterize suppressor tRNAs are limited because of laborious and time-consuming workflows in living cells. In this work, we develop anEscherichia coli crude extract-based cell-free gene expression system to rapidly express and characterize functional suppressor tRNAs. Our approach co-expresses orthogonal tRNAs using endogenous machinery alongside a stop-codon containing superfolder green fluorescent protein (sfGFP) reporter, which can be used as a simple read-out for suppression. As a model, we evaluate the UAG and UAA suppressing activity of several orthogonal tRNAs. Then, we demonstrate that co-transcription of two mutually orthogonal tRNAs can direct the incorporation of two unique ncAAs within a single modified sfGFP. Finally, we show that the cell-free workflow can be used to discover putative UAG-suppressor tRNAs found in metagenomic data, which are nonspecifically recognized by endogenous aminoacyl-tRNA synthetases. We anticipate that our cell-free system will accelerate the development of orthogonal translation systems for synthetic biology.
Collapse
Affiliation(s)
- Kosuke Seki
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Joey L Galindo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Ashty S Karim
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Chemistry of Life Processes Institute, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
- Robert H. Lurie Comprehensive Cancer Center and Simpson Querrey Institute, Northwestern University, Chicago, Illinois 60611, United States
| |
Collapse
|
5
|
Miserez A, Yu J, Mohammadi P. Protein-Based Biological Materials: Molecular Design and Artificial Production. Chem Rev 2023; 123:2049-2111. [PMID: 36692900 PMCID: PMC9999432 DOI: 10.1021/acs.chemrev.2c00621] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Indexed: 01/25/2023]
Abstract
Polymeric materials produced from fossil fuels have been intimately linked to the development of industrial activities in the 20th century and, consequently, to the transformation of our way of living. While this has brought many benefits, the fabrication and disposal of these materials is bringing enormous sustainable challenges. Thus, materials that are produced in a more sustainable fashion and whose degradation products are harmless to the environment are urgently needed. Natural biopolymers─which can compete with and sometimes surpass the performance of synthetic polymers─provide a great source of inspiration. They are made of natural chemicals, under benign environmental conditions, and their degradation products are harmless. Before these materials can be synthetically replicated, it is essential to elucidate their chemical design and biofabrication. For protein-based materials, this means obtaining the complete sequences of the proteinaceous building blocks, a task that historically took decades of research. Thus, we start this review with a historical perspective on early efforts to obtain the primary sequences of load-bearing proteins, followed by the latest developments in sequencing and proteomic technologies that have greatly accelerated sequencing of extracellular proteins. Next, four main classes of protein materials are presented, namely fibrous materials, bioelastomers exhibiting high reversible deformability, hard bulk materials, and biological adhesives. In each class, we focus on the design at the primary and secondary structure levels and discuss their interplays with the mechanical response. We finally discuss earlier and the latest research to artificially produce protein-based materials using biotechnology and synthetic biology, including current developments by start-up companies to scale-up the production of proteinaceous materials in an economically viable manner.
Collapse
Affiliation(s)
- Ali Miserez
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- School
of Biological Sciences, NTU, Singapore637551
| | - Jing Yu
- Center
for Sustainable Materials (SusMat), School of Materials Science and
Engineering, Nanyang Technological University
(NTU), Singapore637553
- Institute
for Digital Molecular Analytics and Science (IDMxS), NTU, 50 Nanyang Avenue, Singapore637553
| | - Pezhman Mohammadi
- VTT
Technical Research Centre of Finland Ltd., Espoo, UusimaaFI-02044, Finland
| |
Collapse
|
6
|
Li Y, Champion JA. Self-assembling nanocarriers from engineered proteins: Design, functionalization, and application for drug delivery. Adv Drug Deliv Rev 2022; 189:114462. [PMID: 35934126 DOI: 10.1016/j.addr.2022.114462] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 06/09/2022] [Accepted: 07/15/2022] [Indexed: 01/24/2023]
Abstract
Self-assembling proteins are valuable building blocks for constructing drug nanocarriers due to their self-assembly behavior, monodispersity, biocompatibility, and biodegradability. Genetic and chemical modifications allow for modular design of protein nanocarriers with effective drug encapsulation, targetability, stimuli responsiveness, and in vivo half-life. Protein nanocarriers have been developed to deliver various therapeutic molecules including small molecules, proteins, and nucleic acids with proven in vitro and in vivo efficacy. This article reviews recent advances in protein nanocarriers that are not derived from natural protein nanostructures, such as protein cages or virus like particles. The protein nanocarriers described here are self-assembled from rationally or de novo designed recombinant proteins, as well as recombinant proteins complexed with other biomolecules, presenting properties that are unique from those of natural protein carriers. Design, functionalization, and therapeutic application of protein nanocarriers will be discussed.
Collapse
Affiliation(s)
- Yirui Li
- BioEngineering Program, Georgia Institute of Technology, United States
| | - Julie A Champion
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 950 Atlantic Drive NW, Atlanta, GA 30332, United States; BioEngineering Program, Georgia Institute of Technology, United States.
| |
Collapse
|
7
|
Tomares DT, Whitlock S, Mann M, DiBernardo E, Childers WS. Repurposing Peptide Nanomaterials as Synthetic Biomolecular Condensates in Bacteria. ACS Synth Biol 2022; 11:2154-2162. [PMID: 35658421 DOI: 10.1021/acssynbio.2c00078] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Peptide nanomaterials exhibit diverse applications in vitro, such as drug delivery. Here, we consider the utility of de novo peptide nanomaterials to organize biochemistry within the bacterial cytoplasm. Toward this goal, we discovered that ABC coiled-coil triblock peptides form gel-like biomolecular condensates with a csat of 10 μM in addition to their well-known hydrogel-forming capabilities. Expression of the coiled-coil triblock peptides in bacteria leads to cell pole accumulation via a nucleoid occlusion mechanism. We then provide a proof of principle that these synthetic biomolecular condensates could sequester clients at the cell pole. Finally, we demonstrate that triblock peptides and another biomolecular condensate, RNase E, phase-separate as distinct protein-rich assemblies in vitro and in vivo. These results reveal the potential of using peptide nanomaterials to divide the bacterial cytoplasm into distinct subcellular zones with future metabolic engineering and synthetic biology applications.
Collapse
Affiliation(s)
- Dylan T Tomares
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Sara Whitlock
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew Mann
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Emma DiBernardo
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - W Seth Childers
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
8
|
Lee SO, Xie Q, Fried SD. Optimized Loopable Translation as a Platform for the Synthesis of Repetitive Proteins. ACS CENTRAL SCIENCE 2021; 7:1736-1750. [PMID: 34729417 PMCID: PMC8554844 DOI: 10.1021/acscentsci.1c00574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The expression of long proteins with repetitive amino acid sequences often presents a challenge in recombinant systems. To overcome this obstacle, we report a genetic construct that circularizes mRNA in vivo by rearranging the topology of a group I self-splicing intron from T4 bacteriophage, thereby enabling "loopable" translation. Using a fluorescence-based assay to probe the translational efficiency of circularized mRNAs, we identify several conditions that optimize protein expression from this system. Our data suggested that translation of circularized mRNAs could be limited primarily by the rate of ribosomal initiation; therefore, using a modified error-prone PCR method, we generated a library that concentrated mutations into the initiation region of circularized mRNA and discovered mutants that generated markedly higher expression levels. Combining our rational improvements with those discovered through directed evolution, we report a loopable translator that achieves protein expression levels within 1.5-fold of the levels of standard vectorial translation. In summary, our work demonstrates loopable translation as a promising platform for the creation of large peptide chains, with potential utility in the development of novel protein materials.
Collapse
|
9
|
Kim E, Jeon J, Zhu Y, Hoppe ED, Jun YS, Genin GM, Zhang F. A Biosynthetic Hybrid Spidroin-Amyloid-Mussel Foot Protein for Underwater Adhesion on Diverse Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:48457-48468. [PMID: 34633172 PMCID: PMC10041942 DOI: 10.1021/acsami.1c14182] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Strong underwater adhesives are attractive materials for biomedical healing and underwater repair, but their success in applications has been limited, owing to challenges with underwater setting and with balancing surface adhesion and cohesion. Here, we applied synthetic biology approaches to overcome these challenges through design and synthesis of a novel hybrid protein consisting of the zipper-forming domains of an amyloid protein, flexible spider silk sequences, and a dihydroxyphenylalanine (DOPA)-containing mussel foot protein (Mfp). This partially structured, hybrid protein can self-assemble into a semi-crystalline hydrogel that exhibits high strength and toughness as well as strong underwater adhesion to a variety of surfaces, including difficult-to-adhere plastics, tendon, and skin. The hydrogel allows selective debonding by oxidation or iron-chelating treatments. Both the material design and the biosynthetic approach explored in this study will inspire future work for a wide range of hybrid protein-based materials with tunable properties and broad applications.
Collapse
Affiliation(s)
- Eugene Kim
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
| | - Juya Jeon
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
| | - Yaguang Zhu
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
| | - Ethan D. Hoppe
- NSF Science and Technology Center for Engineering MechanoBiology, Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
| | - Young-Shin Jun
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
- Institute of Materials Science and Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
| | - Guy M. Genin
- NSF Science and Technology Center for Engineering MechanoBiology, Department of Mechanical Engineering & Materials Science, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
- Institute of Materials Science and Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
| | - Fuzhong Zhang
- Department of Energy, Environmental & Chemical Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
- Institute of Materials Science and Engineering, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
- Division of Biological & Biomedical Sciences, Washington University in St. Louis, One Brookings Drive, Saint Louis, Missouri 63130
| |
Collapse
|
10
|
Chang MP, Huang W, Mai DJ. Monomer‐scale design of functional protein polymers using consensus repeat sequences. JOURNAL OF POLYMER SCIENCE 2021. [DOI: 10.1002/pol.20210506] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Marina P. Chang
- Department of Materials Science and Engineering Stanford University Stanford California USA
| | - Winnie Huang
- Department of Chemical Engineering Stanford University Stanford California USA
| | - Danielle J. Mai
- Department of Chemical Engineering Stanford University Stanford California USA
| |
Collapse
|