1
|
Chen Y, Xia W, Lu F, Chen Z, Liu Y, Cao M, He N. Cell-free synthesis system: An accessible platform from biosensing to biomanufacturing. Microbiol Res 2025; 293:128079. [PMID: 39908944 DOI: 10.1016/j.micres.2025.128079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 01/06/2025] [Accepted: 01/22/2025] [Indexed: 02/07/2025]
Abstract
The fundamental aspect of cell-free synthesis systems is the in vitro transcription-translation process. By artificially providing the components required for protein expression, in vitro protein production alleviates various limitations tied to in vivo production, such as oxygen supply and nutrient constraints, thus showcasing substantial potential in engineering applications. This article presents a comprehensive review of cell-free synthesis systems, with a primary focus on biosensing and biomanufacturing. In terms of biosensing, it summarizes the recognition-response mechanisms and key advantages of cell-free biosensors. Moreover, it examines the strategies for the cell-free production of intricate proteins, including membrane proteins and glycoproteins. Additionally, the integration of cell-free metabolic engineering approaches with cell-free synthesis systems in biomanufacturing is thoroughly discussed, with the expectation that biotechnology will embrace greater prosperity.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Wenhao Xia
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhen Chen
- College of Life Science, Xinyang Normal University, Xinyang 464000, China
| | - Yihan Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin Key Laboratory of Industrial Microbiology, The College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Mingfeng Cao
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| | - Ning He
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen 361005, China.
| |
Collapse
|
2
|
Zhu J, Meng Y, Gao W, Yang S, Zhu W, Ji X, Zhai X, Liu WQ, Luo Y, Ling S, Li J, Liu Y. AI-driven high-throughput droplet screening of cell-free gene expression. Nat Commun 2025; 16:2720. [PMID: 40108186 PMCID: PMC11923291 DOI: 10.1038/s41467-025-58139-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 03/13/2025] [Indexed: 03/22/2025] Open
Abstract
Cell-free gene expression (CFE) systems enable transcription and translation using crude cellular extracts, offering a versatile platform for synthetic biology by eliminating the need to maintain living cells. However, Such systems are constrained by cumbersome composition, high costs, and limited yields due to numerous additional components required to maintain biocatalytic efficiency. Here, we introduce DropAI, a droplet-based, AI-driven screening strategy designed to optimize CFE systems with high throughput and economic efficiency. DropAI employs microfluidics to generate picoliter reactors and utilizes a fluorescent color-coding system to address and screen massive chemical combinations. The in-droplet screening is complemented by in silico optimization, where experimental results train a machine-learning model to estimate the contribution of the components and predict high-yield combinations. By applying DropAI, we significantly simplified the composition of an Escherichia coli-based CFE system, achieving a fourfold reduction in the unit cost of expressed superfolder green fluorescent protein (sfGFP). This optimized formulation was further validated across 12 different proteins. Notably, the established E. coli model is successfully adapted to a Bacillus subtilis-based system through transfer learning, leading to doubled yield through prediction. Beyond CFE, DropAI offers a high-throughput and scalable solution for combinatorial screening and optimization of biochemical systems.
Collapse
Affiliation(s)
- Jiawei Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yaru Meng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenli Gao
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shuo Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wenjie Zhu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xiangyang Ji
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Xuanpei Zhai
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuan Luo
- State Key Laboratory of Transducer Technology, Shanghai Institute of Microsystem and Information Technology, Chinese Academy of Sciences, Shanghai, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Laboratory of Advanced Materials, Fudan University, Shanghai, China.
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.
- State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
3
|
Lu H, Wu C, Li J. Enzyme-particle Complexes Facilitate Pickering Interfacial Biocatalysis. Chempluschem 2025; 90:e202400644. [PMID: 39617727 DOI: 10.1002/cplu.202400644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/26/2024] [Indexed: 03/18/2025]
Abstract
Pickering interfacial biocatalysis (PIB), where biocatalysts stabilize emulsions through carrier coupling or polymer grafting, has emerged as a powerful platform for organic synthesis due to its ability to accommodate water-insoluble substrates within enzymatic cascade reactions. PIB provides a large interfacial area for two-phase reactions, reducing diffusional resistance and enhancing transformation efficiency. The performance of PIB relies heavily on enzyme-particle conjugates, which serve a dual function: stabilizing the emulsion and acting as the active biocatalysts in the system. In this Concept, we discuss the latest advancements, current challenges, and future directions in the development of protein-particle conjugates for PIB.
Collapse
Affiliation(s)
- Haofan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
4
|
Zhang Y, Ba F, Huang S, Liu WQ, Li J. Orthogonal Serine Integrases Enable Scalable Gene Storage Cascades in Bacterial Genome. ACS Synth Biol 2024; 13:3022-3031. [PMID: 39238421 DOI: 10.1021/acssynbio.4c00505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Genome integration enables host organisms to stably carry heterologous DNA messages, introducing new genotypes and phenotypes for expanded applications. While several genome integration approaches have been reported, a scalable tool for DNA message storage within site-specific genome landing pads is still lacking. Here, we introduce an iterative genome integration method utilizing orthogonal serine integrases, enabling the stable storage of multiple heterologous genes in the chromosome of Escherichia coli MG1655. By leveraging serine integrases TP901-1, Bxb1, and PhiC31, along with engineered integration vectors, we demonstrate high-efficiency, marker-free integration of DNA fragments up to 13 kb in length. To further simplify the procedure, we then develop a streamlined integration method and showcase the system's versatility by constructing an engineered E. coli strain capable of storing and expressing multiple genes from diverse species. Additionally, we illustrate the potential utility of these engineered strains for synthetic biology applications, including in vivo and in vitro protein expression. Our work extends the application scope of serine integrases for scalable gene integration cascades, with implications for genome manipulation and gene storage applications in synthetic biology.
Collapse
Affiliation(s)
- Yufei Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Fang Ba
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shuhui Huang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
5
|
Lu H, Ouyang J, Liu WQ, Wu C, Li J. Enzyme-Polymer-Conjugate-Based Pickering Emulsions for Cell-Free Expression and Cascade Biotransformation. Angew Chem Int Ed Engl 2023; 62:e202312906. [PMID: 37966024 DOI: 10.1002/anie.202312906] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/28/2023] [Accepted: 11/15/2023] [Indexed: 11/16/2023]
Abstract
In this study, we addressed the limitations of conventional enzyme-polymer-conjugate-based Pickering emulsions for interfacial biocatalysis, which traditionally suffer from nonspecific and uncontrollable conjugation positions that can impede catalytic performance. By introducing a non-canonical amino acid (ncAA) at a specific site on target enzymes, we enabled precise polymer-enzyme conjugation. These engineered conjugates then acted as biocatalytically active emulsifiers to stabilize Pickering emulsions, while encapsulating a cell-free protein synthesis (CFPS) system in the aqueous phase for targeted enzyme expression. The resulting cascade reaction system leveraged enzymes expressed in the aqueous phase and on the emulsion interface for optimized chemical biosynthesis. The use of the cell-free system eliminated the need for intact whole cells or purified enzymes, representing a significant advancement in biocatalysis. Remarkably, the integration of Pickering emulsion, precise enzyme-polymer conjugation, and CFPS resulted in a fivefold enhancement in catalytic performance as compared to traditional single-phase reactions. Therefore, our approach harnesses the combined strengths of advanced biochemical engineering techniques, offering an efficient and practical solution for the synthesis of value-added chemicals in various biocatalysis and biotransformation applications.
Collapse
Affiliation(s)
- Haofan Lu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jingping Ouyang
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Changzhu Wu
- Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Campusvej 55, 5230, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| |
Collapse
|
6
|
Zhang R, Liu WQ, Ling S, Li J. Combining Cell-Free Expression and Multifactor Optimization for Enhanced Biosynthesis of Cinnamyl Alcohol. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37216486 DOI: 10.1021/acs.jafc.3c02340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cell-free expression systems have emerged as a potent and promising platform for the biosynthesis of chemicals by reconstituting in vitro expressed enzymes. Here, we report cell-free biosynthesis of cinnamyl alcohol (cinOH) with enhanced productivity by using the Plackett-Burman experimental design for multifactor optimization. Initially, four enzymes were individually expressed in vitro and directly mixed to reconstitute a biosynthetic route for the synthesis of cinOH. Then, the Plackett-Burman experimental design was used to screen multiple reaction factors and found three crucial parameters (i.e., reaction temperature, reaction volume, and carboxylic acid reductase) for the cinOH production. With the optimum reaction conditions, approximately 300 μM of cinOH was synthesized after 10 h of cell-free biosynthesis. Extending the production time to 24 h also increased the production to a maximum yield of 807 μM, which is nearly 10 times higher than the initial yield without optimization. This study demonstrates that cell-free biosynthesis can be combined with other powerful optimization methodologies such as the Plackett-Burman experimental design for enhanced production of valuable chemicals.
Collapse
Affiliation(s)
- Ren Zhang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
7
|
Chen Y, Liu WQ, Zheng X, Liu Y, Ling S, Li J. Cell-Free Biosynthesis of Lysine-Derived Unnatural Amino Acids with Chloro, Alkene, and Alkyne Groups. ACS Synth Biol 2023; 12:1349-1357. [PMID: 37040607 DOI: 10.1021/acssynbio.3c00132] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
Crude extract-based cell-free expression systems have been used to produce natural products by reconstitution of their biosynthetic pathways in vitro. However, the chemical scope of cell-free synthesized natural compounds is still limited, which is partially due to the length of biosynthetic gene clusters. To expand the product scope, here, we report cell-free biosynthesis of several lysine-derived unnatural amino acids with functional moieties such as chloro, alkene, and alkyne groups. Specifically, five related enzymes (i.e., halogenase, oxidase, lyase, ligase, and hydroxylase) involved in β-ethynylserine biosynthesis are selected for cell-free expression. These enzymes can be expressed in single, in pairs, or in trios to synthesize different compounds, including, for instance, 4-Cl-l-lysine, 4-Cl-allyl-l-glycine, and l-propargylglycine. The final product of γ-l-glutamyl-l-β-ethynylserine (a dipeptide with an alkyne group) can also be synthesized by cell-free expression of the full biosynthetic pathway (i.e., five enzymes). Our results demonstrate the flexibility of cell-free systems, enabling easy regulation and rational optimization for target compound formation. Overall, this work expands not only the type of enzymes (e.g., halogenase) but also the scope of natural products (e.g., terminal-alkyne amino acid) that can be rapidly produced in cell-free systems. With the development of cell-free biotechnology, we envision that cell-free strategies will create a new frontier for natural product biosynthesis.
Collapse
Affiliation(s)
- Yilin Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Xiao Zheng
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Yifan Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Shengjie Ling
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
8
|
Cell-free protein synthesis systems for vaccine design and production. Curr Opin Biotechnol 2023; 79:102888. [PMID: 36641905 DOI: 10.1016/j.copbio.2022.102888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/14/2022] [Indexed: 01/15/2023]
Abstract
Vaccines are vital for protection against existing and emergent diseases. Current vaccine production strategies are limited by long production times, risky viral material, weak immunogenicity, and poor stability, ultimately restricting the safe or rapid production of vaccines for widespread utilization. Cell-free protein synthesis (CFPS) systems, which use extracted transcriptional and translational machinery from cells, are promising tools for vaccine production because they can rapidly produce proteins without the constraints of living cells, have a highly optimizable open system, and can be used for on-demand biomanufacturing. Here, we review how CFPS systems have been explored for the production of subunit, conjugate, virus-like particle (VLP), and membrane-augmented vaccines and as a tool in vaccine design. We also discuss efforts to address potential limitations with CFPS such as the presence of endotoxins, poor protein folding, reaction stability, and glycosylation to enable promising future vaccine design and production.
Collapse
|
9
|
Rolf J, Ngo ACR, Lütz S, Tischler D, Rosenthal K. Cell-Free Protein Synthesis for the Screening of Novel Azoreductases and Their Preferred Electron Donor. Chembiochem 2022; 23:e202200121. [PMID: 35593146 PMCID: PMC9401864 DOI: 10.1002/cbic.202200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/19/2022] [Indexed: 11/26/2022]
Abstract
Azoreductases are potent biocatalysts for the cleavage of azo bonds. Various gene sequences coding for potential azoreductases are available in databases, but many of their gene products are still uncharacterized. To avoid the laborious heterologous expression in a host organism, we developed a screening approach involving cell-free protein synthesis (CFPS) combined with a colorimetric activity assay, which allows the parallel screening of putative azoreductases in a short time. First, we evaluated different CFPS systems and optimized the synthesis conditions of a model azoreductase. With the findings obtained, 10 azoreductases, half of them undescribed so far, were screened for their ability to degrade the azo dye methyl red. All novel enzymes catalyzed the degradation of methyl red and can therefore be referred to as azoreductases. In addition, all enzymes degraded the more complex and bulkier azo dye Brilliant Black and four of them also showed the ability to reduce p-benzoquinone. NADH was the preferred electron donor for the most enzymes, although the synthetic nicotinamide co-substrate analogue 1-benzyl-1,4-dihydronicotinamide (BNAH) was also accepted by all active azoreductases. This screening approach allows accelerated identification of potential biocatalysts for various applications.
Collapse
Affiliation(s)
- Jascha Rolf
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| | - Anna Christina Reyes Ngo
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr-Universität BochumUniversitätsstr. 15044780BochumGermany
| | - Stephan Lütz
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| | - Dirk Tischler
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr-Universität BochumUniversitätsstr. 15044780BochumGermany
| | - Katrin Rosenthal
- Department of Biochemical and Chemical EngineeringChair for Bioprocess EngineeringTU Dortmund UniversityEmil-Figge-Str. 6644227DortmundGermany
| |
Collapse
|
10
|
Tian X, Liu WQ, Xu H, Ji X, Liu Y, Li J. Cell-free expression of NO synthase and P450 enzyme for the biosynthesis of an unnatural amino acid L-4-nitrotryptophan. Synth Syst Biotechnol 2022; 7:775-783. [PMID: 35387232 PMCID: PMC8956912 DOI: 10.1016/j.synbio.2022.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/25/2022] [Accepted: 03/19/2022] [Indexed: 11/21/2022] Open
Abstract
Cell-free system has emerged as a powerful platform with a wide range of in vitro applications and recently has contributed to express metabolic pathways for biosynthesis. Here we report in vitro construction of a native biosynthetic pathway for L-4-nitrotryptophan (L-4-nitro-Trp) synthesis using an Escherichia coli-based cell-free protein synthesis (CFPS) system. Naturally, a nitric oxide (NO) synthase (TxtD) and a cytochrome P450 enzyme (TxtE) are responsible for synthesizing L-4-nitro-Trp, which serves as one substrate for the biosynthesis of a nonribosomal peptide herbicide thaxtomin A. Recombinant coexpression of TxtD and TxtE in a heterologous host like E. coli for L-4-nitro-Trp production has not been achieved so far due to the poor or insoluble expression of TxtD. Using CFPS, TxtD and TxtE were successfully expressed in vitro, enabling the formation of L-4-nitro-Trp. After optimization, the cell-free system was able to synthesize approximately 360 μM L-4-nitro-Trp within 16 h. Overall, this work expands the application scope of CFPS for study and synthesis of nitro-containing compounds, which are important building blocks widely used in pharmaceuticals, agrochemicals, and industrial chemicals.
Collapse
|
11
|
Ji X, Liu WQ, Li J. Recent advances in applying cell-free systems for high-value and complex natural product biosynthesis. Curr Opin Microbiol 2022; 67:102142. [DOI: 10.1016/j.mib.2022.102142] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 11/03/2022]
|
12
|
Brookwell A, Oza JP, Caschera F. Biotechnology Applications of Cell-Free Expression Systems. Life (Basel) 2021; 11:life11121367. [PMID: 34947898 PMCID: PMC8705439 DOI: 10.3390/life11121367] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/01/2021] [Accepted: 12/02/2021] [Indexed: 12/13/2022] Open
Abstract
Cell-free systems are a rapidly expanding platform technology with an important role in the engineering of biological systems. The key advantages that drive their broad adoption are increased efficiency, versatility, and low cost compared to in vivo systems. Traditionally, in vivo platforms have been used to synthesize novel and industrially relevant proteins and serve as a testbed for prototyping numerous biotechnologies such as genetic circuits and biosensors. Although in vivo platforms currently have many applications within biotechnology, they are hindered by time-constraining growth cycles, homeostatic considerations, and limited adaptability in production. Conversely, cell-free platforms are not hindered by constraints for supporting life and are therefore highly adaptable to a broad range of production and testing schemes. The advantages of cell-free platforms are being leveraged more commonly by the biotechnology community, and cell-free applications are expected to grow exponentially in the next decade. In this study, new and emerging applications of cell-free platforms, with a specific focus on cell-free protein synthesis (CFPS), will be examined. The current and near-future role of CFPS within metabolic engineering, prototyping, and biomanufacturing will be investigated as well as how the integration of machine learning is beneficial to these applications.
Collapse
Affiliation(s)
- August Brookwell
- Department of Chemistry & Biochemistry, College of Science & Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
| | - Javin P. Oza
- Department of Chemistry & Biochemistry, College of Science & Mathematics, California Polytechnic State University, San Luis Obispo, CA 93407, USA;
- Correspondence: (J.P.O.); (F.C.)
| | - Filippo Caschera
- Nuclera Nucleics Ltd., Cambridge CB4 0GD, UK
- Correspondence: (J.P.O.); (F.C.)
| |
Collapse
|
13
|
Benninghaus L, Walter T, Mindt M, Risse JM, Wendisch VF. Metabolic Engineering of Pseudomonas putida for Fermentative Production of l-Theanine. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:9849-9858. [PMID: 34465093 DOI: 10.1021/acs.jafc.1c03240] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
N-alkylated amino acids are intermediates of natural biological pathways and can be found incorporated in peptides or have physiological roles in their free form. The N-ethylated amino acid l-theanine shows taste-enhancing properties and health benefits. It naturally occurs in green tea as major free amino acid. Isolation of l-theanine from Camilla sinensis shows low efficiency, and chemical synthesis results in a racemic mixture. Therefore, biochemical approaches for the production of l-theanine gain increasing interest. Here, we describe metabolic engineering of Pseudomonas putida KT2440 for the fermentative production of l-theanine from monoethylamine and carbon sources glucose, glycerol, or xylose using heterologous enzymes from Methylorubrum extorquens for l-theanine production and heterologous enzymes from Caulobacter crescentus for growth with xylose. l-Theanine (15.4 mM) accumulated in shake flasks with minimal medium containing monoethylamine and glucose, 15.2 mM with glycerol and 7 mM with xylose. Fed-batch bioreactor cultures yielded l-theanine titers of 10 g L-1 with glucose plus xylose, 17.2 g L-1 with glycerol, 4 g L-1 with xylose, and 21 g L-1 with xylose plus glycerol, respectively. To the best of our knowledge, this is the first l-theanine process using P. putida and the first compatible with the use of various alternative carbon sources.
Collapse
Affiliation(s)
- Leonie Benninghaus
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld 33615, Germany
| | - Tatjana Walter
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld 33615, Germany
| | - Melanie Mindt
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld 33615, Germany
| | - Joe Max Risse
- Fermentation Technology, Technical Faculty and CeBiTec, Bielefeld University, Bielefeld 33615, Germany
| | - Volker F Wendisch
- Genetics of Prokaryotes, Faculty of Biology and CeBiTec, Bielefeld University, Bielefeld 33615, Germany
| |
Collapse
|
14
|
Yang C, Liu Y, Liu WQ, Wu C, Li J. Designing Modular Cell-free Systems for Tunable Biotransformation of l-phenylalanine to Aromatic Compounds. Front Bioeng Biotechnol 2021; 9:730663. [PMID: 34395411 PMCID: PMC8355704 DOI: 10.3389/fbioe.2021.730663] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/19/2021] [Indexed: 11/23/2022] Open
Abstract
Cell-free systems have been used to synthesize chemicals by reconstitution of in vitro expressed enzymes. However, coexpression of multiple enzymes to reconstitute long enzymatic pathways is often problematic due to resource limitation/competition (e.g., energy) in the one-pot cell-free reactions. To address this limitation, here we aim to design a modular, cell-free platform to construct long biosynthetic pathways for tunable synthesis of value-added aromatic compounds, using (S)-1-phenyl-1,2-ethanediol ((S)-PED) and 2-phenylethanol (2-PE) as models. Initially, all enzymes involved in the biosynthetic pathways were individually expressed by an E. coli-based cell-free protein synthesis (CFPS) system and their catalytic activities were confirmed. Then, three sets of enzymes were coexpressed in three cell-free modules and each with the ability to complete a partial pathway. Finally, the full biosynthetic pathways were reconstituted by mixing two related modules to synthesize (S)-PED and 2-PE, respectively. After optimization, the final conversion rates for (S)-PED and 2-PE reached 100 and 82.5%, respectively, based on the starting substrate of l-phenylalanine. We anticipate that the modular cell-free approach will make a possible efficient and high-yielding biosynthesis of value-added chemicals.
Collapse
Affiliation(s)
- Chen Yang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China.,Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Yushi Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Wan-Qiu Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| | - Changzhu Wu
- Danish Institute for Advanced Study (DIAS) and Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense, Denmark
| | - Jian Li
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, China
| |
Collapse
|
15
|
The Nonribosomal Peptide Valinomycin: From Discovery to Bioactivity and Biosynthesis. Microorganisms 2021; 9:microorganisms9040780. [PMID: 33917912 PMCID: PMC8068249 DOI: 10.3390/microorganisms9040780] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/03/2021] [Accepted: 04/07/2021] [Indexed: 12/17/2022] Open
Abstract
Valinomycin is a nonribosomal peptide that was discovered from Streptomyces in 1955. Over the past more than six decades, it has received continuous attention due to its special chemical structure and broad biological activities. Although many research papers have been published on valinomycin, there has not yet been a comprehensive review that summarizes the diverse studies ranging from structural characterization, biogenesis, and bioactivity to the identification of biosynthetic gene clusters and heterologous biosynthesis. In this review, we aim to provide an overview of valinomycin to address this gap, covering from 1955 to 2020. First, we introduce the chemical structure of valinomycin together with its chemical properties. Then, we summarize the broad spectrum of bioactivities of valinomycin. Finally, we describe the valinomycin biosynthetic gene cluster and reconstituted biosynthesis of valinomycin. With that, we discuss possible opportunities for the future research and development of valinomycin.
Collapse
|