1
|
Tang AY, Gonzalez CL, Mantri KA, Lalwani MA, Avalos JL. Anti-Pdc1p Nanobody as a Genetically Encoded Inhibitor of Ethanol Production Enables Dual Transcriptional and Post-translational Controls of Yeast Fermentations. ACS Synth Biol 2025; 14:1072-1083. [PMID: 40098243 DOI: 10.1021/acssynbio.4c00617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
Microbial fermentation provides a sustainable method of producing valuable chemicals. Adding dynamic control to fermentations can significantly improve titers, but most systems rely on transcriptional controls of metabolic enzymes, leaving existing intracellular enzymes unregulated. This limits the ability of transcriptional controls to switch off metabolic pathways, especially when metabolic enzymes have long half-lives. We developed a two-layer transcriptional/post-translational control system for yeast fermentations. Specifically, the system uses blue light to transcriptionally activate the major pyruvate decarboxylase PDC1, required for cell growth and concomitant ethanol production. Switching to darkness transcriptionally inactivates PDC1 and instead activates the anti-Pdc1p nanobody, NbJRI, to act as a genetically encoded inhibitor of Pdc1p accumulated during the growth phase. This dual transcriptional/post-translational control improves the production of 2,3-BDO and citramalate by up to 100 and 92% compared to using transcriptional controls alone in dynamic two-phase fermentations. This study establishes the NbJRI nanobody as an effective genetically encoded inhibitor of Pdc1p that can enhance the production of pyruvate-derived chemicals.
Collapse
Affiliation(s)
- Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Christopher L Gonzalez
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Krishi A Mantri
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Makoto A Lalwani
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
2
|
Wang Y, Li M, Liu W, Jiang L. Illuminating the future of food microbial control: From optical tools to Optogenetic tools. Food Chem 2025; 471:142474. [PMID: 39823899 DOI: 10.1016/j.foodchem.2024.142474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 11/28/2024] [Accepted: 12/12/2024] [Indexed: 01/20/2025]
Abstract
Light as an environmental signal can effectively regulate various biological processes in microbial systems. Optical and optogenetic tools are able to utilize light for precise control methods with minimal interference. Recently, research on these tools has extended to the field of microbiology. Distinguishing from existing reviews, this review narrows the scope of application into food sector, focusing on advances in optical and optogenetic tools for microbial control, including optical tools targeting pathogenic or probiotic bacteria for non-thermal sterilization, antimicrobial photodynamic therapy, or photobiomodulation, combined with nanomaterials as photosensors for food analysis. As well as using optogenetic tools for more convenient and precise control in food production processes, covering reversible induction, metabolic flux regulation, biofilm formation, and inhibition. These tools offer new solutions to goals that cannot be achieved by traditional methods, and they are still maturing to explore other uses in the food field.
Collapse
Affiliation(s)
- Yuwei Wang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Mengyu Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China. limengyu-@njtech.edu.cn
| | - Wei Liu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| | - Ling Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
3
|
Jin K, Yu W, Liu Y, Li J, Du G, Chen J, Liu L, Lv X. Light-induced programmable solid-liquid phase transition of biomolecular condensates for improved biosynthesis. Trends Biotechnol 2025:S0167-7799(25)00049-6. [PMID: 40082181 DOI: 10.1016/j.tibtech.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/16/2025]
Abstract
Keeping condensates in liquid-like states throughout the biosynthesis process in microbial cell factories remains an ongoing challenge. Here, we present a light-controlled phase regulator, which maintains the liquid-like features of synthetic condensates on demand throughout the biosynthesis process upon light induction, as demonstrated by various live cell-imaging techniques. Specifically, the tobacco etch virus (TEV) protease controlled by light cleaves intrinsically disordered proteins (IDPs) to alter their valency and concentration for controlled phase transition and programmable fluidity of cellular condensates. As a proof of concept, we harness this capability to significantly improve the production of squalene and ursolic acid (UA) in engineered Saccharomyces cerevisiae. Our work provides a powerful approach to program the solid-liquid phase transition of biomolecular condensates for improved biosynthesis.
Collapse
Affiliation(s)
- Ke Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Wenwen Yu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Zhu L, Wang Y, Wu X, Wu G, Zhang G, Liu C, Zhang S. Protein design accelerates the development and application of optogenetic tools. Comput Struct Biotechnol J 2025; 27:717-732. [PMID: 40092664 PMCID: PMC11908464 DOI: 10.1016/j.csbj.2025.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/16/2025] [Accepted: 02/17/2025] [Indexed: 03/19/2025] Open
Abstract
Optogenetics has substantially enhanced our understanding of biological processes by enabling high-precision tracking and manipulation of individual cells. It relies on photosensitive proteins to monitor and control cellular activities, thereby paving the way for significant advancements in complex system research. Photosensitive proteins play a vital role in the development of optogenetics, facilitating the establishment of cutting-edge methods. Recent breakthroughs in protein design have opened up opportunities to develop protein-based tools that can precisely manipulate and monitor cellular activities. These advancements will significantly accelerate the development and application of optogenetic tools. This article emphasizes the pivotal role of protein design in the development of optogenetic tools, offering insights into potential future directions. We begin by providing an introduction to the historical development and fundamental principles of optogenetics, followed by an exploration of the operational mechanisms of key photosensitive domains, which includes clarifying the conformational changes they undergo in response to light, such as allosteric modulation and dimerization processes. Building on this foundation, we reveal the development of protein design tools that will enable the creation of even more sophisticated optogenetic techniques.
Collapse
Affiliation(s)
| | | | - Xiaomin Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohua Wu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Guohao Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Chuanyang Liu
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| | - Shaowei Zhang
- Department of Biology and Chemistry, College of Sciences, National University of Defense Technology, Changsha, Hunan 410073, China
| |
Collapse
|
5
|
Tang AY, Jung S, Carrasco-López C, Avalos JL. Light-Induced Nanobody-Mediated Targeted Protein Degradation for Metabolic Flux Control. ACS Synth Biol 2024; 13:4110-4118. [PMID: 39527810 DOI: 10.1021/acssynbio.4c00552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
In metabolic engineering, increasing chemical production usually involves manipulating the expression levels of key enzymes. However, limited synthetic tools exist for modulating enzyme activity beyond the transcription level. Inspired by natural post-translational mechanisms, we present targeted enzyme degradation mediated by optically controlled nanobodies. We applied this method to a branched biosynthetic pathway, deoxyviolacein, and observed enhanced product specificity and yield. We then extend the biosynthesis pathway to violacein and show how simultaneous degradation of two target enzymes can further shift production profiles. Through the redirection of metabolic flux, we demonstrate how targeted enzyme degradation can be used to minimize unwanted intermediates and boost the formation of desired products.
Collapse
Affiliation(s)
- Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - Seyi Jung
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - César Carrasco-López
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, United States
- Omenn-Darling Bioengineering Institute, Princeton University, Princeton, New Jersey 08544, United States
- Andlinger Center for Energy and the Environment, Princeton University, Princeton, New Jersey 08544, United States
- High Meadows Environmental Institute, Princeton University, Princeton, New Jersey 08544, United States
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, United States
| |
Collapse
|
6
|
Lu Z, Shen Q, Bandari NC, Evans S, McDonnell L, Liu L, Jin W, Luna-Flores CH, Collier T, Talbo G, McCubbin T, Esquirol L, Myers C, Trau M, Dumsday G, Speight R, Howard CB, Vickers CE, Peng B. LowTempGAL: a highly responsive low temperature-inducible GAL system in Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:7367-7383. [PMID: 38808673 PMCID: PMC11229376 DOI: 10.1093/nar/gkae460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/12/2024] [Accepted: 05/16/2024] [Indexed: 05/30/2024] Open
Abstract
Temperature is an important control factor for biologics biomanufacturing in precision fermentation. Here, we explored a highly responsive low temperature-inducible genetic system (LowTempGAL) in the model yeast Saccharomyces cerevisiae. Two temperature biosensors, a heat-inducible degron and a heat-inducible protein aggregation domain, were used to regulate the GAL activator Gal4p, rendering the leaky LowTempGAL systems. Boolean-type induction was achieved by implementing a second-layer control through low-temperature-mediated repression on GAL repressor gene GAL80, but suffered delayed response to low-temperature triggers and a weak response at 30°C. Application potentials were validated for protein and small molecule production. Proteomics analysis suggested that residual Gal80p and Gal4p insufficiency caused suboptimal induction. 'Turbo' mechanisms were engineered through incorporating a basal Gal4p expression and a galactose-independent Gal80p-supressing Gal3p mutant (Gal3Cp). Varying Gal3Cp configurations, we deployed the LowTempGAL systems capable for a rapid stringent high-level induction upon the shift from a high temperature (37-33°C) to a low temperature (≤30°C). Overall, we present a synthetic biology procedure that leverages 'leaky' biosensors to deploy highly responsive Boolean-type genetic circuits. The key lies in optimisation of the intricate layout of the multi-factor system. The LowTempGAL systems may be applicable in non-conventional yeast platforms for precision biomanufacturing.
Collapse
Affiliation(s)
- Zeyu Lu
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Qianyi Shen
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Naga Chandra Bandari
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Samuel Evans
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Liam McDonnell
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Lian Liu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- The Queensland Node of Metabolomics Australia and Proteomics Australia (Q-MAP), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wanli Jin
- Institute for Molecular Bioscience (IMB), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Carlos Horacio Luna-Flores
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Thomas Collier
- ARC Centre of Excellence in Synthetic Biology, Australia
- School of Natural Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gert Talbo
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- The Queensland Node of Metabolomics Australia and Proteomics Australia (Q-MAP), Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Tim McCubbin
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lygie Esquirol
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Environment, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT 2601, Australia
| | - Chris Myers
- Department of Electrical, Computer, and Energy Engineering University of Colorado, Boulder, CO 80309, USA
| | - Matt Trau
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences (SCMB), the University of Queensland, Brisbane, QLD 4072, Australia
| | - Geoff Dumsday
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation, Clayton, VIC, 3169, Australia
| | - Robert Speight
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Advanced Engineering Biology Future Science Platform, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, 2601, Australia
| | - Christopher B Howard
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Claudia E Vickers
- ARC Centre of Excellence in Synthetic Biology, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Bingyin Peng
- ARC Centre of Excellence in Synthetic Biology, Australia
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Centre of Agriculture and the Bioeconomy, School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
7
|
Xiao C, Pan Y, Huang M. Advances in the dynamic control of metabolic pathways in Saccharomyces cerevisiae. ENGINEERING MICROBIOLOGY 2023; 3:100103. [PMID: 39628908 PMCID: PMC11610979 DOI: 10.1016/j.engmic.2023.100103] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/19/2023] [Accepted: 06/16/2023] [Indexed: 12/06/2024]
Abstract
The metabolic engineering of Saccharomyces cerevisiae has great potential for enhancing the production of high-value chemicals and recombinant proteins. Recent studies have demonstrated the effectiveness of dynamic regulation as a strategy for optimizing metabolic flux and improving production efficiency. In this review, we provide an overview of recent advancements in the dynamic regulation of S. cerevisiae metabolism. Here, we focused on the successful utilization of transcription factor (TF)-based biosensors within the dynamic regulatory network of S. cerevisiae. These biosensors are responsive to a wide range of endogenous and exogenous signals, including chemical inducers, light, temperature, cell density, intracellular metabolites, and stress. Additionally, we explored the potential of omics tools for the discovery of novel responsive promoters and their roles in fine-tuning metabolic networks. We also provide an outlook on the development trends in this field.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|
8
|
Ren H, Cheng Y, Wen G, Wang J, Zhou M. Emerging optogenetics technologies in biomedical applications. SMART MEDICINE 2023; 2:e20230026. [PMID: 39188295 PMCID: PMC11235740 DOI: 10.1002/smmd.20230026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 09/17/2023] [Indexed: 08/28/2024]
Abstract
Optogenetics is a cutting-edge technology that merges light control and genetics to achieve targeted control of tissue cells. Compared to traditional methods, optogenetics offers several advantages in terms of time and space precision, accuracy, and reduced damage to the research object. Currently, optogenetics is primarily used in pathway research, drug screening, gene expression regulation, and the stimulation of molecule release to treat various diseases. The selection of light-sensitive proteins is the most crucial aspect of optogenetic technology; structural changes occur or downstream channels are activated to achieve signal transmission or factor release, allowing efficient and controllable disease treatment. In this review, we examine the extensive research conducted in the field of biomedicine concerning optogenetics, including the selection of light-sensitive proteins, the study of carriers and delivery devices, and the application of disease treatment. Additionally, we offer critical insights and future implications of optogenetics in the realm of clinical medicine.
Collapse
Affiliation(s)
- Haozhen Ren
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Yi Cheng
- Department of Vascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| | - Gaolin Wen
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Jinglin Wang
- Department of Hepatobiliary SurgeryHepatobiliary InstituteNanjing Drum Tower HospitalMedical SchoolNanjing UniversityNanjingChina
| | - Min Zhou
- Department of Vascular SurgeryThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjingChina
| |
Collapse
|
9
|
Zhu L, McNamara HM, Toettcher JE. Light-switchable transcription factors obtained by direct screening in mammalian cells. Nat Commun 2023; 14:3185. [PMID: 37268649 PMCID: PMC10238501 DOI: 10.1038/s41467-023-38993-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/24/2023] [Indexed: 06/04/2023] Open
Abstract
Optogenetic tools can provide fine spatial and temporal control over many biological processes. Yet the development of new light-switchable protein variants remains challenging, and the field still lacks general approaches to engineering or discovering protein variants with light-switchable biological functions. Here, we adapt strategies for protein domain insertion and mammalian-cell expression to generate and screen a library of candidate optogenetic tools directly in mammalian cells. The approach is based on insertion of the AsLOV2 photoswitchable domain at all possible positions in a candidate protein of interest, introduction of the library into mammalian cells, and light/dark selection for variants with photoswitchable activity. We demonstrate the approach's utility using the Gal4-VP64 transcription factor as a model system. Our resulting LightsOut transcription factor exhibits a > 150-fold change in transcriptional activity between dark and blue light conditions. We show that light-switchable function generalizes to analogous insertion sites in two additional Cys6Zn2 and C2H2 zinc finger domains, providing a starting point for optogenetic regulation of a broad class of transcription factors. Our approach can streamline the identification of single-protein optogenetic switches, particularly in cases where structural or biochemical knowledge is limited.
Collapse
Affiliation(s)
- Liyuan Zhu
- Department of Chemistry, Princeton University, Princeton, NJ, 08544, USA
| | - Harold M McNamara
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
- Lewis Sigler Institute, Princeton University, Princeton, NJ, 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
10
|
Pouzet S, Cruz-Ramón J, Le Bec M, Cordier C, Banderas A, Barral S, Castaño-Cerezo S, Lautier T, Truan G, Hersen P. Optogenetic control of beta-carotene bioproduction in yeast across multiple lab-scales. Front Bioeng Biotechnol 2023; 11:1085268. [PMID: 36814715 PMCID: PMC9939774 DOI: 10.3389/fbioe.2023.1085268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 01/16/2023] [Indexed: 02/09/2023] Open
Abstract
Optogenetics arises as a valuable tool to precisely control genetic circuits in microbial cell factories. Light control holds the promise of optimizing bioproduction methods and maximizing yields, but its implementation at different steps of the strain development process and at different culture scales remains challenging. In this study, we aim to control beta-carotene bioproduction using optogenetics in Saccharomyces cerevisiae and investigate how its performance translates across culture scales. We built four lab-scale illumination devices, each handling different culture volumes, and each having specific illumination characteristics and cultivating conditions. We evaluated optogenetic activation and beta-carotene production across devices and optimized them both independently. Then, we combined optogenetic induction and beta-carotene production to make a light-inducible beta-carotene producer strain. This was achieved by placing the transcription of the bifunctional lycopene cyclase/phytoene synthase CrtYB under the control of the pC120 optogenetic promoter regulated by the EL222-VP16 light-activated transcription factor, while other carotenogenic enzymes (CrtI, CrtE, tHMG) were expressed constitutively. We show that illumination, culture volume and shaking impact differently optogenetic activation and beta-carotene production across devices. This enabled us to determine the best culture conditions to maximize light-induced beta-carotene production in each of the devices. Our study exemplifies the stakes of scaling up optogenetics in devices of different lab scales and sheds light on the interplays and potential conflicts between optogenetic control and metabolic pathway efficiency. As a general principle, we propose that it is important to first optimize both components of the system independently, before combining them into optogenetic producing strains to avoid extensive troubleshooting. We anticipate that our results can help designing both strains and devices that could eventually lead to larger scale systems in an effort to bring optogenetics to the industrial scale.
Collapse
Affiliation(s)
- Sylvain Pouzet
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Jessica Cruz-Ramón
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Matthias Le Bec
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Céline Cordier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Alvaro Banderas
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Simon Barral
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France
| | - Sara Castaño-Cerezo
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France
| | - Thomas Lautier
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France,CNRS@CREATE, Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research, Singapore, Singapore
| | - Gilles Truan
- Toulouse Biotechnology Institute, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Institut National de Recherche pour l′Agriculture, l′Alimentation et l′Environnement (INRAE), Institut National des Sciences Appliquées (INSA), Toulouse, France
| | - Pascal Hersen
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR168, Laboratoire Physico Chimie Curie, Paris, France,*Correspondence: Pascal Hersen,
| |
Collapse
|
11
|
Rojas V, Larrondo LF. Coupling Cell Communication and Optogenetics: Implementation of a Light-Inducible Intercellular System in Yeast. ACS Synth Biol 2023; 12:71-82. [PMID: 36534043 PMCID: PMC9872819 DOI: 10.1021/acssynbio.2c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Indexed: 12/23/2022]
Abstract
Cell communication is a widespread mechanism in biology, allowing the transmission of information about environmental conditions. In order to understand how cell communication modulates relevant biological processes such as survival, division, differentiation, and apoptosis, different synthetic systems based on chemical induction have been successfully developed. In this work, we coupled cell communication and optogenetics in the budding yeast Saccharomyces cerevisiae. Our approach is based on two strains connected by the light-dependent production of α-factor pheromone in one cell type, which induces gene expression in the other type. After the individual characterization of the different variants of both strains, the optogenetic intercellular system was evaluated by combining the cells under contrasting illumination conditions. Using luciferase as a reporter gene, specific co-cultures at a 1:1 ratio displayed activation of the response upon constant blue light, which was not observed for the same cell mixtures grown in darkness. Then, the system was assessed at several dark/blue-light transitions, where the response level varies depending on the moment in which illumination was delivered. Furthermore, we observed that the amplitude of response can be tuned by modifying the initial ratio between both strains. Finally, the two-population system showed higher fold inductions in comparison with autonomous strains. Altogether, these results demonstrated that external light information is propagated through a diffusible signaling molecule to modulate gene expression in a synthetic system involving microbial cells, which will pave the road for studies allowing optogenetic control of population-level dynamics.
Collapse
Affiliation(s)
- Vicente Rojas
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad
Católica de Chile, Santiago 8331150, Chile
- Millennium
Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| | - Luis F. Larrondo
- Departamento
de Genética Molecular y Microbiología, Facultad de Ciencias
Biológicas, Pontificia Universidad
Católica de Chile, Santiago 8331150, Chile
- Millennium
Institute for Integrative Biology (iBio), Santiago 8331150, Chile
| |
Collapse
|
12
|
Wegner SA, Barocio-Galindo RM, Avalos JL. The bright frontiers of microbial metabolic optogenetics. Curr Opin Chem Biol 2022; 71:102207. [PMID: 36103753 DOI: 10.1016/j.cbpa.2022.102207] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/29/2022] [Accepted: 08/05/2022] [Indexed: 01/27/2023]
Abstract
In recent years, light-responsive systems from the field of optogenetics have been applied to several areas of metabolic engineering with remarkable success. By taking advantage of light's high tunability, reversibility, and orthogonality to host endogenous processes, optogenetic systems have enabled unprecedented dynamical controls of microbial fermentations for chemical production, metabolic flux analysis, and population compositions in co-cultures. In this article, we share our opinions on the current state of this new field of metabolic optogenetics.We make the case that it will continue to impact metabolic engineering in increasingly new directions, with the potential to challenge existing paradigms for metabolic pathway and strain optimization as well as bioreactor operation.
Collapse
Affiliation(s)
| | | | - José L Avalos
- Department of Molecular Biology, USA; Department of Chemical and Biological Engineering, USA; The Andlinger Center for Energy and the Environment, USA; High Meadows Environmental Institute, Princeton University, Princeton NJ 08544, USA.
| |
Collapse
|
13
|
Gramazio S, Trauth J, Bezold F, Essen LO, Taxis C, Spadaccini R. Light-induced fermenter production of derivatives of the sweet protein monellin is maximized in prestationary Saccharomyces cerevisiae cultures. Biotechnol J 2022; 17:e2100676. [PMID: 35481893 DOI: 10.1002/biot.202100676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/28/2022] [Accepted: 04/23/2022] [Indexed: 11/11/2022]
Abstract
Optogenetics has great potential for biotechnology and metabolic engineering due to the cost-effective control of cellular activities. The usage of optogenetics techniques for the biosynthesis of bioactive molecules ensures reduced costs and enhanced regulatory possibilities. This requires development of efficient methods for light-delivery during a production process in a fermenter. Here, we benchmarked the fermenter production of a low-caloric sweetener in Saccharomyces cerevisiae with optogenetic tools against the production in small scale cell culture flasks. An expression system based on the light-controlled interaction between Cry2 and Cib1 was used for sweet-protein production. Optimization of the fermenter process was achieved by increasing the light-flux during the production phase to circumvent shading by yeast cells at high densities. Maximal amounts of the sweet-protein were produced in a pre-stationary growth phase, whereas at later stages, a decay in protein abundance was observable. Our investigation showcases the upscaling of an optogenetic production process from small flasks to a bioreactor. Optogenetic-controlled production in a fermenter is highly cost-effective due to the cheap inducer and therefore a viable alternative to chemicals for a process that requires an induction step. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Simona Gramazio
- Department of Science and Technology, Universita' degli studi del Sannio, Benevento, 82100, Italy
| | - Jonathan Trauth
- Department of Biology/Genetics, Philipps-University Marburg, 35043, Marburg, Germany
| | - Filipp Bezold
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Lars-Oliver Essen
- Unit for Structural Biochemistry, Department of Chemistry, Philipps-University Marburg, 35032, Marburg, Germany
| | - Christof Taxis
- Department of Biology/Genetics, Philipps-University Marburg, 35043, Marburg, Germany
| | - Roberta Spadaccini
- Department of Science and Technology, Universita' degli studi del Sannio, Benevento, 82100, Italy
| |
Collapse
|
14
|
Guo Y, Li F, Zhao J, Wei X, Wang Z, Liu J. Diverting mevalonate pathway metabolic flux leakage in Saccharomyces cerevisiae for monoterpene geraniol production from cane molasses. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
15
|
Hoffman SM, Tang AY, Avalos JL. Optogenetics Illuminates Applications in Microbial Engineering. Annu Rev Chem Biomol Eng 2022; 13:373-403. [PMID: 35320696 DOI: 10.1146/annurev-chembioeng-092120-092340] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Optogenetics has been used in a variety of microbial engineering applications, such as chemical and protein production, studies of cell physiology, and engineered microbe-host interactions. These diverse applications benefit from the precise spatiotemporal control that light affords, as well as its tunability, reversibility, and orthogonality. This combination of unique capabilities has enabled a surge of studies in recent years investigating complex biological systems with completely new approaches. We briefly describe the optogenetic tools that have been developed for microbial engineering, emphasizing the scientific advancements that they have enabled. In particular, we focus on the unique benefits and applications of implementing optogenetic control, from bacterial therapeutics to cybergenetics. Finally, we discuss future research directions, with special attention given to the development of orthogonal multichromatic controls. With an abundance of advantages offered by optogenetics, the future is bright in microbial engineering. Expected final online publication date for the Annual Review of Chemical and Biomolecular Engineering, Volume 13 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Shannon M Hoffman
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - Allison Y Tang
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , ,
| | - José L Avalos
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey, USA; , , .,The Andlinger Center for Energy and the Environment, Department of Molecular Biology, and High Meadows Environmental Institute, Princeton University, Princeton, New Jersey, USA
| |
Collapse
|
16
|
Fölsz O, Lin CC, Task D, Riabinina O, Potter CJ. The Q-system: A Versatile Repressible Binary Expression System. Methods Mol Biol 2022; 2540:35-78. [PMID: 35980572 DOI: 10.1007/978-1-0716-2541-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.
Collapse
Affiliation(s)
- Orsolya Fölsz
- Department of Biosciences, Durham University, Durham, UK
| | - Chun-Chieh Lin
- Department of Pathology and Laboratory Medicine, Giesel School of Medicine, Dartmouth-Hitchcock Medical Center, Lebanon, NH, USA
| | - Darya Task
- Department of Biology, Johns Hopkins University, Baltimore, MD, USA
| | | | - Christopher J Potter
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|