1
|
Kang F, Gu F, Zhong Y, Cui Z, Liang Q, Qi Q. Expanding the genetic toolkit of Yarrowia lipolytica: Dynamic promoter engineering enables high-titer biosynthesis of 3-hydroxypropionic acid. BIORESOURCE TECHNOLOGY 2025; 432:132656. [PMID: 40355005 DOI: 10.1016/j.biortech.2025.132656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2025] [Revised: 04/29/2025] [Accepted: 05/09/2025] [Indexed: 05/14/2025]
Abstract
The oleaginous yeast Yarrowia lipolytica has emerged as a promising microbial chassis for biosynthesis of platform chemicals such as 3-hydroxypropionic acid (3-HP). However, its industrial potential has been limited by the scarcity of precisely regulated genetic tools. To address this gap, we developed a comprehensive promoter toolkit for Y. lipolytica through transcriptome profiling and functional screening. This toolkit includes 82 gradient-strength promoters and 34 growth phase-responsive promoters. Additionally, we identified three strong promoters (PU12, PU13, and PC48) incorporating novel upstream activating sequences (UAS1PC48 and UAS1PU13), which exhibited 0.76-1.00 × higher activity than common promoter pTEFin. By modularly deploying these tools, we optimized 3-HP biosynthesis: gradient promoters balanced expression levels between different functional domains of malonyl-CoA reductase, growth phase-downregulated promoters dynamically attenuated competitive flux of fatty acid synthesis, and strong promoters boosted malonyl-CoA precursor supply. The engineered strain achieved a record-breaking 100.37 g/L 3-HP-the highest titer reported in any yeast system-with a yield of 0.21 g/g glucose and a productivity of 0.48 g/L/h. This work not only significantly expands Y. lipolytica's genetic toolbox but also establishes a blueprint for engineering dynamic microbial cell factories, addressing the urgent demand for sustainable, high-efficiency biomanufacturing platforms.
Collapse
Affiliation(s)
- Fangbing Kang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Fei Gu
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Yutao Zhong
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Quanfeng Liang
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China.
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
2
|
Zheng X, Guo Y, Chen M, Lu Y, Du Y, Lei Y, Zheng P, Sun J. Promoter engineering with programmable upstream activating sequences in Aspergillus Niger cell factory. Microb Cell Fact 2025; 24:20. [PMID: 39815338 PMCID: PMC11734539 DOI: 10.1186/s12934-025-02642-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Accepted: 01/02/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Aspergillus niger is an important industrial filamentous fungus used to produce organic acids and enzymes. A wide dynamic range of promoters, particularly strong promoters, are required for fine-tuning the regulation of gene expression to balance metabolic flux and achieve the high yields of desired products. However, the limited understanding of promoter architectures and activities restricts the efficient transcription regulation of targets in strain engineering in A. niger. RESULTS In this study, we identified two functional upstream activation sequences (UAS) located upstream of the core promoters of highly expressed genes in A. niger. We constructed and characterized a synthetic promoter library by fusing the efficient UAS elements upstream of the strong constitute PgpdA promoter in A. niger. It demonstrated that the strength of synthetic promoters was fine-tuned with a wide range by tandem assembly of the UAS elements. Notably, the most potent promoter exhibited 5.4-fold higher activity than the strongest PgpdA promoter reported previously, significantly extending the range of strong promoters. Using citric acid production as a case study, we employed the synthetic promoter library to enhance citric acid efflux by regulating the cexA expression in A. niger. It showed a 1.6-2.3-fold increase in citric acid production compared to the parent strain, achieving a maximum titer of 145.3 g/L. CONCLUSIONS This study proved that the synthetic promoter library was a powerful toolkit for precise tuning of transcription in A. niger. It also underscores the potential of promoter engineering for gene regulation in strain improvement of fungal cell factories.
Collapse
Affiliation(s)
- Xiaomei Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yuting Guo
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Meiling Chen
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yudan Lu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yimou Du
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yu Lei
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Ping Zheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| | - Jibin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
- National Center of Technology Innovation for Synthetic Biology, Tianjin, 300308, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
3
|
Zuo W, Yin G, Zhang L, Zhang W, Xu R, Wang Y, Li J, Kang Z. Engineering artificial cross-species promoters with different transcriptional strengths. Synth Syst Biotechnol 2024; 10:49-57. [PMID: 39224149 PMCID: PMC11366860 DOI: 10.1016/j.synbio.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.
Collapse
Affiliation(s)
- Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weijiao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ruirui Xu
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
4
|
Ye M, Gao J, Li J, Yu W, Bai F, Zhou YJ. Promoter engineering enables precise metabolic regulation towards efficient β-elemene production in Ogataea polymorpha. Synth Syst Biotechnol 2024; 9:234-241. [PMID: 38385152 PMCID: PMC10877135 DOI: 10.1016/j.synbio.2024.02.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
Precisely controlling gene expression is beneficial for optimizing biosynthetic pathways for improving the production. However, promoters in nonconventional yeasts such as Ogataea polymorpha are always limited, which results in incompatible gene modulation. Here, we expanded the promoter library in O. polymorpha based on transcriptional data, among which 13 constitutive promoters had the strengths ranging from 0-55% of PGAP, the commonly used strong constitutive promoter, and 2 were growth phase-dependent promoters. Subsequently, 2 hybrid growth phase-dependent promoters were constructed and characterized, which had 2-fold higher activities. Finally, promoter engineering was applied to precisely regulate cellular metabolism for efficient production of β-elemene. The glyceraldehyde-3-phosphate dehydrogenase gene GAP was downregulated to drive more flux into pentose phosphate pathway (PPP) and then to enhance the supply of acetyl-CoA by using phosphoketolase-phosphotransacetylase (PK-PTA) pathway. Coupled with the phase-dependent expression of synthase module (ERG20∼LsLTC2 fusion), the highest titer of 5.24 g/L with a yield of 0.037 g/(g glucose) was achieved in strain YY150U under fed-batch fermentation in shake flasks. This work characterized and engineered a series of promoters, that can be used to fine-tune genes for constructing efficient yeast cell factories.
Collapse
Affiliation(s)
- Min Ye
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Jingjing Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Fan Bai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yongjin J. Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| |
Collapse
|
5
|
Xiao C, Liu X, Pan Y, Li Y, Qin L, Yan Z, Feng Y, Zhao M, Huang M. Tailored UPRE2 variants for dynamic gene regulation in yeast. Proc Natl Acad Sci U S A 2024; 121:e2315729121. [PMID: 38687789 PMCID: PMC11087760 DOI: 10.1073/pnas.2315729121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 04/04/2024] [Indexed: 05/02/2024] Open
Abstract
Genetic elements are foundational in synthetic biology serving as vital building blocks. They enable programming host cells for efficient production of valuable chemicals and recombinant proteins. The unfolded protein response (UPR) is a stress pathway in which the transcription factor Hac1 interacts with the upstream unfolded protein response element (UPRE) of the promoter to restore endoplasmic reticulum (ER) homeostasis. Here, we created a UPRE2 mutant (UPRE2m) library. Several rounds of screening identified many elements with enhanced responsiveness and a wider dynamic range. The most active element m84 displayed a response activity 3.72 times higher than the native UPRE2. These potent elements are versatile and compatible with various promoters. Overexpression of HAC1 enhanced stress signal transduction, expanding the signal output range of UPRE2m. Through molecular modeling and site-directed mutagenesis, we pinpointed the DNA-binding residue Lys60 in Hac1(Hac1-K60). We also confirmed that UPRE2m exhibited a higher binding affinity to Hac1. This shed light on the mechanism underlying the Hac1-UPRE2m interaction. Importantly, applying UPRE2m for target gene regulation effectively increased both recombinant protein production and natural product synthesis. These genetic elements provide valuable tools for dynamically regulating gene expression in yeast cell factories.
Collapse
Affiliation(s)
- Chufan Xiao
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Xiufang Liu
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Yuyang Pan
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Yanling Li
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Ling Qin
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Zhibo Yan
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Yunzi Feng
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Mouming Zhao
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| | - Mingtao Huang
- School of Food Science and Engineering, South China University of Technology, Guangzhou510641, China
| |
Collapse
|
6
|
Guo Q, Peng QQ, Li YW, Yan F, Wang YT, Ye C, Shi TQ. Advances in the metabolic engineering of Saccharomyces cerevisiae and Yarrowia lipolytica for the production of β-carotene. Crit Rev Biotechnol 2024; 44:337-351. [PMID: 36779332 DOI: 10.1080/07388551.2023.2166809] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/20/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
β-Carotene is one kind of the most important carotenoids. The major functions of β-carotene include the antioxidant and anti-cardiovascular properties, which make it a growing market. Recently, the use of metabolic engineering to construct microbial cell factories to synthesize β-carotene has become the latest model for its industrial production. Among these cell factories, yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica have attracted the most attention because of the: security, mature genetic manipulation tools, high flux toward carotenoids using the native mevalonate pathway and robustness for large-scale fermentation. In this review, the latest strategies for β-carotene biosynthesis, including protein engineering, promoters engineering and morphological engineering are summarized in detail. Finally, perspectives for future engineering approaches are proposed to improve β-carotene production.
Collapse
Affiliation(s)
- Qi Guo
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Qian-Qian Peng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Ya-Wen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Fang Yan
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yue-Tong Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| |
Collapse
|
7
|
Wittkopp PJ. Contributions of mutation and selection to regulatory variation: lessons from the Saccharomyces cerevisiae TDH3 gene. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220057. [PMID: 37004723 PMCID: PMC10067266 DOI: 10.1098/rstb.2022.0057] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/16/2023] [Indexed: 04/04/2023] Open
Abstract
Heritable variation in gene expression is common within and among species and contributes to phenotypic diversity. Mutations affecting either cis- or trans-regulatory sequences controlling gene expression give rise to variation in gene expression, and natural selection acting on this variation causes some regulatory variants to persist in a population for longer than others. To understand how mutation and selection interact to produce the patterns of regulatory variation we see within and among species, my colleagues and I have been systematically determining the effects of new mutations on expression of the TDH3 gene in Saccharomyces cerevisiae and comparing them to the effects of polymorphisms segregating within this species. We have also investigated the molecular mechanisms by which regulatory variants act. Over the past decade, this work has revealed properties of cis- and trans-regulatory mutations including their relative frequency, effects, dominance, pleiotropy and fitness consequences. Comparing these mutational effects to the effects of polymorphisms in natural populations, we have inferred selection acting on expression level, expression noise and phenotypic plasticity. Here, I summarize this body of work and synthesize its findings to make inferences not readily discernible from the individual studies alone. This article is part of the theme issue 'Interdisciplinary approaches to predicting evolutionary biology'.
Collapse
Affiliation(s)
- Patricia J. Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Zhao X, Yu H, Liang Q, Zhou J, Li J, Du G, Chen J. Stepwise Optimization of Inducible Expression System for the Functional Secretion of Horseradish Peroxidase in Saccharomyces cerevisiae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4059-4068. [PMID: 36821527 DOI: 10.1021/acs.jafc.2c09117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Horseradish peroxidase (HRP) is a plant-derived glycoprotein that can be developed as a food additive to cross-link proteins or biopolymers. Although Saccharomyces cerevisiae has advantages in the production of food-grade HRP, the low expressional level and inefficient secretion hindered its application values. After comparing the effects of constitutive and inducible expression on cell growth, the strength of HRP expression was roughly tuned by replacing core regions of the promoter in the GAL80-knockout strain and further finely tuned by terminator screening. Additionally, the most suitable signal peptide was selected, and the pre-peptide with pro-peptides was modified to balance the transport of HRP in the endoplasmic reticulum. The extracellular HRP activity of the best strain reached 13 506 U/L at the fermenter level, 330-fold higher than the previous result of 41 U/L in S. cerevisiae. The strategy can be applied to alleviate the inhibition of cell growth caused by the expression of toxic proteins and improve their secretion.
Collapse
Affiliation(s)
- Xinrui Zhao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Haibo Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Qingfeng Liang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
9
|
Duan Y, Tan Y, Wei X, Pei X, Li M. Versatile Strategy for the Construction of a Transcription Factor-Based Orthogonal Gene Expression Toolbox in Monascus spp. ACS Synth Biol 2023; 12:213-223. [PMID: 36625512 DOI: 10.1021/acssynbio.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gene expression is needed to be conducted in an orthogonal manner and controllable independently from the host's native regulatory system. However, there is a shortage of gene expression regulatory toolboxes that function orthogonally from each other and toward the host. Herein, we developed a strategy based on the mutant library to generate orthogonal gene expression toolboxes. A transcription factor, MaR, located in the Monascus azaphilone biosynthetic gene cluster, was taken as a typical example. Nine DNA-binding residues of MaR were identified by molecular simulation and site-directed mutagenesis. We created five MaR multi-site saturation mutagenesis libraries consisting of 10743 MaR variants on the basis of five cognate promoters. A functional analysis revealed that all five tested promoters were orthogonally regulated by five different MaR variants, respectively. Furthermore, fine gene expression tunability and high signal sensitivity of this toolbox are demonstrated by introducing chemically inducible expression modules, designing synthetic promoter elements, and creating protein-protein interaction between MaRs. This study paves the way for a bottom-up approach to build orthogonal gene expression toolboxes.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| |
Collapse
|