1
|
Mao X, Xu J, Jiang J, Li Q, Yao P, Jiang J, Gong L, Dong Y, Tu B, Wang R, Tang H, Yao F, Wang F. Iterative crRNA design and a PAM-free strategy enabled an ultra-specific RPA-CRISPR/Cas12a detection platform. Commun Biol 2024; 7:1454. [PMID: 39506042 PMCID: PMC11541961 DOI: 10.1038/s42003-024-07173-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024] Open
Abstract
CRISPR/Cas12a is a highly promising detection tool. However, detecting single nucleotide variations (SNVs) remains challenging. Here, we elucidate Cas12a specificity through crRNA engineering and profiling of single- and double-base mismatch tolerance across three targets. Our findings indicate that Cas12a specificity depends on the number, type, location, and distance of mismatches within the R-loop. We also find that introducing a wobble base pair at position 14 of the R-loop does not affect the free energy change when the spacer length is truncated to 17 bp. Therefore, we develop a new universal specificity enhancement strategy via iterative crRNA design, involving truncated spacers and a wobble base pair at position 14 of the R-loop, which tremendously increases specificity without sacrificing sensitivity. Additionally, we construct a PAM-free one-pot detection platform for SARS-CoV-2 variants, which effectively distinguishes SNV targets across various GC contents. In summary, our work reveals new insights into the specificity mechanism of Cas12a and demonstrates significant potential for in vitro diagnostics.
Collapse
Affiliation(s)
- Xujian Mao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Jian Xu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jingyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Qiong Li
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Ping Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Jinyi Jiang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Li Gong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Yin Dong
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Bowen Tu
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China
| | - Rong Wang
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongbing Tang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
| | - Fang Yao
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- Changzhou Institute for Advanced Study of Public Health, Nanjing Medical University, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Fengming Wang
- Pathogen Inspection Center, Changzhou Center for Disease Control and Prevention, Changzhou, Jiangsu, China.
- China School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Wan Y, Li S, Xu W, Wang K, Guo W, Yang C, Li X, Zhou J, Wang J. Terminal Chemical Modifications of crRNAs Enable Improvement in the Performance of CRISPR-Cas for Point-of-Care Nucleic Acid Detection. Anal Chem 2024; 96:16346-16354. [PMID: 39348463 DOI: 10.1021/acs.analchem.4c03698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
CRISPR-Cas systems, harnessing their precise nucleic acid recognition via CRISPR RNA (crRNA), offer promise for the accurate testing of nucleic acids in the field. However, the inherent susceptibility of crRNA to degradation poses challenges for accurate detection in low-resource settings. Here, we utilized the chemically modified crRNA for the CRISPR-Cas-based assay (CM-CRISPR). We found that the extension and chemical modification to crRNA significantly enhanced the trans-cleavage activity of LbCas12a. The chemically modified crRNA was resistant to degradation, and CM-CRISPR showed superior detection capability in complex environments. CM-CRISPR could be combined with recombinase polymerase amplification (RPA) and applied in a droplet digital platform, enabling attomolar-level sensitivity. We also developed a portable and automated device for a digital CRISPR assay, which is amenable to point-of-care testing (POCT). The extraction-free procedure was integrated with this assay to streamline the workflow, and clinical samples were successfully detected. This work finds a simple and efficient way to improve the performance of CRISPR-Cas and develops a portable platform for POCT, representing a significant advance toward practical applications of CRISPR-based diagnostics.
Collapse
Affiliation(s)
- Yunzhu Wan
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Sheng Li
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenfei Xu
- Zhejiang Key Laboratory of Multiomics and Molecular Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Zhejiang 314006, China
| | - Ke Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Wenlong Guo
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chongguang Yang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, Guangdong Province, China
| | - Xuhui Li
- Zhejiang Key Laboratory of Multiomics and Molecular Enzymology, Yangtze Delta Region Institute of Tsinghua University, Zhejiang, Zhejiang 314006, China
| | - Jianhua Zhou
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jiasi Wang
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, School of Biomedical Engineering, Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
- School of Biomedical Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
3
|
Jeong SH, Lee HJ, Lee SJ. Use of paired Cas9-NG nickase and truncated sgRNAs for single-nucleotide microbial genome editing. Front Genome Ed 2024; 6:1471720. [PMID: 39391173 PMCID: PMC11464485 DOI: 10.3389/fgeed.2024.1471720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
The paired nickases approach, which utilizes clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated proteins (Cas) nickase and dual guide RNA, has the advantage of reducing off-target effects by being able to double the target sequence. In this study, our research utilized the Cas9-NG nickase variant to minimize PAM sequence constraints, enabling the generation of paired nicks at desired genomic loci. We performed a systematic investigation into the formation sites for double nicks and the design of donor DNA within a bacterial model system. Although we successfully identified the conditions necessary for the effective formation of double nicks in vivo, achieving single-nucleotide level editing directly at the target sites in the genome proved challenging. Nonetheless, our experiments revealed that efficient editing at the single-nucleotide level was achievable on target DNA sequences that are hybridized with 5'-end-truncated dual single-guide RNAs (sgRNAs). Our findings contribute to a deeper understanding of the paired nickases approach, offering a single-mismatch intolerance design strategy for accurate nucleotide editing. This strategy not only enhances the precision of genome editing but also marks a significant step forward in the development of nickase-derived genome editing technologies.
Collapse
Affiliation(s)
| | | | - Sang Jun Lee
- Department of Systems Biotechnology, Institute of Microbiomics, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
4
|
Zhang R, Chai N, Liu T, Zheng Z, Lin Q, Xie X, Wen J, Yang Z, Liu YG, Zhu Q. The type V effectors for CRISPR/Cas-mediated genome engineering in plants. Biotechnol Adv 2024; 74:108382. [PMID: 38801866 DOI: 10.1016/j.biotechadv.2024.108382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/07/2024] [Accepted: 05/24/2024] [Indexed: 05/29/2024]
Abstract
A plethora of CRISPR effectors, such as Cas3, Cas9, and Cas12a, are commonly employed as gene editing tools. Among these, Cas12 effectors developed based on Class II type V proteins exhibit distinct characteristics compared to Class II type VI and type II effectors, such as their ability to generate non-allelic DNA double-strand breaks, their compact structures, and the presence of a single RuvC-like nuclease domain. Capitalizing on these advantages, Cas12 family proteins have been increasingly explored and utilized in recent years. However, the characteristics and applications of different subfamilies within the type V protein family have not been systematically summarized. In this review, we focus on the characteristics of type V effector (CRISPR/Cas12) proteins and the current methods used to discover new effector proteins. We also summarize recent modifications based on engineering of type V effectors. In addition, we introduce the applications of type V effectors for gene editing in animals and plants, including the development of base editors, tools for regulating gene expression, methods for gene targeting, and biosensors. We emphasize the prospects for development and application of CRISPR/Cas12 effectors with the goal of better utilizing toolkits based on this protein family for crop improvement and enhanced agricultural production.
Collapse
Affiliation(s)
- Ruixiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Taoli Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zhiye Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qiupeng Lin
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Xianrong Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Zi Yang
- College of Natural & Agricultural Sciences, University of California, Riverside, 900 University Ave, Riverside, CA 92507, USA
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou 510642, China; College of Agriculture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
5
|
Liu S, Xiao F, Li Y, Zhang Y, Wang Y, Shi G. Establishment of the CRISPR-Cpf1 gene editing system in Bacillus licheniformis and multiplexed gene knockout. Synth Syst Biotechnol 2024; 10:39-48. [PMID: 39224148 PMCID: PMC11366866 DOI: 10.1016/j.synbio.2024.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/13/2024] [Accepted: 08/06/2024] [Indexed: 09/04/2024] Open
Abstract
Bacillus licheniformis is a significant industrial microorganism. Traditional gene editing techniques relying on homologous recombination often exhibit low efficiency due to their reliance on resistance genes. Additionally, the established CRISPR gene editing technology, utilizing Cas9 endonuclease, faces challenges in achieving simultaneous knockout of multiple genes. To address this limitation, the CRISPR-Cpf1 system has been developed, enabling multiplexed gene editing across various microorganisms. Key to the efficient gene editing capability of this system is the rigorous screening of highly effective expression elements to achieve conditional expression of protein Cpf1. In this study, we employed mCherry as a reporter gene and harnessed P mal for regulating the expression of Cpf1 to establish the CRISPR-Cpf1 gene editing system in Bacillus licheniformis. Our system achieved a 100 % knockout efficiency for the single gene vpr and up to 80 % for simultaneous knockout of the double genes epr and mpr. Furthermore, the culture of a series of protease-deficient strains revealed that the protease encoded by aprE contributed significantly to extracellular enzyme activity (approximately 80 %), whereas proteases encoded by vpr, epr, and mpr genes contributed to a smaller proportion of extracellular enzyme activity. These findings provide support for effective molecular modification and metabolic regulation in industrial organisms.
Collapse
Affiliation(s)
- Suxin Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Fengxu Xiao
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yupeng Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Yanling Wang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, PR China
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, PR China
- Jiangsu Provincial Engineering Research Center for Bioactive Product Processing, Jiangnan University, Wuxi, 214122, Jiangsu, PR China
| |
Collapse
|
6
|
Lim SR, Kim HJ, Lee SJ. Efficient CRISPR-Cas12f1-Mediated Multiplex Bacterial Genome Editing via Low-Temperature Recovery. J Microbiol Biotechnol 2024; 34:1522-1529. [PMID: 38881238 PMCID: PMC11294644 DOI: 10.4014/jmb.2403.03033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/18/2024]
Abstract
CRISPR-Cas system is being used as a powerful genome editing tool with developments focused on enhancing its efficiency and accuracy. Recently, the miniature CRISPR-Cas12f1 system, which is small enough to be easily loaded onto various vectors for cellular delivery, has gained attention. In this study, we explored the influence of temperature conditions on multiplex genome editing using CRISPR-Cas12f1 in an Escherichia coli model. It was revealed that when two distinct targets in the genome are edited simultaneously, the editing efficiency can be enhanced by allowing cells to recover at a reduced temperature during the editing process. Additionally, employing 3'-end truncated sgRNAs facilitated the simultaneous single-nucleotide level editing of three targets. Our results underscore the potential of optimizing recovery temperature and sgRNA design protocols in developing more effective and precise strategies for multiplex genome editing across various organisms.
Collapse
Affiliation(s)
- Se Ra Lim
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
- Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology and Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea
| |
Collapse
|
7
|
Lee HJ, Lee SJ. Single-Nucleotide Microbial Genome Editing Using CRISPR-Cas12a. Methods Mol Biol 2024; 2760:147-155. [PMID: 38468087 DOI: 10.1007/978-1-0716-3658-9_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Microbial genome editing can be achieved by donor DNA-directed mutagenesis and CRISPR-Cas12a-mediated negative selection. Single-nucleotide-level genome editing enables the manipulation of microbial cells exactly as designed. Here, we describe single-nucleotide substitutions/indels in the target DNA of E. coli genome using a mutagenic DNA oligonucleotide donor and truncated crRNA/Cas12a system. The maximal truncation of nucleotides at the 3'-end of the crRNA enables Cas12a-mediated single-nucleotide-level precise editing at galK targets in the genome of E. coli.
Collapse
Affiliation(s)
- Ho Joung Lee
- Department of Systems Biotechnology, and Institute of Microbiomics, Chung-Ang University, Anseong, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, and Institute of Microbiomics, Chung-Ang University, Anseong, Republic of Korea.
| |
Collapse
|
8
|
Lim SR, Lee HJ, Kim HJ, Lee SJ. Multiplex Single-Nucleotide Microbial Genome Editing Achieved by CRISPR-Cas9 Using 5'-End-Truncated sgRNAs. ACS Synth Biol 2023; 12:2203-2207. [PMID: 37368988 PMCID: PMC10368013 DOI: 10.1021/acssynbio.3c00323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Indexed: 06/29/2023]
Abstract
Multiplex genome editing with CRISPR-Cas9 offers a cost-effective solution for time and labor savings. However, achieving high accuracy remains a challenge. In an Escherichia coli model system, we achieved highly efficient single-nucleotide level simultaneous editing of the galK and xylB genes using the 5'-end-truncated single-molecular guide RNA (sgRNA) method. Furthermore, we successfully demonstrated the simultaneous editing of three genes (galK, xylB, and srlD) at single-nucleotide resolution. To showcase practical application, we targeted the cI857 and ilvG genes in the genome of E. coli. While untruncated sgRNAs failed to produce any edited cells, the use of truncated sgRNAs allowed us to achieve simultaneous and accurate editing of these two genes with an efficiency of 30%. This enabled the edited cells to retain their lysogenic state at 42 °C and effectively alleviated l-valine toxicity. These results suggest that our truncated sgRNA method holds significant potential for widespread and practical use in synthetic biology.
Collapse
Affiliation(s)
| | | | - Hyun Ju Kim
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic
of Korea
| |
Collapse
|
9
|
Jeong SH, Kim HJ, Lee SJ. New Target Gene Screening Using Shortened and Random sgRNA Libraries in Microbial CRISPR Interference. ACS Synth Biol 2023; 12:800-808. [PMID: 36787424 PMCID: PMC10028695 DOI: 10.1021/acssynbio.2c00595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Indexed: 02/16/2023]
Abstract
CRISPR interference (CRISPRi) screening has been used for identification of target genes related to specific phenotypes using single-molecular guide RNA (sgRNA) libraries. In CRISPRi screening, the sizes of random sgRNA libraries contained with the original target recognition sequences are large (∼1012). Here, we demonstrated that the length of the target recognition sequence (TRS) can be shortened in sgRNAs from the original 20 nucleotides (N20) to 9 nucleotides (N9) that is still sufficient for dCas9 to repress target genes in the xylose operon of Escherichia coli, regardless of binding to a promoter or open reading frame region. Based on the results, we constructed random sgRNA plasmid libraries with 5'-shortened TRS lengths, and identified xylose metabolic target genes by Sanger sequencing of sgRNA plasmids purified from Xyl- phenotypic cells. Next, the random sgRNA libraries were harnessed to screen for target genes to enhance violacein pigment production in synthetic E. coli cells. Seventeen target genes were selected by analyzing the redundancy of the TRS in sgRNA plasmids in dark purple colonies. Among them, seven genes (tyrR, pykF, cra, ptsG, pykA, sdaA, and tnaA) have been known to increase the intracellular l-tryptophan pool, the precursor of a violacein. Seventeen cells with a single deletion of each target gene exhibited a significant increase in violacein production. These results indicate that using shortened random TRS libraries for CRISPRi can be simple and cost-effective for phenotype-based target gene screening.
Collapse
Affiliation(s)
- Song Hee Jeong
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology,
and Institute of Microbiomics, Chung-Ang
University, Anseong 17546, Republic of Korea
| |
Collapse
|
10
|
Lee HJ, Kim HJ, Lee SJ. Miniature CRISPR-Cas12f1-Mediated Single-Nucleotide Microbial Genome Editing Using 3'-Truncated sgRNA. CRISPR J 2023; 6:52-61. [PMID: 36576897 PMCID: PMC9942177 DOI: 10.1089/crispr.2022.0071] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The CRISPR-Cas system has been used as a convenient tool for genome editing because the nuclease that cuts the target DNA and the guide RNA that recognizes the target are separated into modules. Cas12f1, which has a smaller size than that of other Cas nucleases, is easily loaded into vectors and is emerging as a new genome editing tool. In this study, AsCas12f1 was used to negatively select only Escherichia coli cells obtained by oligonucleotide-directed genome editing. Although double-, triple-, and quadruple-base substitutions were accurately and efficiently performed in the genome, the performance of single-base editing was poor. To resolve this limitation, we serially truncated the 3'-end of sgRNAs and determined the maximal truncation required to maintain the target DNA cleavage activity of Cas12f1. Negative selection of single-nucleotide-edited cells was efficiently performed with the maximally 3'-truncated sgRNA-Cas12f1 complex in vivo. Moreover, Sanger sequencing showed that the accuracy of single-nucleotide substitution, insertion, and deletion in the microbial genome was improved. These results demonstrated that a truncated sgRNA approach could be widely used for accurate CRISPR-mediated genome editing.
Collapse
Affiliation(s)
- Ho Joung Lee
- Department of Systems Biotechnology, Institute of Microbiomics, Chung-Ang University, Anseong, Republic of Korea
| | - Hyun Ju Kim
- Department of Systems Biotechnology, Institute of Microbiomics, Chung-Ang University, Anseong, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Institute of Microbiomics, Chung-Ang University, Anseong, Republic of Korea.,Address correspondence to: Sang Jun Lee, Department of Systems Biotechnology, Institute of Microbiomics, Chung-Ang University, Anseong 17546, Republic of Korea.
| |
Collapse
|
11
|
Jeong SH, Lee HJ, Lee SJ. Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. J Microbiol 2023; 61:13-36. [PMID: 36723794 PMCID: PMC9890466 DOI: 10.1007/s12275-022-00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 02/02/2023]
Abstract
With developments in synthetic biology, "engineering biology" has emerged through standardization and platformization based on hierarchical, orthogonal, and modularized biological systems. Genome engineering is necessary to manufacture and design synthetic cells with desired functions by using bioparts obtained from sequence databases. Among various tools, the CRISPR-Cas system is modularly composed of guide RNA and Cas nuclease; therefore, it is convenient for editing the genome freely. Recently, various strategies have been developed to accurately edit the genome at a single nucleotide level. Furthermore, CRISPR-Cas technology has been extended to molecular diagnostics for nucleic acids and detection of pathogens, including disease-causing viruses. Moreover, CRISPR technology, which can precisely control the expression of specific genes in cells, is evolving to find the target of metabolic biotechnology. In this review, we summarize the status of various CRISPR technologies that can be applied to synthetic biology and discuss the development of synthetic biology combined with CRISPR technology in microbiology.
Collapse
Affiliation(s)
- Song Hee Jeong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ho Joung Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|