1
|
Liu J, Li Y, Xu X, Wu Y, Liu Y, Li J, Du G, Chen J, Lv X, Liu L. Multiplexed engineering of cytochrome P450 enzymes for promoting terpenoid synthesis in Saccharomyces cerevisiae cell factories: A review. Biotechnol Adv 2025; 81:108560. [PMID: 40068711 DOI: 10.1016/j.biotechadv.2025.108560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 03/07/2025] [Indexed: 03/15/2025]
Abstract
Terpenoids, also known as isoprenoids, represent the largest and most structurally diverse family of natural products, and their biosynthesis is closely related to cytochrome P450 enzymes (P450s). Given the limitations of direct extraction from natural resources, such as low productivity and environmental concerns, heterologous expression of P450s in microbial cell factories has emerged as a promising, efficient, and sustainable strategy for terpenoid production. The yeast expression system is a preferred selection for terpenoid synthesis because of its inner membrane system, which is required for eukaryotic P450 expression, and the inherent mevalonate pathway providing precursors for terpenoid synthesis. In this review, we discuss the advanced strategies used to enhance the local enzyme concentration and catalytic properties of P450s in Saccharomyces cerevisiae, with a focus on recent developments in metabolic and protein engineering. Expression enhancement and subcellular compartmentalization are specifically employed to increase the local enzyme concentration, whereas cofactor, redox partner, and enzyme engineering are utilized to improve the catalytic efficiency and substrate specificity of P450s. Subsequently, we discuss the application of P450s for the pathway engineering of terpenoid synthesis and whole-cell biotransformation, which are profitable for the industrial application of P450s in S. cerevisiae chassis. Finally, we explore the potential of using computational and artificial intelligence technologies to rationally design and construct high-performance cell factories, which offer promising pathways for future terpenoid biosynthesis.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Jian Chen
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, China; Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi 214122, China; Food Laboratory of Zhongyuan, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
2
|
Tang S, Gao W, Guo Q, Wei D, Wang FQ. Orchestrating multiple subcellular organelles of Saccharomyces cerevisiae for efficient production of squalene. BIORESOURCE TECHNOLOGY 2025; 424:132294. [PMID: 39999895 DOI: 10.1016/j.biortech.2025.132294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/22/2025] [Accepted: 02/22/2025] [Indexed: 02/27/2025]
Abstract
Squalene widely used in medicines, food, and cosmetics. Subcellular organelle engineering is an effective way to develop squalene-hyperproducing yeasts. Here, we demonstrated that synergistically modifying multiple organelles in Saccharomyces cerevisiae, including mitochondria, endoplasmic reticulum (ER), lipid droplets (LDs), and cell wall (CW), effectively increased squalene production. Based on the previously developed dual cytoplasmic-mitochondrial engineering strain SquMC13, squalene production capacity was further enhanced by improving the ER function for protein expression, expanding the LDs size for squalene storage, and increasing CW integrity to maintain high cell viability. Combinatorial modification of these organelles enhanced squalene productivity to 3.4-times that of SquMC13. NADPH generation was optimized, resulting in a further 3.9 % increase in squalene production. An efficient strain for squalene production was developed, the squalene production titer of which reached 55.8 g/L with 0.5 g/L/h productivity and specific cell production of 0.5 g/g dry cell weight, paving the way for industrial squalene production.
Collapse
Affiliation(s)
- Shuyan Tang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Wenzhuo Gao
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Qidi Guo
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China
| | - Feng-Qing Wang
- State Key Laboratory of Bioreactor Engineering, Newworld Institute of Biotechnology, East China University of Science and Technology, P.O. Box 311, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
3
|
Ai J, Yin Z, Gao J, Wang W, Lu F, Qin HM, Mao S. Redesigning CYP109E1 for Improving Catalytic Performance in 25-Hydroxyvitamin D 3 Synthesis Through Synergistic Enhancement of Electron Transfer and NADPH Regeneration. ACS Synth Biol 2025; 14:1240-1249. [PMID: 40181670 DOI: 10.1021/acssynbio.4c00879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
P450 enzymes are promising biocatalysts and play an important role in the field of drug synthesis due to their high catalytic activity and stereoselectivity. CYP109E1 from Bacillus megaterium was used to convert VD3 for the production of 25(OH)VD3. However, the industrial production was still limited due to the low catalytic performance of CYP109E1. To overcome this, we constructed an engineered strain containing a modified CYP109E1 coupled with an efficient electron transfer chain and NADPH regeneration system. First, Adx4-108T69E-Fpr was identified as the most compatible redox partner for the enzyme based on in-silico analysis. Then, targeted mutations were introduced at the substrate channel of CYP109E1, resulting in higher production efficiency. Next, the production of 25(OH)VD3 was increased by 13.1% after introducing a double Adx4-108T69E expression cassette. Finally, an NADPH regeneration system was introduced by overexpressing zwf, which increased the yield of 25(OH)VD3 48.7%. These results demonstrate that recombinant Escherichia coli BL21 (DE3) coexpressing CYP109E1_R70A-ZWF and 2Adx4-108T69Es-Fpr is an efficient whole-cell biocatalyst for the synthesis of 25(OH)VD3, illustrating an attractive strategy for improving the catalytic efficiency of P450 enzymes.
Collapse
Affiliation(s)
- Jiaying Ai
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology; Tianjin 300457, PR China
| | - Ziyang Yin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology; Tianjin 300457, PR China
| | - Jikai Gao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology; Tianjin 300457, PR China
| | - Wenjing Wang
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology; Tianjin 300457, PR China
| | - Fuping Lu
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology; Tianjin 300457, PR China
| | - Hui-Min Qin
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology; Tianjin 300457, PR China
| | - Shuhong Mao
- Key Laboratory of Industrial Fermentation Microbiology of the Ministry of Education; Tianjin Key Laboratory of Industrial Microbiology, College of Biotechnology, National Engineering Laboratory for Industrial Enzymes, Tianjin University of Science and Technology; Tianjin 300457, PR China
| |
Collapse
|
4
|
Wei W, Yang C, Su Z, Wang Y, Wang P, Yan X, Zhou Z. Engineering a Yeast Cell Factory to Sustainably Biosynthesize Parthenolide. ACS Synth Biol 2025; 14:729-739. [PMID: 40050240 DOI: 10.1021/acssynbio.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025]
Abstract
The sesquiterpene lactone parthenolide is a promising anticancer drug. Its biosynthesis via a microbial cell factory has been considered as a sustainable alternative to plant extraction. Herein, systematic metabolic engineering approaches, as well as the introduction of a novel noncanonical tricarboxylic acid (TCA) cycle, were employed to enhance the production of the key precursor germacrene A. By identifying two new dehydrogenases and controlling the expression of parthenolide synthase, we further achieved the elimination of byproducts and enhanced parthenolide production. A two-stage fermentation approach and in situ product extraction using macroreticular resin were further applied to relieve the nocuous effect of costunolide and parthenolide on the growth of yeast cell factories, ultimately achieving a titer of 549.7 mg/L for parthenolide and 972.7 mg/L for costunolide in a 10 L fermenter, which represents the highest reported titer obtained by microbial fermentation. The strategies should also contribute to the microbial cell factory-construction for other natural products exhibiting toxicity.
Collapse
Affiliation(s)
- Wenping Wei
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengshuai Yang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Zhen Su
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yan Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Pingping Wang
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xing Yan
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhihua Zhou
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Hao H, Yao M, Wang Y, Zhang C, Liu Z, Nielsen J, Shi S, Xiao W, Yuan Y. Extending the G1 phase improves the production of lipophilic compounds in yeast by boosting enzyme expression and increasing cell size. Proc Natl Acad Sci U S A 2024; 121:e2413486121. [PMID: 39536088 PMCID: PMC11588078 DOI: 10.1073/pnas.2413486121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/12/2024] [Indexed: 11/16/2024] Open
Abstract
Cell phase engineering can significantly impact protein synthesis and cell size, potentially enhancing the production of lipophilic products. This study investigated the impact of G1 phase extension on resource allocation, metabolic functions, and the unfolded protein response (UPR) in yeast, along with the potential for enhancing the production of lipophilic compounds. In brief, the regulation of the G1 phase was achieved by deleting CLN3 (G1 cyclin) in various yeast strains. This modification resulted in a 83% increase in cell volume, a 76.9% increase in dry cell weight, a 82% increase in total protein content, a 41% increase in carotenoid production, and a 159% increase in fatty alcohol production. Transcriptomic analysis revealed significant upregulation of multiple metabolic pathways involved in acetyl-CoA (acetyl coenzyme A) synthesis, ensuring an ample supply of precursors for the synthesis of lipophilic products. Furthermore, we observed improved protein synthesis, attributed to UPR activation during the prolonged G1 phase. These findings not only enhanced our understanding and application of yeast's capacity to synthesize lipophilic compounds in applied biotechnology but also offered unique insights into cellular behavior during the modified G1 phase, particularly regarding the UPR response, for basic research. This study demonstrates the potential of G1 phase intervention to increase the yield of hydrophobic compounds in yeast, providing a promising direction for further research.
Collapse
Affiliation(s)
- He Hao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| | - Chenglong Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| | - Zihe Liu
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Jens Nielsen
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
- Department of Life Sciences, Chalmers University of Technology, GothenburgSE41296, Sweden
- BioInnovation Institute, CopenhagenDK2200, Denmark
| | - Shuobo Shi
- College of Life Science and Technology, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing100029, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen518071, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin300072, China
| |
Collapse
|
6
|
Sun ML, Zou Z, Lin L, Ledesma-Amaro R, Wang K, Ji XJ. Systematic metabolic engineering of Yarrowia lipolytica for efficient production of phytohormone abscisic acid. Synth Syst Biotechnol 2024; 10:165-173. [PMID: 39552760 PMCID: PMC11564786 DOI: 10.1016/j.synbio.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 09/14/2024] [Accepted: 10/17/2024] [Indexed: 11/19/2024] Open
Abstract
Abscisic acid (ABA) is an important phytohormone with diverse applications. It currently relies on the fermentation of Botrytis cinerea, which suffers from limited availability of genetic engineering tools. Here, Yarrowia lipolytica was engineered to enable de novo biosynthesis of ABA. To overcome the rate-limiting P450 enzymes, systematic engineering strategies were implemented. Firstly, the dissolved oxygen was increased to boost the activity of P450 enzymes. Secondly, the expansion of endoplasmic reticulum was implemented to improve the functional expression of P450 enzymes. Lastly, rate-limiting enzymes were assembled to facilitate substrate trafficking. Moreover, ABA production was further improved by strengthening the mevalonate pathway. Finally, the engineered strain produced 1221.45 mg/L of ABA in a 5-L bioreactor. The study provides effective approaches for alleviating rate-limiting P450 enzymes to enhance ABA production and achieve competitive industrial-level ABA production in Y. lipolytica.
Collapse
Affiliation(s)
- Mei-Li Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Ziyun Zou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, United Kingdom
| | - Kaifeng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, 211816, People's Republic of China
| |
Collapse
|
7
|
Cheng Y, Luo L, Tang H, Wang J, Ren L, Cui G, Zhao Y, Tang J, Su P, Wang Y, Hu Y, Ma Y, Guo J, Huang L. Engineering the microenvironment of P450s to enhance the production of diterpenoids in Saccharomyces cerevisiae. Acta Pharm Sin B 2024; 14:4608-4618. [PMID: 39525594 PMCID: PMC11544389 DOI: 10.1016/j.apsb.2024.05.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/17/2024] [Accepted: 05/18/2024] [Indexed: 11/16/2024] Open
Abstract
Cytochrome P450 enzymes play a crucial role as catalysts in the biosynthesis of numerous plant natural products (PNPs). Enhancing the catalytic activity of P450s in host microorganisms is essential for the efficient production of PNPs through synthetic biology. In this study, we engineered Saccharomyces cerevisiae to optimize the microenvironment for boosting the activities of P450s, including coexpression with the redox partner genes, enhancing NADPH supply, expanding the endoplasmic reticulum (ER), strengthening heme biosynthesis, and regulating iron uptake. This created a platform for the efficient production 11,20-dihydroxyferruginol, a key intermediate of the bioactive compound tanshinones. The yield was enhanced by 42.1-fold through 24 effective genetic edits. The optimized strain produced up to 67.69 ± 1.33 mg/L 11,20-dihydroxyferruginol in shake flasks. Our work represents a promising advancement toward constructing yeast cell factories containing P450s and paves the way for microbial biosynthesis of tanshinones in the future.
Collapse
Affiliation(s)
- Yatian Cheng
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Linglong Luo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Hao Tang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Jian Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Li Ren
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Guanghong Cui
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yujun Zhao
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Jinfu Tang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Ping Su
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yanan Wang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Yating Hu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ying Ma
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Juan Guo
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| | - Luqi Huang
- National Resource Center for Chinese Materia Medica, China Academy of Chinese Medical Science, State Key Laboratory of Dao-di Herbs, Beijing 100700, China
| |
Collapse
|
8
|
Shi Y, Lu S, Zhou X, Wang X, Zhang C, Wu N, Dong T, Xing S, Wang Y, Xiao W, Yao M. Systematic metabolic engineering enables highly efficient production of vitamin A in Saccharomyces cerevisiae. Synth Syst Biotechnol 2024; 10:58-67. [PMID: 39247801 PMCID: PMC11380465 DOI: 10.1016/j.synbio.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/10/2024] Open
Abstract
Vitamin A is a micronutrient critical for versatile biological functions and has been widely used in the food, cosmetics, pharmaceutical, and nutraceutical industries. Synthetic biology and metabolic engineering enable microbes, especially the model organism Saccharomyces cerevisiae (generally recognised as safe) to possess great potential for the production of vitamin A. Herein, we first generated a vitamin A-producing strain by mining β-carotene 15,15'-mono(di)oxygenase from different sources and identified two isoenzymes Mbblh and Ssbco with comparable catalytic properties but different catalytic mechanisms. Combinational expression of isoenzymes increased the flux from β-carotene to vitamin A metabolism. To modulate the vitamin A components, retinol dehydrogenase 12 from Homo sapiens was introduced to achieve more than 90 % retinol purity using shake flask fermentation. Overexpressing POS5Δ17 enhanced the reduced nicotinamide adenine dinucleotide phosphate pool, and the titer of vitamin A was elevated by almost 46 %. Multi-copy integration of the key rate-limiting step gene Mbblh further improved the synthesis of vitamin A. Consequently, the titer of vitamin A in the strain harbouring the Ura3 marker was increased to 588 mg/L at the shake-flask level. Eventually, the highest reported titer of 5.21 g/L vitamin A in S. cerevisiae was achieved in a 1-L bioreactor. This study unlocked the potential of S. cerevisiae for synthesising vitamin A in a sustainable and economical way, laying the foundation for the commercial-scale production of bio-based vitamin A.
Collapse
Affiliation(s)
- Yi Shi
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Shuhuan Lu
- CABIO Bioengineering (Wuhan) Co., Ltd, Wuhan, 430075, China
| | - Xiao Zhou
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Xinhui Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Chenglong Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Nan Wu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Shilong Xing
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
- School of Life Sciences, Faculty of Medicine, Tianjin University, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen, 518071, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, China
| |
Collapse
|
9
|
Ma R, Feng XY, Tang JJ, Ha W, Shi YP. 5α-Epoxyalantolactone from Inula macrophylla attenuates cognitive deficits in scopolamine-induced Alzheimer's disease mice model. NATURAL PRODUCTS AND BIOPROSPECTING 2024; 14:39. [PMID: 38954263 PMCID: PMC11219692 DOI: 10.1007/s13659-024-00462-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 06/26/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is a complex neurodegenerative condition. 5α-epoxyalantolactone (5α-EAL), a eudesmane-type sesquiterpene isolated from the herb of Inula macrophylla, has various pharmacological effects. This work supposed to investigate the improved impact of 5α-EAL on cognitive impairment. 5α-EAL inhibited the generation of nitric oxide (NO) in BV-2 cells stimulated with lipopolysaccharide (LPS) with an EC50 of 6.2 μM. 5α-EAL significantly reduced the production of prostaglandin E2 (PGE2) and tumor necrosis factor-α (TNF-α), while also inhibiting the production of cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) proteins. The ability of 5α-EAL to penetrate the blood-brain barrier (BBB) was confirmed via a parallel artificial membrane permeation assay. Scopolamine (SCOP)-induced AD mice model was employed to assess the improved impacts of 5α-EAL on cognitive impairment in vivo. After the mice were pretreated with 5α-EAL (10 and 30 mg/kg per day, i.p.) for 21 days, the behavioral experiments indicated that the administration of the 5α-EAL could alleviate the cognitive and memory impairments. 5α-EAL significantly reduced the AChE activity in the brain of SCOP-induced AD mice. In summary, these findings highlight the beneficial effects of the natural product 5α-EAL as a potential bioactive compound for attenuating cognitive deficits in AD due to its pharmacological profile.
Collapse
Affiliation(s)
- Rui Ma
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China
| | - Xu-Yao Feng
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Jiang-Jiang Tang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, No. 3 Taicheng Road, Yangling, 712100, Shaanxi, China
| | - Wei Ha
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources, Key Laboratory for Natural Medicines of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou, 730000, People's Republic of China.
| |
Collapse
|
10
|
Wang J, Zhou X, Li K, Wang H, Zhang C, Shi Y, Yao M, Wang Y, Xiao W. Systems Metabolic Engineering for Efficient Violaxanthin Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10459-10468. [PMID: 38666490 DOI: 10.1021/acs.jafc.4c01240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2024]
Abstract
Violaxanthin is a plant-derived orange xanthophyll with remarkable antioxidant activity that has wide applications in various industries, such as food, agriculture, and cosmetics. In addition, it is the key precursor of important substances such as abscisic acid and fucoxanthin. Saccharomyces cerevisiae, as a GRAS (generally regarded as safe) chassis, provides a good platform for producing violaxanthin production with a yield of 7.3 mg/g DCW, which is far away from commercialization. Herein, an integrated strategy involving zeaxanthin epoxidase (ZEP) source screening, cytosol redox state engineering, and nicotinamide adenine dinucleotide phosphate (NADPH) regeneration was implemented to enhance violaxanthin production in S. cerevisiae. 58aa-truncated ZEP from Vitis vinifera exhibited optimal efficiency in an efficient zeaxanthin-producing strain. The titer of violaxanthin gradually increased by 17.9-fold (up to 119.2 mg/L, 15.19 mg/g DCW) via cytosol redox state engineering and NADPH supplementation. Furthermore, balancing redox homeostasis considerably improved the zeaxanthin concentration by 139.3% (up to 143.9 mg/L, 22.06 mg/g DCW). Thus, the highest reported titers of violaxanthin and zeaxanthin in S. cerevisiae were eventually achieved. This study not only builds an efficient platform for violaxanthin biosynthesis but also serves as a useful reference for the microbial production of xanthophylls.
Collapse
Affiliation(s)
- Jia Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Xiao Zhou
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Kexin Li
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Herong Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Chenglong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Yi Shi
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ying Wang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Life Sciences, Faculty of Medicine, Tianjin University, Tianjin 300072, China
- Frontier Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| |
Collapse
|
11
|
Bureau JA, Oliva ME, Dong Y, Ignea C. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Nat Prod Rep 2023; 40:1822-1848. [PMID: 37523210 DOI: 10.1039/d3np00005b] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Covering: 2011-2022The low amounts of terpenoids produced in plants and the difficulty in synthesizing these complex structures have stimulated the production of terpenoid compounds in microbial hosts by metabolic engineering and synthetic biology approaches. Advances in engineering yeast for terpenoid production will be covered in this review focusing on four directions: (1) manipulation of host metabolism, (2) rewiring and reconstructing metabolic pathways, (3) engineering the catalytic activity, substrate selectivity and product specificity of biosynthetic enzymes, and (4) localizing terpenoid production via enzymatic fusions and scaffolds, or subcellular compartmentalization.
Collapse
Affiliation(s)
| | | | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
12
|
Naseri G. A roadmap to establish a comprehensive platform for sustainable manufacturing of natural products in yeast. Nat Commun 2023; 14:1916. [PMID: 37024483 PMCID: PMC10079933 DOI: 10.1038/s41467-023-37627-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/24/2023] [Indexed: 04/08/2023] Open
Abstract
Secondary natural products (NPs) are a rich source for drug discovery. However, the low abundance of NPs makes their extraction from nature inefficient, while chemical synthesis is challenging and unsustainable. Saccharomyces cerevisiae and Pichia pastoris are excellent manufacturing systems for the production of NPs. This Perspective discusses a comprehensive platform for sustainable production of NPs in the two yeasts through system-associated optimization at four levels: genetics, temporal controllers, productivity screening, and scalability. Additionally, it is pointed out critical metabolic building blocks in NP bioengineering can be identified through connecting multilevel data of the optimized system using deep learning.
Collapse
Affiliation(s)
- Gita Naseri
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| |
Collapse
|
13
|
Wang H, Jiang G, Liang N, Dong T, Shan M, Yao M, Wang Y, Xiao W, Yuan Y. Systematic Engineering to Enhance 8-Hydroxygeraniol Production in Yeast. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4319-4327. [PMID: 36857414 DOI: 10.1021/acs.jafc.2c09028] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
8-Hydroxygeraniol, an important component of insect sex pheromones and defensive secretions, can be used as a potential biological insect repellent in agriculture. Microbial production provides sustainable and green means to efficiently gain 8-hydroxygeraniol. The conversion of geraniol to 8-hydroxygeraniol by P450 geraniol-8-hydroxylase (G8H) was regarded as the bottleneck for 8-hydroxygeraniol production. Herein, an integrated strategy consisting of the fitness between G8H and cytochrome P450 reductase (CPR), endoplasmic reticulum (ER) engineering, and reduced nicotinamide adenine dinucleotide phosphate (NADPH) supply is implemented to enhance the production of 8-hydroxygeraniol in Saccharomyces cerevisiae. The titer of 8-hydroxygeraniol was gradually increased by 2.1-fold (up to 158.1 mg/L). Moreover, dehydrogenase ADH6 and reductase ARI1 responsible for the reduction of 8-hydroxygeraniol toward shunt products were also deleted, elevating 8-hydroxygeraniol production to 238.9 mg/L at the shake flask level. Consequently, more than 1.0 g/L 8-hydroxygeraniol in S. cerevisiae was achieved in 5.0 L fed-batch fermentation by a carbon restriction strategy, which was the highest-reported titer in microbes so far. Our work not only provides a sustainable way for de novo biosynthesis of 8-hydroxygeraniol but also sets a good reference in P450 engineering in microbes.
Collapse
Affiliation(s)
- Herong Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Guozhen Jiang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Nan Liang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Tianyu Dong
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mengying Shan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mingdong Yao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Ying Wang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Wenhai Xiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Georgia Tech Shenzhen Institute, Tianjin University, Shenzhen 518071, China
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
14
|
Kwan BD, Seligmann B, Nguyen TD, Franke J, Dang TTT. Leveraging synthetic biology and metabolic engineering to overcome obstacles in plant pathway elucidation. CURRENT OPINION IN PLANT BIOLOGY 2023; 71:102330. [PMID: 36599248 DOI: 10.1016/j.pbi.2022.102330] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/22/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Major hurdles in plant biosynthetic pathway elucidation and engineering include the need for rapid testing of enzyme candidates and the lack of complex substrates that are often not accumulated in the plant, amenable to synthesis, or commercially available. Linking metabolic engineering with gene discovery in both yeast and plant holds great promise to expedite the elucidation process and, at the same time, provide a platform for the sustainable production of plant metabolites. In this review, we highlight how synthetic biology and metabolic engineering alleviated longstanding obstacles in plant pathway elucidation. Recent advances in developing these chassis that showcase established and emerging strategies in accelerating biosynthetic gene discovery will also be discussed.
Collapse
Affiliation(s)
- Brooke D Kwan
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3427 University Way, Kelowna, BC, Canada
| | - Benedikt Seligmann
- Leibniz University Hannover, Institute of Botany, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Trinh-Don Nguyen
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3427 University Way, Kelowna, BC, Canada
| | - Jakob Franke
- Leibniz University Hannover, Institute of Botany, Herrenhäuser Str. 2, 30419 Hannover, Germany.
| | - Thu-Thuy T Dang
- Department of Chemistry, Irving K. Barber Faculty of Science, University of British Columbia, 3427 University Way, Kelowna, BC, Canada.
| |
Collapse
|
15
|
Li X, Zhang Y, Zabed HM, Yun J, Zhang G, Zhao M, Ravikumar Y, Qi X. High-level production of d-arabitol by Zygosaccharomyces rouxii from glucose: Metabolic engineering and process optimization. BIORESOURCE TECHNOLOGY 2023; 367:128251. [PMID: 36334865 DOI: 10.1016/j.biortech.2022.128251] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 06/16/2023]
Abstract
d-Arabitol is a top value-added compound with wide applications in the food, pharmaceutical and biochemical industries. Nevertheless, sustainable biosynthesis of d-arabitol is limited by lack of efficient strains and suitable fermentation process. Herein, metabolic engineering and process optimization were performed in Zygosaccharomyces rouxii to overcoming these limitations. Adopting systems metabolic engineering include enhancement of innate biosynthetic pathway, supply of precursor substrate d-ribulose-5P and cofactors regeneration, a novel recombinant strain ZR-5A with good performance was obtained, which boosted d-arabitol production up to 29.01 g/L, 59.31 % higher than the parent strain. Further with the optimum medium composition and fed-batch fermentation, the strain ZR-5A finally produced 149.10 g/L d-arabitol with the productivity of 1.04 g/L/h, which was the highest titer ever reported by Z.rouxii system. This is the first report on the use of metabolic engineering to construct Z. rouxii chassis for the sustainable production of d-arabitol.
Collapse
Affiliation(s)
- Xiaolan Li
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yufei Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Hossain M Zabed
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junhua Yun
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Guoyan Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mei Zhao
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yuvaraj Ravikumar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xianghui Qi
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, Jiangsu, China.
| |
Collapse
|