1
|
Inoue S, Thanh Nguyen D, Hamada K, Okuma R, Okada C, Okada M, Abe I, Sengoku T, Goto Y, Suga H. De Novo Discovery of Pseudo-Natural Prenylated Macrocyclic Peptide Ligands. Angew Chem Int Ed Engl 2024; 63:e202409973. [PMID: 38837490 DOI: 10.1002/anie.202409973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/03/2024] [Indexed: 06/07/2024]
Abstract
Prenylation of peptides is widely observed in the secondary metabolites of diverse organisms, granting peptides unique chemical properties distinct from proteinogenic amino acids. Discovery of prenylated peptide agents has largely relied on isolation or genome mining of naturally occurring molecules. To devise a platform technology for de novo discovery of artificial prenylated peptides targeting a protein of choice, here we have integrated the thioether-macrocyclic peptide (teMP) library construction/selection technology, so-called RaPID (Random nonstandard Peptides Integrated Discovery) system, with a Trp-C3-prenyltransferase KgpF involved in the biosynthesis of a prenylated natural product. This unique enzyme exhibited remarkably broad substrate tolerance, capable of modifying various Trp-containing teMPs to install a prenylated residue with tricyclic constrained structure. We constructed a vast library of prenylated teMPs and subjected it to in vitro selection against a phosphoglycerate mutase. This selection platform has led to the identification of a pseudo-natural prenylated teMP inhibiting the target enzyme with an IC50 of 30 nM. Importantly, the prenylation was essential for the inhibitory activity, enhanced serum stability, and cellular uptake of the peptide, highlighting the benefits of peptide prenylation. This work showcases the de novo discovery platform for pseudo-natural prenylated peptides, which is readily applicable to other drug targets.
Collapse
Affiliation(s)
- Sumika Inoue
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Dinh Thanh Nguyen
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Rika Okuma
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Chikako Okada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Masahiro Okada
- Department of Material and Life Chemistry, Kanagawa University, Kanagawa-ku, 221-8686, Yokohama, Japan
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Kanazawa-ku, 236-0004, Yokohama, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo, 606-8502, Kyoto, Japan
- Toyota Riken Rising Fellow, Toyota Physical and Chemical Research Institute, Sakyo, 606-8502, Kyoto, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, 113-0033, Tokyo, Japan
| |
Collapse
|
2
|
Chen XW, Liu Z, Dai S, Zou Y. Discovery, Characterization and Engineering of the Free l-Histidine C4-Prenyltransferase. J Am Chem Soc 2024; 146:23686-23691. [PMID: 39140691 DOI: 10.1021/jacs.4c08388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Prenylation of amino acids is a critical step for synthesizing building blocks of prenylated alkaloid family natural products, where the corresponding prenyltransferase that catalyzes prenylation on free l-histidine (l-His) has not yet been identified. Here, we first discovered and characterized a prenyltransferase FunA from the antifungal agent fungerin pathway that efficiently performs C4-dimethylallylation on l-His. Crystal structure-guided engineering of the prenyl-binding pocket of FunA, a single M181A mutation, successfully converted it into a C4-geranyltransferase. Furthermore, FunA and its variant FunA-M181A show broad substrate promiscuity toward substrates that vary in substituents of the imidazole ring. Our work furthers our knowledge of free amino acid prenyltransferase and expands the arsenal of alkylation biocatalysts for imidazole-containing small molecules.
Collapse
Affiliation(s)
- Xi-Wei Chen
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| | - Zhiyong Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Shaobo Dai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory on Metabolic & Developmental Sciences, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Yi Zou
- College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, P. R. China
| |
Collapse
|
3
|
Zhang Y, Hamada K, Satake M, Sengoku T, Goto Y, Suga H. Switching Prenyl Donor Specificities of Cyanobactin Prenyltransferases. J Am Chem Soc 2023; 145:23893-23898. [PMID: 37877712 DOI: 10.1021/jacs.3c07373] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2023]
Abstract
Prenyltransferases in cyanobactin biosynthesis are of growing interest as peptide alkylation biocatalysts, but their prenylation modes characterized so far have been limited to dimethylallylation (C5) or geranylation (C10). Here we engaged in structure-guided engineering of the prenyl-binding pocket of a His-C2-geranyltransferase LimF to modulate its prenylation mode. Contraction of the pocket by a single mutation led to a His-C2-dimethylallyltransferase. More importantly, pocket expansion by a double mutation successfully repurposed LimF for farnesylation (C15), which is an unprecedented mode in this family. Furthermore, the obtained knowledge of the essential residues to construct the farnesyl-binding pocket has allowed for rational design of a Tyr-O-farnesyltransferase by a triple mutation of a Tyr-O-dimethylallyltransferase PagF. These results provide an approach to manipulate the prenyl specificity of cyanobactin prenyltransferases, broadening the chemical space covered by this class of enzymes and expanding the toolbox of peptide alkylation biocatalysts.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keisuke Hamada
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Masayuki Satake
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Toru Sengoku
- Department of Biochemistry, Graduate School of Medicine, Yokohama City University, Yokohama 236-0004, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| |
Collapse
|
4
|
Alexander AK, Elshahawi SI. Promiscuous Enzymes for Residue-Specific Peptide and Protein Late-Stage Functionalization. Chembiochem 2023; 24:e202300372. [PMID: 37338668 PMCID: PMC10496146 DOI: 10.1002/cbic.202300372] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/20/2023] [Accepted: 06/20/2023] [Indexed: 06/21/2023]
Abstract
The late-stage functionalization of peptides and proteins holds significant promise for drug discovery and facilitates bioorthogonal chemistry. This selective functionalization leads to innovative advances in in vitro and in vivo biological research. However, it is a challenging endeavor to selectively target a certain amino acid or position in the presence of other residues containing reactive groups. Biocatalysis has emerged as a powerful tool for selective, efficient, and economical modifications of molecules. Enzymes that have the ability to modify multiple complex substrates or selectively install nonnative handles have wide applications. Herein, we highlight enzymes with broad substrate tolerance that have been demonstrated to modify a specific amino acid residue in simple or complex peptides and/or proteins at late-stage. The different substrates accepted by these enzymes are mentioned together with the reported downstream bioorthogonal reactions that have benefited from the enzymatic selective modifications.
Collapse
Affiliation(s)
- Ashley K Alexander
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| | - Sherif I Elshahawi
- Department of Biomedical and Pharmaceutical Sciences, Chapman University School of Pharmacy, Rinker Health Science Campus, Irvine, CA 92618, USA
| |
Collapse
|
5
|
Zhang Y, Goto Y, Suga H. Discovery, biochemical characterization, and bioengineering of cyanobactin prenyltransferases. Trends Biochem Sci 2023; 48:360-374. [PMID: 36564250 DOI: 10.1016/j.tibs.2022.11.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/04/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Prenylation is a post-translational modification (PTM) widely found in primary and secondary metabolism. This modification can enhance the lipophilicity of molecules, enabling them to interact with lipid membranes more effectively. The prenylation of peptides is often carried out by cyanobactin prenyltransferases (PTases) from cyanobacteria. These enzymes are of interest due to their ability to add prenyl groups to unmodified peptides, thus making them more effective therapeutics through the subsequent acquisition of increased membrane permeability and bioavailability. Herein we review the current knowledge of cyanobactin PTases, focusing on their discovery, biochemistry, and bioengineering, and highlight the potential application of them as peptide alkylation biocatalysts to generate peptide therapeutics.
Collapse
Affiliation(s)
- Yuchen Zhang
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Yuki Goto
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| | - Hiroaki Suga
- Department of Chemistry, Graduate School of Science, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan.
| |
Collapse
|