1
|
Saito A, Taniguchi H, Matsumoto T, Yamada R, Ogino H. Sortase A-Mediated Ligation Facilitates Metabolic Channeling in Saccharomyces cerevisiae. ACS Synth Biol 2025; 14:1567-1571. [PMID: 40254838 DOI: 10.1021/acssynbio.4c00841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2025]
Abstract
Although the yeast Saccharomyces cerevisiae has been utilized for the bioproduction of various valuable substances, improving product concentration and production rate remains a challenge in its practical application. In this respect, metabolic channeling represents a potential strategy for addressing this issue. In the metabolic pathway for synthesizing a target product, closing enzymes induce substrate channeling, in which intermediates are transferred to the following enzyme to facilitate processing. To close enzymes in proximity, protein ligation is one of the solutions. However, genetic fusion often causes the generation of inactive complexes, and few techniques exist for ligating enzymes in yeast without loss of enzyme activity. Herein, we focused on sortase A, which links a short peptide tag between two target proteins. First, we demonstrated sortase A-mediated ligation in yeast using split-green fluorescent protein. Then, sortase A-mediated ligation was applied to ligate metabolic enzymes related to 3-hydroxypropionic acid, which improved 3-HP production by 2.42-fold. This strategy represents a novel approach for improving yeast bioproduction.
Collapse
Affiliation(s)
- Akira Saito
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hikaru Taniguchi
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Takuya Matsumoto
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Ryosuke Yamada
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| | - Hiroyasu Ogino
- Department of Chemical Engineering, Osaka Metropolitan University, Osaka 599-8531, Japan
| |
Collapse
|
2
|
Gad S, Ayakar S. Protein scaffolds: A tool for multi-enzyme assembly. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 32:e00670. [PMID: 34824995 PMCID: PMC8605239 DOI: 10.1016/j.btre.2021.e00670] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 09/03/2021] [Indexed: 12/31/2022]
Abstract
The synthesis of complex molecules using multiple enzymes simultaneously in one reaction vessel has rapidly emerged as a new frontier in the field of bioprocess technology. However, operating different enzymes together in a single vessel limits their operational performance which needs to be addressed. With this respect, scaffolding proteins play an immense role in bringing different enzymes together in a specific manner. The scaffolding improves the catalytic performance, enzyme stability and provides an optimal micro-environment for biochemical reactions. This review describes the components of protein scaffolds, different ways of constructing a protein scaffold-based multi-enzyme complex, and their effects on enzyme kinetics. Moreover, different conjugation strategies viz; dockerin-cohesin interaction, SpyTag-SpyCatcher system, peptide linker-based ligation, affibody, and sortase-mediated ligation are discussed in detail. Various analytical and characterization tools that have enabled the development of these scaffolding strategies are also reviewed. Such mega-enzyme complexes promise wider applications in the field of biotechnology and bioengineering.
Collapse
Affiliation(s)
- Shubhada Gad
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| | - Sonal Ayakar
- Department of Biotechnology, Institute of Chemical Technology - IndianOil Odisha Campus Bhubaneswar, Odisha 751013, India
| |
Collapse
|
3
|
Saito Y, Oikawa M, Sato T, Nakazawa H, Ito T, Kameda T, Tsuda K, Umetsu M. Machine-Learning-Guided Library Design Cycle for Directed Evolution of Enzymes: The Effects of Training Data Composition on Sequence Space Exploration. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03753] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Yutaka Saito
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- AIST-Waseda University Computational Bio Big-Data Open Innovation Laboratory (CBBD-OIL), 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Misaki Oikawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Takumi Sato
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoyuki Ito
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Tomoshi Kameda
- Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology (AIST), 2-4-7 Aomi, Koto-ku, Tokyo 135-0064, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| | - Koji Tsuda
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
- Research and Services Division of Materials Data and Integrated System, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, 6-6-11 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
- Center for Advanced Intelligence Project, RIKEN, 1-4-1 Nihombashi, Chuo-ku, Tokyo 103-0027, Japan
| |
Collapse
|
4
|
Fuchs ACD, Ammelburg M, Martin J, Schmitz RA, Hartmann MD, Lupas AN. Archaeal Connectase is a specific and efficient protein ligase related to proteasome β subunits. Proc Natl Acad Sci U S A 2021; 118:e2017871118. [PMID: 33688044 PMCID: PMC7980362 DOI: 10.1073/pnas.2017871118] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Sequence-specific protein ligations are widely used to produce customized proteins "on demand." Such chimeric, immobilized, fluorophore-conjugated or segmentally labeled proteins are generated using a range of chemical, (split) intein, split domain, or enzymatic methods. Where short ligation motifs and good chemoselectivity are required, ligase enzymes are often chosen, although they have a number of disadvantages, for example poor catalytic efficiency, low substrate specificity, and side reactions. Here, we describe a sequence-specific protein ligase with more favorable characteristics. This ligase, Connectase, is a monomeric homolog of 20S proteasome subunits in methanogenic archaea. In pulldown experiments with Methanosarcina mazei cell extract, we identify a physiological substrate in methyltransferase A (MtrA), a key enzyme of archaeal methanogenesis. Using microscale thermophoresis and X-ray crystallography, we show that only a short sequence of about 20 residues derived from MtrA and containing a highly conserved KDPGA motif is required for this high-affinity interaction. Finally, in quantitative activity assays, we demonstrate that this recognition tag can be repurposed to allow the ligation of two unrelated proteins. Connectase catalyzes such ligations at substantially higher rates, with higher yields, but without detectable side reactions when compared with a reference enzyme. It thus presents an attractive tool for the development of new methods, for example in the preparation of selectively labeled proteins for NMR, the covalent and geometrically defined attachment of proteins on surfaces for cryo-electron microscopy, or the generation of multispecific antibodies.
Collapse
Affiliation(s)
- Adrian C D Fuchs
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Moritz Ammelburg
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Jörg Martin
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian Albrecht University of Kiel, 24118 Kiel, Germany
| | - Marcus D Hartmann
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany
| | - Andrei N Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany;
| |
Collapse
|
5
|
Dai X, Böker A, Glebe U. Broadening the scope of sortagging. RSC Adv 2019; 9:4700-4721. [PMID: 35514663 PMCID: PMC9060782 DOI: 10.1039/c8ra06705h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 01/31/2019] [Indexed: 01/20/2023] Open
Abstract
Sortases are enzymes occurring in the cell wall of Gram-positive bacteria. Sortase A (SrtA), the best studied sortase class, plays a key role in anchoring surface proteins with the recognition sequence LPXTG covalently to oligoglycine units of the bacterial cell wall. This unique transpeptidase activity renders SrtA attractive for various purposes and motivated researchers to study multiple in vivo and in vitro ligations in the last decades. This ligation technique is known as sortase-mediated ligation (SML) or sortagging and developed to a frequently used method in basic research. The advantages are manifold: extremely high substrate specificity, simple access to substrates and enzyme, robust nature and easy handling of sortase A. In addition to the ligation of two proteins or peptides, early studies already included at least one artificial (peptide equipped) substrate into sortagging reactions - which demonstrates the versatility and broad applicability of SML. Thus, SML is not only a biology-related technique, but has found prominence as a major interdisciplinary research tool. In this review, we provide an overview about the use of sortase A in interdisciplinary research, mainly for protein modification, synthesis of protein-polymer conjugates and immobilization of proteins on surfaces.
Collapse
Affiliation(s)
- Xiaolin Dai
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Alexander Böker
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
- Lehrstuhl für Polymermaterialien und Polymertechnologie, Universität Potsdam 14476 Potsdam-Golm Germany
| | - Ulrich Glebe
- Fraunhofer Institute for Applied Polymer Research IAP Geiselbergstr. 69 14476 Potsdam-Golm Germany
| |
Collapse
|
6
|
Fujiwara R, Noda S, Tanaka T, Kondo A. Muconic Acid Production Using Gene-Level Fusion Proteins in Escherichia coli. ACS Synth Biol 2018; 7:2698-2705. [PMID: 30350569 DOI: 10.1021/acssynbio.8b00380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study reports on the improving of muconic acid (MA) production by using metabolically engineered Escherichia coli. Three MA synthesis pathways separately were introduced into E. coli. After 72 h of cultivation, two of the three strains, i.e., one carrying the Pathway 1 (1.00 g/L) and the other carrying the Pathway 3 (1.34 g/L) produced MA. To increase MA production, the enzymes of the shikimate pathway (AroC and AroD) were overexpressed in these strains. Although the overexpression of AroC increased the MA production (1.59 g/L) by the Pathway 1, AroD overexpression decreased it by the Pathway 3. The metabolic channeling using gene-level fusion proteins additionally increased the MA production. In the pathway 1 and pH-controlled cultures, the overexpression of a fusion protein (AroC and MenF) increased the MA production from 20 g/L glucose to >3 and 4.45 g/L, respectively. These results suggest that the metabolic channeling approach is a promising strategy to increase the yield of the target compound.
Collapse
Affiliation(s)
- Ryosuke Fujiwara
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Shuhei Noda
- Center for Sustainable Resource Science, RIKEN, Wako, Saitama 351-0198, Japan
| | - Tsutomu Tanaka
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe 657-8501, Japan
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, Kobe 657-8501, Japan
| |
Collapse
|
7
|
Abstract
Metabolic engineering has been an important approach for microbial bio-production. To produce bio-chemicals with engineered microorganisms, metabolic pathways have been edited using several common strategies, including gene disruption, gene overexpression, and gene attenuation. Here, we demonstrated metabolic channeling based on enzymatic metabolic enzyme ligation as a noteworthy approach for enhancing a desired metabolic flux. To achieve metabolic channeling , the metabolic enzymes should be in close proximity in cells. In the literature, several methodologies have been recently applied to achieve metabolic channeling . Meanwhile, we have proposed a strategy for possessing metabolic enzymes in close proximity, by utilizing sortase A as a stapler to tether such enzymes in Escherichia coli. By tethering metabolic enzymes that catalyze the reactions before and after a target metabolite, the metabolic flux may be enhanced. This chapter describes the approach for enhancing acetate-producing flux by sortase-A-assisted metabolic ligation in E. coli.
Collapse
|
8
|
Abstract
Exciting new technological developments have pushed the boundaries of structural biology, and have enabled studies of biological macromolecules and assemblies that would have been unthinkable not long ago. Yet, the enhanced capabilities of structural biologists to pry into the complex molecular world have also placed new demands on the abilities of protein engineers to reproduce this complexity into the test tube. With this challenge in mind, we review the contents of the modern molecular engineering toolbox that allow the manipulation of proteins in a site-specific and chemically well-defined fashion. Thus, we cover concepts related to the modification of cysteines and other natural amino acids, native chemical ligation, intein and sortase-based approaches, amber suppression, as well as chemical and enzymatic bio-conjugation strategies. We also describe how these tools can be used to aid methodology development in X-ray crystallography, nuclear magnetic resonance, cryo-electron microscopy and in the studies of dynamic interactions. It is our hope that this monograph will inspire structural biologists and protein engineers alike to apply these tools to novel systems, and to enhance and broaden their scope to meet the outstanding challenges in understanding the molecular basis of cellular processes and disease.
Collapse
|
9
|
Sortase-Mediated Ligation of Purely Artificial Building Blocks. Polymers (Basel) 2018; 10:polym10020151. [PMID: 30966187 PMCID: PMC6414994 DOI: 10.3390/polym10020151] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2017] [Revised: 01/19/2018] [Accepted: 02/02/2018] [Indexed: 01/16/2023] Open
Abstract
Sortase A (SrtA) from Staphylococcus aureus has been often used for ligating a protein with other natural or synthetic compounds in recent years. Here we show that SrtA-mediated ligation (SML) is universally applicable for the linkage of two purely artificial building blocks. Silica nanoparticles (NPs), poly(ethylene glycol) and poly(N-isopropyl acrylamide) are chosen as synthetic building blocks. As a proof of concept, NP–polymer, NP–NP, and polymer–polymer structures are formed by SrtA catalysis. Therefore, the building blocks are equipped with the recognition sequence needed for SrtA reaction—the conserved peptide LPETG—and a pentaglycine motif. The successful formation of the reaction products is shown by means of transmission electron microscopy (TEM), matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-ToF MS), and dynamic light scattering (DLS). The sortase catalyzed linkage of artificial building blocks sets the stage for the development of a new approach to link synthetic structures in cases where their synthesis by established chemical methods is complicated.
Collapse
|
10
|
Abstract
Along with the development of metabolic engineering and synthetic biology tools, various microbes are being used to produce aromatic chemicals. In microbes, aromatics are mainly produced via a common important precursor, chorismate, in the shikimate pathway. Natural or non-natural aromatics have been produced by engineering metabolic pathways involving chorismate. In the past decade, novel approaches have appeared to produce various aromatics or to increase their productivity, whereas previously, the targets were mainly aromatic amino acids and the strategy was deregulating feedback inhibition. In this review, we summarize recent studies of microbial production of aromatics based on metabolic engineering approaches. In addition, future perspectives and challenges in this research area are discussed.
Collapse
Affiliation(s)
- Shuhei Noda
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Akihiko Kondo
- Center for Sustainable Resource Science, RIKEN, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan; Department of Chemical Science and Engineering, Kobe University, 1-1 Rokkodai, Nada, Kobe 657-8501, Japan.
| |
Collapse
|