1
|
Zhang Y, Ma Z, Li W, Liu C, Gao H, Wang M, Li L, Zhang Q, Lv B, Qin L, Li C. Dynamic regulation and enhancement of synthetic network for efficient biosynthesis of monoterpenoid α-pinene in yeast cell factory. BIORESOURCE TECHNOLOGY 2025; 419:132064. [PMID: 39809385 DOI: 10.1016/j.biortech.2025.132064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/01/2024] [Accepted: 01/10/2025] [Indexed: 01/16/2025]
Abstract
Pinene is a plant volatile monoterpenoid which is used in the fragrance, pesticide, and biofuel industries. Although α-pinene has been synthesized in microbial cell factories, the low synthesis efficiency has thus far limited its production. In this study, the cell growth and α-pinene production of the engineered yeast were decoupled by a dynamic regulation strategy, resulting in a 101.1-fold increase in α-pinene production compared to the control. By enhancing the mevalonate pathway and expanding the cytosolic acetyl-CoA pool, α-pinene production was further increased. Overexpression of the transporter Sge1 resulted in a redistribution of global gene transcription, leading to an increased flux of α-pinene synthesis. By optimizing the aeration flow rate in 3-L bioreactors, the α-pinene production reached 1.8 g/L, which is the highest reported α-pinene production in cell factories. Our research provides insights and fundamentals for the efficient synthesis of monoterpenoids in microbial cell factories.
Collapse
Affiliation(s)
- Yapeng Zhang
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Zhidong Ma
- School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China
| | - Wenqiang Li
- Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Chenwen Liu
- Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China
| | - Huipeng Gao
- Sinopec Key Laboratory of Biofuels and Biochemicals, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian, Liaoning, China
| | - Meng Wang
- Sinopec Key Laboratory of Biofuels and Biochemicals, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian, Liaoning, China
| | - Lanpeng Li
- Sinopec Key Laboratory of Biofuels and Biochemicals, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian, Liaoning, China
| | - Quan Zhang
- Sinopec Key Laboratory of Biofuels and Biochemicals, SINOPEC Dalian Research Institute of Petroleum and Petrochemicals Co., Ltd., Dalian, Liaoning, China
| | - Bo Lv
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.
| | - Lei Qin
- Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China.
| | - Chun Li
- Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Ministry of Industry and Information Technology, Institute of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China; Department of Chemical Engineering, Tsinghua University, Beijing, China; Key Lab for Industrial Biocatalysis, Ministry of Education, Tsinghua University, Beijing, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing, China; School of Chemistry and Chemical Engineering/State Key Laboratory Incubation Base for Green Processing of Chemical Engineering, Shihezi University, Shihezi, Xinjiang, China.
| |
Collapse
|
2
|
Dvořák P, Burýšková B, Popelářová B, Ebert BE, Botka T, Bujdoš D, Sánchez-Pascuala A, Schöttler H, Hayen H, de Lorenzo V, Blank LM, Benešík M. Synthetically-primed adaptation of Pseudomonas putida to a non-native substrate D-xylose. Nat Commun 2024; 15:2666. [PMID: 38531855 DOI: 10.1038/s41467-024-46812-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 03/11/2024] [Indexed: 03/28/2024] Open
Abstract
To broaden the substrate scope of microbial cell factories towards renewable substrates, rational genetic interventions are often combined with adaptive laboratory evolution (ALE). However, comprehensive studies enabling a holistic understanding of adaptation processes primed by rational metabolic engineering remain scarce. The industrial workhorse Pseudomonas putida was engineered to utilize the non-native sugar D-xylose, but its assimilation into the bacterial biochemical network via the exogenous xylose isomerase pathway remained unresolved. Here, we elucidate the xylose metabolism and establish a foundation for further engineering followed by ALE. First, native glycolysis is derepressed by deleting the local transcriptional regulator gene hexR. We then enhance the pentose phosphate pathway by implanting exogenous transketolase and transaldolase into two lag-shortened strains and allow ALE to finetune the rewired metabolism. Subsequent multilevel analysis and reverse engineering provide detailed insights into the parallel paths of bacterial adaptation to the non-native carbon source, highlighting the enhanced expression of transaldolase and xylose isomerase along with derepressed glycolysis as key events during the process.
Collapse
Affiliation(s)
- Pavel Dvořák
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic.
| | - Barbora Burýšková
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Barbora Popelářová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Cnr College Rd & Cooper Rd, St Lucia, QLD, QLD 4072, Australia
| | - Tibor Botka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| | - Dalimil Bujdoš
- APC Microbiome Ireland, University College Cork, College Rd, Cork, T12 YT20, Ireland
- School of Microbiology, University College Cork, College Rd, Cork, T12 Y337, Ireland
| | - Alberto Sánchez-Pascuala
- Department of Biochemistry and Synthetic Metabolism, Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Straße 10, 35043, Marburg, Germany
| | - Hannah Schöttler
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Heiko Hayen
- Institute of Inorganic and Analytical Chemistry, University of Münster, Corrensstraße 48, 48149, Münster, Germany
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología CNB-CSIC, Cantoblanco, Darwin 3, 28049, Madrid, Spain
| | - Lars M Blank
- Institute of Applied Microbiology, RWTH Aachen University, Worringer Weg 1, 52074, Aachen, Germany
| | - Martin Benešík
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 753/5, 62500, Brno, Czech Republic
| |
Collapse
|
3
|
Ma X, Ma L, Huo YX. Reconstructing the transcription regulatory network to optimize resource allocation for robust biosynthesis. Trends Biotechnol 2021; 40:735-751. [PMID: 34895933 DOI: 10.1016/j.tibtech.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 11/07/2021] [Accepted: 11/08/2021] [Indexed: 11/16/2022]
Abstract
An ideal microbial cell factory (MCF) should deliver maximal resources to production, which conflicts with the microbe's native growth-oriented resource allocation strategy and can therefore lead to early termination of the high-yield period. Reallocating resources from growth to production has become a critical factor in constructing robust MCFs. Instead of strengthening specific biosynthetic pathways, emerging endeavors are focused on rearranging the gene regulatory network to fundamentally reprogram the resource allocation pattern. Combining this idea with transcriptional regulation within the hierarchical regulatory network, this review discusses recent engineering strategies targeting the transcription machinery, module networks, regulatory edges, and bottom network layer. This global view will help to construct a production-oriented phenotype that fully harnesses the potential of MCFs.
Collapse
Affiliation(s)
- Xiaoyan Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Lianjie Ma
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, People's Republic of China; Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, People's Republic of China.
| |
Collapse
|
4
|
Park J, Wang HH. Systematic dissection of σ 70 sequence diversity and function in bacteria. Cell Rep 2021; 36:109590. [PMID: 34433066 PMCID: PMC8716302 DOI: 10.1016/j.celrep.2021.109590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 10/29/2022] Open
Abstract
Primary σ70 factors are key conserved bacterial regulatory proteins that interact with regulatory DNA to control gene expression. It is, however, poorly understood whether σ70 sequence diversity in different bacteria reflects functional differences. Here, we employ comparative and functional genomics to explore the sequence and function relationship of primary σ70. Using multiplex automated genome engineering and deep sequencing (MAGE-seq), we generate a saturation mutagenesis library and high-resolution fitness map of E. coli σ70 in domains 2-4. Mapping natural σ70 sequence diversity to the E. coli σ70 fitness landscape reveals significant predicted fitness deficits across σ70 orthologs. Interestingly, these predicted deficits are larger than observed fitness changes for 15 σ70 orthologs introduced into E. coli. Finally, we use a multiplexed transcriptional reporter assay and RNA sequencing (RNA-seq) to explore functional differences of several σ70 orthologs. This work provides an in-depth analysis of σ70 sequence and function to improve efforts to understand the evolution and engineering potential of this global regulator.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Irving Medical Center, New York, NY, USA.
| | - Harris H Wang
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
5
|
Wang T, Tague N, Whelan SA, Dunlop MJ. Programmable gene regulation for metabolic engineering using decoy transcription factor binding sites. Nucleic Acids Res 2021; 49:1163-1172. [PMID: 33367820 PMCID: PMC7826281 DOI: 10.1093/nar/gkaa1234] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 11/12/2020] [Accepted: 12/08/2020] [Indexed: 12/30/2022] Open
Abstract
Transcription factor decoy binding sites are short DNA sequences that can titrate a transcription factor away from its natural binding site, therefore regulating gene expression. In this study, we harness synthetic transcription factor decoy systems to regulate gene expression for metabolic pathways in Escherichia coli. We show that transcription factor decoys can effectively regulate expression of native and heterologous genes. Tunability of the decoy can be engineered via changes in copy number or modifications to the DNA decoy site sequence. Using arginine biosynthesis as a showcase, we observed a 16-fold increase in arginine production when we introduced the decoy system to steer metabolic flux towards increased arginine biosynthesis, with negligible growth differences compared to the wild type strain. The decoy-based production strain retains high genetic integrity; in contrast to a gene knock-out approach where mutations were common, we detected no mutations in the production system using the decoy-based strain. We further show that transcription factor decoys are amenable to multiplexed library screening by demonstrating enhanced tolerance to pinene with a combinatorial decoy library. Our study shows that transcription factor decoy binding sites are a powerful and compact tool for metabolic engineering.
Collapse
Affiliation(s)
- Tiebin Wang
- Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA 02215, USA.,Biological Design Center, Boston University, Boston, MA 02215, USA
| | - Nathan Tague
- Biological Design Center, Boston University, Boston, MA 02215, USA.,Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Mary J Dunlop
- Molecular Biology, Cell Biology & Biochemistry, Boston University, Boston, MA 02215, USA.,Biological Design Center, Boston University, Boston, MA 02215, USA.,Biomedical Engineering, Boston University, Boston, MA 02215, USA
| |
Collapse
|
6
|
Exploration of the Tolerance Ability of a Cell-Free Biosynthesis System to Toxic Substances. Appl Biochem Biotechnol 2019; 189:1096-1107. [DOI: 10.1007/s12010-019-03039-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/10/2019] [Indexed: 11/26/2022]
|
7
|
Park J, Wang HH. Systematic and synthetic approaches to rewire regulatory networks. CURRENT OPINION IN SYSTEMS BIOLOGY 2018; 8:90-96. [PMID: 30637352 PMCID: PMC6329604 DOI: 10.1016/j.coisb.2017.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Microbial gene regulatory networks are composed of cis- and trans-components that in concert act to control essential and adaptive cellular functions. Regulatory components and interactions evolve to adopt new configurations through mutations and network rewiring events, resulting in novel phenotypes that may benefit the cell. Advances in high-throughput DNA synthesis and sequencing have enabled the development of new tools and approaches to better characterize and perturb various elements of regulatory networks. Here, we highlight key recent approaches to systematically dissect the sequence space of cis-regulatory elements and trans-regulators as well as their inter-connections. These efforts yield fundamental insights into the architecture, robustness, and dynamics of gene regulation and provide models and design principles for building synthetic regulatory networks for a variety of practical applications.
Collapse
Affiliation(s)
- Jimin Park
- Department of Systems Biology, Columbia University Medical Center, New York, USA
- Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, USA
- Department of Pathology and Cell Biology, Columbia University Medical Center, New York, USA
| |
Collapse
|
8
|
Siu Y, Fenno J, Lindle JM, Dunlop MJ. Design and Selection of a Synthetic Feedback Loop for Optimizing Biofuel Tolerance. ACS Synth Biol 2018; 7:16-23. [PMID: 29022700 DOI: 10.1021/acssynbio.7b00260] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Feedback control allows cells to dynamically sense and respond to environmental changes. However, synthetic controller designs can be challenging because of implementation issues, such as determining optimal expression levels for circuit components within a feedback loop. Here, we addressed this by coupling rational design with selection to engineer a synthetic feedback circuit to optimize tolerance of Escherichia coli to the biojet fuel pinene. E. coli can be engineered to produce pinene, but it is toxic to cells. Efflux pumps, such as the AcrAB-TolC pump, can improve tolerance, but pump expression impacts growth. To address this, we used feedback to dynamically regulate pump expression in response to stress. We developed a library with thousands of synthetic circuit variants and subjected it to three types of pinene treatment (none, constant, and varying pinene). We were able to select for strains that were biofuel tolerant without a significant growth cost in the absence of biofuel. Using next-generation sequencing, we found common characteristics in the designs and identified controllers that dramatically improved biofuel tolerance.
Collapse
Affiliation(s)
- Yik Siu
- School of Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Jesse Fenno
- School of Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Jessica M. Lindle
- School of Engineering, University of Vermont, Burlington, Vermont 05405, United States
| | - Mary J. Dunlop
- School of Engineering, University of Vermont, Burlington, Vermont 05405, United States
- Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| |
Collapse
|