1
|
Mizutani M, Omori S, Yamane N, Suzuki Y, Glass JI, Chuang RY, Fukatsu T, Kakizawa S. Cloning and sequencing analysis of whole Spiroplasma genome in yeast. Front Microbiol 2024; 15:1411609. [PMID: 38881660 PMCID: PMC11176537 DOI: 10.3389/fmicb.2024.1411609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 05/08/2024] [Indexed: 06/18/2024] Open
Abstract
Cloning and transfer of long-stranded DNA in the size of a bacterial whole genome has become possible by recent advancements in synthetic biology. For the whole genome cloning and whole genome transplantation, bacteria with small genomes have been mainly used, such as mycoplasmas and related species. The key benefits of whole genome cloning include the effective maintenance and preservation of an organism's complete genome within a yeast host, the capability to modify these genome sequences through yeast-based genetic engineering systems, and the subsequent use of these cloned genomes for further experiments. This approach provides a versatile platform for in-depth genomic studies and applications in synthetic biology. Here, we cloned an entire genome of an insect-associated bacterium, Spiroplasma chrysopicola, in yeast. The 1.12 Mbp whole genome was successfully cloned in yeast, and sequences of several clones were confirmed by Illumina sequencing. The cloning efficiency was high, and the clones contained only a few mutations, averaging 1.2 nucleotides per clone with a mutation rate of 4 × 10-6. The cloned genomes could be distributed and used for further research. This study serves as an initial step in the synthetic biology approach to Spiroplasma.
Collapse
Affiliation(s)
- Masaki Mizutani
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Sawako Omori
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Noriko Yamane
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Yo Suzuki
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - John I Glass
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
| | - Ray-Yuan Chuang
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, CA, United States
- Telesis Bio, San Diego, CA, United States
| | - Takema Fukatsu
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Japan
| | - Shigeyuki Kakizawa
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
2
|
Ipoutcha T, Racharaks R, Huttelmaier S, Wilson CJ, Ozer EA, Hartmann EM. A synthetic biology approach to assemble and reboot clinically relevant Pseudomonas aeruginosa tailed phages. Microbiol Spectr 2024; 12:e0289723. [PMID: 38294230 PMCID: PMC10913387 DOI: 10.1128/spectrum.02897-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/17/2023] [Indexed: 02/01/2024] Open
Abstract
The rise in the frequency of antibiotic resistance has made bacterial infections, specifically Pseudomonas aeruginosa, a cause for greater concern. Phage therapy is a promising solution that uses naturally isolated phages to treat bacterial infections. Ecological limitations, which stipulate a discrete host range and the inevitable evolution of resistance, may be overcome through a better understanding of phage biology and the utilization of engineered phages. In this study, we developed a synthetic biology approach to construct tailed phages that naturally target clinically relevant strains of Pseudomonas aeruginosa. As proof of concept, we successfully cloned and assembled the JG024 and DMS3 phage genomes in yeast using transformation-associated recombination cloning and rebooted these two phage genomes in two different strains of P. aeruginosa. We identified factors that affected phage reboot efficiency like the phage species or the presence of antiviral defense systems in the bacterial strain. We have successfully extended this method to two other phage species and observed that the method enables the reboot of phages that are naturally unable to infect the strain used for reboot. This research represents a critical step toward the construction of clinically relevant, engineered P. aeruginosa phages.IMPORTANCEPseudomonas aeruginosa is a bacterium responsible for severe infections and a common major complication in cystic fibrosis. The use of antibiotics to treat bacterial infections has become increasingly difficult as antibiotic resistance has become more prevalent. Phage therapy is an alternative solution that is already being used in some European countries, but its use is limited by the narrow host range due to the phage receptor specificity, the presence of antiviral defense systems in the bacterial strain, and the possible emergence of phage resistance. In this study, we demonstrate the use of a synthetic biology approach to construct and reboot clinically relevant P. aeruginosa tailed phages. This method enables a significant expansion of possibilities through the construction of engineered phages for therapy applications.
Collapse
Affiliation(s)
- Thomas Ipoutcha
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Ratanachat Racharaks
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Stefanie Huttelmaier
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Cole J. Wilson
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
| | - Egon A. Ozer
- Division of Infectious Diseases, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Erica M. Hartmann
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, Illinois, USA
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
3
|
Guesdon G, Gourgues G, Rideau F, Ipoutcha T, Manso-Silván L, Jules M, Sirand-Pugnet P, Blanchard A, Lartigue C. Combining Fusion of Cells with CRISPR-Cas9 Editing for the Cloning of Large DNA Fragments or Complete Bacterial Genomes in Yeast. ACS Synth Biol 2023; 12:3252-3266. [PMID: 37843014 PMCID: PMC10662353 DOI: 10.1021/acssynbio.3c00248] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Indexed: 10/17/2023]
Abstract
The genetic engineering of genome fragments larger than 100 kbp is challenging and requires both specific methods and cloning hosts. The yeast Saccharomyces cerevisiae is considered as a host of choice for cloning and engineering whole or partial genomes from viruses, bacteria, and algae. Several methods are now available to perform these manipulations, each with its own limitations. In order to extend the range of yeast cloning strategies, a new approach combining two already described methods, Fusion cloning and CReasPy-Cloning, was developed. The CReasPy-Fusion method allows the simultaneous cloning and engineering of megabase-sized genomes in yeast by the fusion of bacterial cells with yeast spheroplasts carrying the CRISPR-Cas9 system. With this new approach, we demonstrate the feasibility of cloning and editing whole genomes from several Mycoplasma species belonging to different phylogenetic groups. We also show that CReasPy-Fusion allows the capture of large genome fragments with high efficacy, resulting in the successful cloning of selected loci in yeast. We finally identify bacterial nuclease encoding genes as barriers for CReasPy-Fusion by showing that their removal from the donor genome improves the cloning efficacy.
Collapse
Affiliation(s)
- Gabrielle Guesdon
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Géraldine Gourgues
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Fabien Rideau
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Thomas Ipoutcha
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Lucía Manso-Silván
- CIRAD,
UMR ASTRE, F-34398 Montpellier, France
- ASTRE,
Univ. Montpellier, CIRAD, INRAE, F-34398 Montpellier, France
| | - Matthieu Jules
- Université
Paris-Saclay, INRAE, AgroParisTech, Micalis Institute, F-78350 Jouy-en-Josas, France
| | - Pascal Sirand-Pugnet
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Alain Blanchard
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| | - Carole Lartigue
- Univ.
Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140 Villenave
d’Ornon, France
| |
Collapse
|
4
|
Guiraud J, Le Roy C, Rideau F, Sirand-Pugnet P, Lartigue C, Bébéar C, Arfi Y, Pereyre S. Improved transformation efficiency in Mycoplasma hominis enables disruption of the MIB-MIP system targeting human immunoglobulins. Microbiol Spectr 2023; 11:e0187323. [PMID: 37737635 PMCID: PMC10581049 DOI: 10.1128/spectrum.01873-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/18/2023] [Indexed: 09/23/2023] Open
Abstract
The pathogenicity of Mycoplasma hominis is poorly understood, mainly due to the absence of efficient genetic tools. A polyethylene glycol-mediated transformation protocol was recently developed for the M. hominis reference strain M132 using the pMT85-Tet plasmid. The transformation efficiency remained low, hampering generation of a large mutant library. In this study, we improved transformation efficiency by designing M. hominis-specific pMT85 derivatives. Using the Gibson Assembly, the Enterococcus-derived tet(M) gene of the pMT85-Tet plasmid was replaced by that of a M. hominis clinical isolate. Next, the Spiroplasma-derived spiralin gene promoter driving tet(M) expression was substituted by one of three putative regulatory regions (RRs): the M. hominis arginine deiminase RR, the M. hominis elongation factor Tu RR, or the 68 bp SynMyco synthetic RR. SynMyco-based construction led to a 100-fold increase in transformation efficiency in M. hominis M132. This construct was also transformed into the M. hominis PG21 reference strain and three other clinical isolates. The transposon insertion locus was determined for 128 M132-transformants. The majority of the impacted coding sequences encoded lipoproteins and proteins involved in DNA repair or in gene transfer. One transposon integration site was in the mycoplasma immunoglobulin protease gene. Phenotypic characterization of the mutant showed complete disruption of the human antibody cleavage ability of the transformant. These results demonstrate that our M. hominis-optimized plasmid can be used to generate large random transposon insertion libraries, enabling future studies of the pathogenicity of M. hominis. IMPORTANCE Mycoplasma hominis is an opportunistic human pathogen, whose physiopathology is poorly understood and for which genetic tools for transposition mutagenesis have been unavailable for years. A PEG-mediated transformation protocol was developed using the pMT85-Tet plasmid, but the transformation efficiency remained low. We designed a modified pMT85-Tet plasmid suitable for M. hominis. The use of a synthetic regulatory region upstream of the antibiotic resistance marker led to a 100-fold increase in the transformation efficiency. The generation and characterization of large transposon mutagenesis mutant libraries will provide insight into M. hominis pathogenesis. We selected a transformant in which the transposon was integrated in the locus encoding the immunoglobulin cleavage system MIB-MIP. Phenotypic characterization showed that the wild-type strain has a functional MIB-MIP system, whereas the mutant strain had lost the ability to cleave human immunoglobulins.
Collapse
Affiliation(s)
- Jennifer Guiraud
- Centre national de la recherche scientifique (CNRS), UMR 5234 Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
- Bacteriology Department, National Reference Centre for Bacterial Sexually Transmitted Infections, Bordeaux University Hospital, Bordeaux, France
| | - Chloé Le Roy
- Centre national de la recherche scientifique (CNRS), UMR 5234 Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
| | - Fabien Rideau
- INRAE, BFP, UMR 1332, Univ. Bordeaux, Villenave d Ornon, France
| | | | - Carole Lartigue
- INRAE, BFP, UMR 1332, Univ. Bordeaux, Villenave d Ornon, France
| | - Cécile Bébéar
- Centre national de la recherche scientifique (CNRS), UMR 5234 Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
- Bacteriology Department, National Reference Centre for Bacterial Sexually Transmitted Infections, Bordeaux University Hospital, Bordeaux, France
| | - Yonathan Arfi
- INRAE, BFP, UMR 1332, Univ. Bordeaux, Villenave d Ornon, France
| | - Sabine Pereyre
- Centre national de la recherche scientifique (CNRS), UMR 5234 Fundamental Microbiology and Pathogenicity, University of Bordeaux, Bordeaux, France
- Bacteriology Department, National Reference Centre for Bacterial Sexually Transmitted Infections, Bordeaux University Hospital, Bordeaux, France
| |
Collapse
|
5
|
Zhao G, Lu D, Li M, Wang Y. Gene editing tools for mycoplasmas: references and future directions for efficient genome manipulation. Front Microbiol 2023; 14:1191812. [PMID: 37275127 PMCID: PMC10232828 DOI: 10.3389/fmicb.2023.1191812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023] Open
Abstract
Mycoplasmas are successful pathogens that cause debilitating diseases in humans and various animal hosts. Despite the exceptionally streamlined genomes, mycoplasmas have evolved specific mechanisms to access essential nutrients from host cells. The paucity of genetic tools to manipulate mycoplasma genomes has impeded studies of the virulence factors of pathogenic species and mechanisms to access nutrients. This review summarizes several strategies for editing of mycoplasma genomes, including homologous recombination, transposons, clustered regularly interspaced short palindromic repeats (CRISPR)/Cas system, and synthetic biology. In addition, the mechanisms and features of different tools are discussed to provide references and future directions for efficient manipulation of mycoplasma genomes.
Collapse
Affiliation(s)
- Gang Zhao
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Doukun Lu
- National Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, China
| | - Min Li
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| | - Yujiong Wang
- Key Laboratory of Ministry of Education for Conservation and Utilization of Special Biological Resources in the Western China, Yinchuan, China
- School of Life Sciences, Ningxia University, Yinchuan, China
| |
Collapse
|
6
|
Zhu MC, Cui YZ, Wang JY, Xu H, Li BZ, Yuan YJ. Cross-species microbial genome transfer: a Review. Front Bioeng Biotechnol 2023; 11:1183354. [PMID: 37214278 PMCID: PMC10194841 DOI: 10.3389/fbioe.2023.1183354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/24/2023] [Indexed: 05/24/2023] Open
Abstract
Synthetic biology combines the disciplines of biology, chemistry, information science, and engineering, and has multiple applications in biomedicine, bioenergy, environmental studies, and other fields. Synthetic genomics is an important area of synthetic biology, and mainly includes genome design, synthesis, assembly, and transfer. Genome transfer technology has played an enormous role in the development of synthetic genomics, allowing the transfer of natural or synthetic genomes into cellular environments where the genome can be easily modified. A more comprehensive understanding of genome transfer technology can help to extend its applications to other microorganisms. Here, we summarize the three host platforms for microbial genome transfer, review the recent advances that have been made in genome transfer technology, and discuss the obstacles and prospects for the development of genome transfer.
Collapse
|
7
|
Koster CC, Postma ED, Knibbe E, Cleij C, Daran-Lapujade P. Synthetic Genomics From a Yeast Perspective. Front Bioeng Biotechnol 2022; 10:869486. [PMID: 35387293 PMCID: PMC8979029 DOI: 10.3389/fbioe.2022.869486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic Genomics focuses on the construction of rationally designed chromosomes and genomes and offers novel approaches to study biology and to construct synthetic cell factories. Currently, progress in Synthetic Genomics is hindered by the inability to synthesize DNA molecules longer than a few hundred base pairs, while the size of the smallest genome of a self-replicating cell is several hundred thousand base pairs. Methods to assemble small fragments of DNA into large molecules are therefore required. Remarkably powerful at assembling DNA molecules, the unicellular eukaryote Saccharomyces cerevisiae has been pivotal in the establishment of Synthetic Genomics. Instrumental in the assembly of entire genomes of various organisms in the past decade, the S. cerevisiae genome foundry has a key role to play in future Synthetic Genomics developments.
Collapse
Affiliation(s)
- Charlotte C Koster
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Eline D Postma
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Ewout Knibbe
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands
| | - Céline Cleij
- Department of Biotechnology, Delft University of Technology, Delft, Netherlands.,Department of Bionanoscience, Delft University of Technology, Delft, Netherlands
| | | |
Collapse
|
8
|
Postma ED, Dashko S, van Breemen L, Taylor Parkins SK, van den Broek M, Daran JM, Daran-Lapujade P. A supernumerary designer chromosome for modular in vivo pathway assembly in Saccharomyces cerevisiae. Nucleic Acids Res 2021; 49:1769-1783. [PMID: 33423048 PMCID: PMC7897487 DOI: 10.1093/nar/gkaa1167] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 11/10/2020] [Accepted: 12/14/2020] [Indexed: 12/02/2022] Open
Abstract
The construction of microbial cell factories for sustainable production of chemicals and pharmaceuticals requires extensive genome engineering. Using Saccharomyces cerevisiae, this study proposes synthetic neochromosomes as orthogonal expression platforms for rewiring native cellular processes and implementing new functionalities. Capitalizing the powerful homologous recombination capability of S. cerevisiae, modular neochromosomes of 50 and 100 kb were fully assembled de novo from up to 44 transcriptional-unit-sized fragments in a single transformation. These assemblies were remarkably efficient and faithful to their in silico design. Neochromosomes made of non-coding DNA were stably replicated and segregated irrespective of their size without affecting the physiology of their host. These non-coding neochromosomes were successfully used as landing pad and as exclusive expression platform for the essential glycolytic pathway. This work pushes the limit of DNA assembly in S. cerevisiae and paves the way for de novo designer chromosomes as modular genome engineering platforms in S. cerevisiae.
Collapse
Affiliation(s)
- Eline D Postma
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Sofia Dashko
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Lars van Breemen
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Shannara K Taylor Parkins
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Marcel van den Broek
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Jean-Marc Daran
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, van der Maasweg 9, 2627HZ Delft, The Netherlands
| |
Collapse
|
9
|
Vashee S, Arfi Y, Lartigue C. Budding yeast as a factory to engineer partial and complete microbial genomes. CURRENT OPINION IN SYSTEMS BIOLOGY 2020; 24:1-8. [PMID: 33015421 PMCID: PMC7523139 DOI: 10.1016/j.coisb.2020.09.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Yeast cells have long been used as hosts to propagate exogenous DNA. Recent progress in genome editing opens new avenues in synthetic biology. These developments allow the efficient engineering of microbial genomes in Saccharomyces cerevisiae that can then be rescued to yield modified bacteria/viruses. Recent examples show that the ability to quickly synthesize, assemble, and/or modify viral and bacterial genomes may be a critical factor to respond to emerging pathogens. However, this process has some limitations. DNA molecules much larger than two megabase pairs are complex to clone, bacterial genomes have proven to be difficult to rescue, and the dual-use potential of these technologies must be carefully considered. Regardless, the use of yeast as a factory has enormous appeal for biological applications.
Collapse
Affiliation(s)
| | - Yonathan Arfi
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, Villenave d'Ornon, France
| | - Carole Lartigue
- Univ. Bordeaux, INRAE, Biologie du Fruit et Pathologie, UMR 1332, F-33140, Villenave d'Ornon, France
| |
Collapse
|
10
|
Piñero-Lambea C, Garcia-Ramallo E, Martinez S, Delgado J, Serrano L, Lluch-Senar M. Mycoplasma pneumoniae Genome Editing Based on Oligo Recombineering and Cas9-Mediated Counterselection. ACS Synth Biol 2020; 9:1693-1704. [PMID: 32502342 PMCID: PMC7372593 DOI: 10.1021/acssynbio.0c00022] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Mycoplasma species
share a set of features, such as lack of a cell
wall, streamlined genomes, simplified metabolism, and the use of a
deviant genetic code, that make them attractive approximations of
what a chassis strain should ideally be. Among them, Mycoplasma
pneumoniae arises as a candidate for synthetic biology projects,
as it is one of the most deeply characterized bacteria. However, the
historical paucity of tools for editing Mycoplasma genomes has precluded
the establishment of M. pneumoniae as a suitable
chassis strain. Here, we developed an oligonucleotide recombineering
method for this strain based on GP35, a ssDNA recombinase originally
encoded by a Bacillus subtilis-associated phage.
GP35-mediated oligo recombineering is able to carry out point mutations
in the M. pneumoniae genome with an efficiency as
high as 2.7 × 10–2, outperforming oligo recombineering
protocols developed for other bacteria. Gene deletions of different
sizes showed a decreasing power trend between efficiency and the scale
of the attempted edition. However, the editing rates for all modifications
increased when CRISPR/Cas9 was used to counterselect nonedited cells.
This allowed edited clones carrying chromosomal deletions of up to
1.8 kb to be recovered with little to no screening of survivor cells.
We envision this technology as a major step toward the use of M. pneumoniae, and possibly other Mycoplasmas, as synthetic
biology chassis strains.
Collapse
Affiliation(s)
- Carlos Piñero-Lambea
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eva Garcia-Ramallo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Sira Martinez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Javier Delgado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Luis Serrano
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Lluch-Senar
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| |
Collapse
|
11
|
Labroussaa F, Baby V, Rodrigue S, Lartigue C. [Whole genome transplantation: bringing natural or synthetic bacterial genomes back to life]. Med Sci (Paris) 2019; 35:761-770. [PMID: 31625898 DOI: 10.1051/medsci/2019154] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The development of synthetic genomics (SG) allowed the emergence of several groundbreaking techniques including the synthesis, assembly and engineering of whole bacterial genomes. The successful implantation of those methods, which culminated in the creation of JCVI-syn3.0 the first nearly minimal bacterium with a synthetic genome, mainly results from the use of the yeast Saccharomyces cerevisiae as a transient host for bacterial genome replication and modification. Another method played a key role in the resounding success of this project: bacterial genome transplantation (GT). GT consists in the transfer of bacterial genomes cloned in yeast, back into a cellular environment suitable for the expression of their genetic content. While successful using many mycoplasma species, a complete understanding of the factors governing GT will most certainly help unleash the power of the entire SG pipeline to other genetically intractable bacteria.
Collapse
Affiliation(s)
- Fabien Labroussaa
- Institute of Veterinary Bacteriology, University of Bern, PO Box, CH-3001 Bern, Suisse
| | - Vincent Baby
- UMR 1332 Biologie du fruit et pathologie, INRA Bordeaux-Aquitaine, 71 avenue E. Bourlaux, 33882 Villenave d'Ornon, France
| | - Sébastien Rodrigue
- Département de biologie, Université de Sherbrooke, 2500 boulevard de l'université, Sherbrooke, Québec, Canada
| | - Carole Lartigue
- UMR 1332 Biologie du fruit et pathologie, INRA Bordeaux-Aquitaine, 71 avenue E. Bourlaux, 33882 Villenave d'Ornon, France
| |
Collapse
|
12
|
Rideau F, Le Roy C, Sagné E, Renaudin H, Pereyre S, Henrich B, Dordet-Frisoni E, Citti C, Lartigue C, Bébéar C. Random transposon insertion in the Mycoplasma hominis minimal genome. Sci Rep 2019; 9:13554. [PMID: 31537861 PMCID: PMC6753208 DOI: 10.1038/s41598-019-49919-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 08/30/2019] [Indexed: 11/09/2022] Open
Abstract
Mycoplasma hominis is an opportunistic human pathogen associated with genital and neonatal infections. Until this study, the lack of a reliable transformation method for the genetic manipulation of M. hominis hindered the investigation of the pathogenicity and the peculiar arginine-based metabolism of this bacterium. A genomic analysis of 20 different M. hominis strains revealed a number of putative restriction-modification systems in this species. Despite the presence of these systems, a reproducible polyethylene glycol (PEG)-mediated transformation protocol was successfully developed in this study for three different strains: two clinical isolates and the M132 reference strain. Transformants were generated by transposon mutagenesis with an efficiency of approximately 10-9 transformants/cell/µg plasmid and were shown to carry single or multiple mini-transposons randomly inserted within their genomes. One M132-mutant was observed to carry a single-copy transposon inserted within the gene encoding P75, a protein potentially involved in adhesion. However, no difference in adhesion was observed in cell-assays between this mutant and the M132 parent strain. Whole genome sequencing of mutants carrying multiple copies of the transposon further revealed the occurrence of genomic rearrangements. Overall, this is the first time that genetically modified strains of M. hominis have been obtained by random mutagenesis using a mini-transposon conferring resistance to tetracycline.
Collapse
Affiliation(s)
- Fabien Rideau
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Chloé Le Roy
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Eveline Sagné
- IHAP, Université de Toulouse, INRA, ENVT, Toulouse, France
| | - Hélène Renaudin
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Sabine Pereyre
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France
| | - Birgit Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Heinrich Heine University, Düsseldorf, Germany
| | | | | | - Carole Lartigue
- INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, Gironde, France. .,University of Bordeaux, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, Gironde, France.
| | - Cécile Bébéar
- University of Bordeaux, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France. .,INRA, USC-EA3671 Mycoplasmal and Chlamydial Infections in Humans, Bordeaux, France.
| |
Collapse
|
13
|
Pereyre S, Bénard C, Brès C, Le Roy C, Mauxion JP, Rideau F, Sirand-Pugnet P, Henrich B, Bébéar C. Generation of Mycoplasma hominis gene-targeted mutants by targeting-induced local lesions in genomes (TILLING). BMC Genomics 2018; 19:525. [PMID: 29986648 PMCID: PMC6038183 DOI: 10.1186/s12864-018-4917-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 07/03/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Mycoplasma hominis is a human urogenital pathogen involved in gynaecological, neonatal and extra-genital infections. However, no versatile genetic tools are currently available to study the pathogenicity of this bacterium. Targeting-Induced Local Lesions IN Genomes (TILLING) is a reverse-genetic method that combines point mutations induced by chemical mutagenesis with a DNA screening technique. We used ethyl methanesulfonate (EMS) that introduces C-G to T-A transition mutations to generate a library of M. hominis mutants. As a proof of concept, mutagenized organisms were screened for mutations in two target genes previously associated with the mycoplasma pathogenicity, the vaa gene encoding an adhesin lipoprotein and the oppA gene encoding the main ectoATPase of the bacterium. The resulting mutants were evaluated using functional assays, an adhesion to HeLa cell assay for vaa-mutants and an ATPase activity test for oppA-mutants. RESULTS A 1200-clone library was generated by exposing M. hominis PG21 to 9 mg/mL EMS for 3 h. To identify mutants of interest, targeted gene fragments were amplified, heat-denatured, slowly reannealed and digested with the mismatch-specific endonuclease ENDO1. If multiple alleles were present in the PCR amplicons, these alleles formed heteroduplexes during reannealing that were specifically cleaved by ENDO1 at mismatching positions. A total of four vaa-mutants and two oppA-mutants harbouring missense mutations were obtained and fully sequenced. Zero to eight additional mutations were identified in the genomes of each mutant. The vaa-mutants were tested for adhesion to immobilized HeLa cells but their adhesion was not significantly different from the adhesion of M. hominis PG21. One of the two oppA-mutants that were tested for ATPase activity presented a higher affinity for its ATP substrate than the parental strain. CONCLUSION For the first time, we demonstrated that M. hominis gene-targeted mutants could be successfully obtained using this TILLING strategy. In the absence of robust genetic tools for studying M. hominis, the TILLING strategy that can target any gene of the genome could help to elucidate gene functions and to better understand the pathogenesis of this human pathogenic species.
Collapse
Affiliation(s)
- S. Pereyre
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Campus Bordeaux Carreire, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, INRA, Bordeaux, France
- Bacteriology department, French National Reference Center for bacterial STI, CHU Bordeaux, Bordeaux, France
| | - C. Bénard
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Campus Bordeaux Carreire, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, INRA, Bordeaux, France
- Bacteriology department, French National Reference Center for bacterial STI, CHU Bordeaux, Bordeaux, France
| | - C. Brès
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d’Ornon, France
- Bordeaux Genome-Transcriptome Facility, F-33610 Cestas, France
| | - C. Le Roy
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Campus Bordeaux Carreire, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, INRA, Bordeaux, France
| | - J. P. Mauxion
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d’Ornon, France
- Bordeaux Genome-Transcriptome Facility, F-33610 Cestas, France
| | - F. Rideau
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Campus Bordeaux Carreire, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, INRA, Bordeaux, France
| | - P. Sirand-Pugnet
- UMR 1332 BFP, INRA, Univ. Bordeaux, F-33140 Villenave d’Ornon, France
- Bordeaux Genome-Transcriptome Facility, F-33610 Cestas, France
| | - B. Henrich
- Institute of Medical Microbiology and Hospital Hygiene, Medical Faculty of the Heinrich-Heine-University Duesseldorf, Düsseldorf, Germany
| | - C. Bébéar
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, University of Bordeaux, Campus Bordeaux Carreire, 146 rue Léo Saignat, 33076 Bordeaux Cedex, France
- USC-EA 3671 Mycoplasmal and Chlamydial Infections in Humans, INRA, Bordeaux, France
- Bacteriology department, French National Reference Center for bacterial STI, CHU Bordeaux, Bordeaux, France
| |
Collapse
|
14
|
Baby V, Labroussaa F, Brodeur J, Matteau D, Gourgues G, Lartigue C, Rodrigue S. Cloning and Transplantation of the Mesoplasma florum Genome. ACS Synth Biol 2018; 7:209-217. [PMID: 28893065 DOI: 10.1021/acssynbio.7b00279] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cloning and transplantation of bacterial genomes is a powerful method for the creation of engineered microorganisms. However, much remains to be understood about the molecular mechanisms and limitations of this approach. We report the whole-genome cloning of Mesoplasma florum in Saccharomyces cerevisiae, and use this model to investigate the impact of a bacterial chromosome in yeast cells. Our results indicate that the cloned M. florum genome is subjected to weak transcriptional activity, and causes no significant impact on yeast growth. We also report that the M. florum genome can be transplanted into Mycoplasma capricolum without any negative impact from the putative restriction enzyme encoding gene mfl307. Using whole-genome sequencing, we observed that a small number of mutations appeared in all M. florum transplants. Mutations also arose, albeit at a lower frequency, when the M. capricolum genome was transplanted into M. capricolum recipient cells. These observations suggest that genome transplantation is mutagenic, and that this phenomenon is magnified by the use of genome donor and recipient cell belonging to different species. No difference in efficiency was detected after three successive rounds of genome transplantation, suggesting that the observed mutations were not selected during the procedure. Taken together, our results provide a more accurate picture of the events taking place during bacterial genome cloning and transplantation.
Collapse
Affiliation(s)
- Vincent Baby
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Fabien Labroussaa
- Université de Bordeaux, INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Joëlle Brodeur
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Dominick Matteau
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada
| | - Géraldine Gourgues
- Université de Bordeaux, INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Carole Lartigue
- Université de Bordeaux, INRA, UMR 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Sébastien Rodrigue
- Université de Sherbrooke, Département de Biologie, 2500 Boulevard Université, Sherbrooke, Québec J1K 2R1, Canada
| |
Collapse
|