1
|
Khoury F, Su Z, Banta S. Rare Earth Element Binding and Recovery by a Beta Roll-Forming RTX Domain. Inorg Chem 2024; 63:13223-13230. [PMID: 38986039 DOI: 10.1021/acs.inorgchem.4c00420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
The Block V of the RTX domain of the adenylate cyclase protein from Bordetella pertussis is disordered, and upon binding eight calcium ions, it folds into a beta roll domain with a C-terminal capping group. Due to their similar ionic radii and coordination geometries, trivalent lanthanide ions have been used to probe and identify calcium-binding sites in many proteins. Here, we report using a FRET-based assay that the RTX domain can bind rare earth elements (REEs) with higher affinities than calcium. The apparent disassociation constants for lanthanide ions ranged from 20 to 75 μM, which are an order of magnitude higher than the affinity for calcium, with a higher selectivity toward heavy REEs over light REEs. Most proteins release bound ions at mildly acidic conditions (pH 5-6), and the high affinity REE-binding lanmodulin protein can bind 3-4 REE ions at pH as low as ∼2.5. Circular dichroism (CD) spectra of the RTX domain demonstrate pH-induced folding of the beta roll domain in the absence of ions, indicating that protonation of key amino acids enables structure formation in low pH solutions. The beta roll domain coordinates up to four ions in extreme pH conditions (pH < 1), as determined by equilibrium ultrafiltration experiments. Finally, to demonstrate a potential application of the RTX domain, REE ions (Nd3+ and Dy3+) were recovered from other non-REEs (Fe2+ and Co2+) in a NdFeB magnet simulant solution (at pH 6).
Collapse
Affiliation(s)
- Farid Khoury
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Zihang Su
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
2
|
Ludwig SG, Kiyohara CL, Carlucci LA, Kisiela D, Sokurenko EV, Thomas WE. FimH as a scaffold for regulated molecular recognition. J Biol Eng 2021; 15:3. [PMID: 33436006 PMCID: PMC7805223 DOI: 10.1186/s13036-020-00253-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 12/17/2020] [Indexed: 11/16/2022] Open
Abstract
Background Recognition proteins are critical in many biotechnology applications and would be even more useful if their binding could be regulated. The current gold standard for recognition molecules, antibodies, lacks convenient regulation. Alternative scaffolds can be used to build recognition proteins with new functionalities, including regulated recognition molecules. Here we test the use of the bacterial adhesin FimH as a scaffold for regulated molecular recognition. FimH binds to its native small molecule target mannose in a conformation-dependent manner that can be regulated by two types of noncompetitive regulation: allosteric and parasteric. Results We demonstrate that conformational regulation of FimH can be maintained even after reengineering the binding site to recognize the non-mannosylated targets nickel or Penta-His antibody, resulting in an up to 7-fold difference in KD between the two conformations. Moreover, both the allosteric and parasteric regulatory mechanisms native to FimH can be used to regulate binding to its new target. In one mutant, addition of the native ligand mannose parasterically improves the mutant’s affinity for Penta-His 4-fold, even as their epitopes overlap. In another mutant, the allosteric antibody mab21 reduces the mutant’s affinity for Penta-His 7-fold. The advantage of noncompetitive regulation is further illustrated by the ability of this allosteric regulator to induce 98% detachment of Penta-His, even with modest differences in affinity. Conclusions This illustrates the potential of FimH, with its deeply studied conformation-dependent binding, as a scaffold for conformationally regulated binding via multiple mechanisms. Supplementary Information The online version contains supplementary material available at 10.1186/s13036-020-00253-2.
Collapse
Affiliation(s)
- Shivani Gupta Ludwig
- Department of Bioengineering, University of Washington, 3720 15th Ave NE. Foege N430P, Box 355061, Seattle, USA
| | - Casey L Kiyohara
- Department of Bioengineering, University of Washington, 3720 15th Ave NE. Foege N430P, Box 355061, Seattle, USA
| | - Laura A Carlucci
- Department of Bioengineering, University of Washington, 3720 15th Ave NE. Foege N430P, Box 355061, Seattle, USA
| | - Dagmara Kisiela
- Department of Bioengineering, University of Washington, 3720 15th Ave NE. Foege N430P, Box 355061, Seattle, USA.,Department of Microbiology, University of Washington, HSB room J267a, Box 357735, Seattle, WA, USA
| | - Evgeni V Sokurenko
- Department of Bioengineering, University of Washington, 3720 15th Ave NE. Foege N430P, Box 355061, Seattle, USA.,Department of Microbiology, University of Washington, HSB room J267a, Box 357735, Seattle, WA, USA
| | - Wendy Evelyn Thomas
- Department of Bioengineering, University of Washington, 3720 15th Ave NE. Foege N430P, Box 355061, Seattle, USA.
| |
Collapse
|
3
|
Saccardo A, Soloviev M, Ferrari E. A thermo-responsive, self-assembling biointerface for on demand release of surface-immobilised proteins. Biomater Sci 2020; 8:2673-2681. [PMID: 32254844 DOI: 10.1039/c9bm01957j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Dedicated chemistries for on-demand capture and release of biomolecules at the solid-liquid interface are required for applications in drug delivery, for the synthesis of switchable surfaces used in analytical devices and for the assembly of next-generation biomaterials with complex architectures and functions. Here we report the engineering of a binary self-assembling polypeptide system for reversible protein capture, immobilisation and controlled thermo-responsive release from a solid surface. The first element of the binary system is a universal protein substrate immobilised on a solid surface. This protein is bio-inspired by the neuronal SNAP25, which is the protein involved in the docking and fusion of synaptic vesicles to the synaptic membrane. The second element is an artificial chimeric protein engineered to include distinct domains from three different proteins: Syntaxin, VAMP and SNAP25. These native proteins constitute the machinery dedicated to vesicle trafficking in eukaryotes. We removed approximately 70% of native protein sequence from these proteins and constructed a protein chimera capable of high affinity interaction and self-assembly with immobilised substrate. The interaction of the two parts of the engineered protein complex is strong but fully-reversible and therefore the chimera can be recombinantly fused as a tag to a protein of interest, to allow spontaneous assembly and stimuli-sensitive release from the surface upon heating at a predetermined temperature. Two thermo-responsive tags are reported: the first presents remarkable thermal stability with melting temperature of the order of 80 °C; the second disassembles at a substantially lower temperature of about 45 °C. The latter is a promising candidate for remote-controlled localised delivery of therapeutic proteins, as physiologically tolerable local increase of temperatures in the 40-45 °C range can be achieved using magnetic fields, infra-red light or focused ultrasound. Importantly, these two novel polypeptides provide a broader blueprint for the engineering of future functional proteins with predictable folding and response to external stimuli.
Collapse
Affiliation(s)
- Angela Saccardo
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.
| | - Mikhail Soloviev
- Department of Biological Sciences, Royal Holloway University of London, Egham TW20 0EX, UK
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK.
| |
Collapse
|
4
|
Nakazawa H, Umetsu M, Hirose T, Hattori T, Kumagai I. Identification of Indium Tin Oxide Nanoparticle-Binding Peptides via Phage Display and Biopanning Under Various Buffer Conditions. Protein Pept Lett 2019; 27:557-566. [PMID: 31729292 DOI: 10.2174/0929866526666191113151934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 09/04/2019] [Accepted: 10/08/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND By recent advances in phage-display approaches, many oligopeptides exhibiting binding affinities for metal oxides have been identified. Indium tin oxide is one of the most widely used conductive oxides, because it has a large band gap of 3.7-4.0 eV. In recent years, there have been reports about several ITO-based biosensors. Development of an ITO binding interface for the clustering of sensor proteins without complex bioconjugates is required. OBJECTIVE In this article, we aimed to identify peptides that bind to indium tin oxide nanoparticles via different binding mechanisms. METHODS Indium tin oxide nanoparticles binding peptide ware selected using phage display and biopanning against indium tin oxide, under five different buffer conditions and these peptides characterized about binding affinity and specificity. RESULTS Three types of indium tin oxide nanoparticles-binding peptides were selected from 10 types of peptide candidates identified in phage display and biopanning. These included ITOBP8, which had an acidic isoelectric point, and was identified when a buffer containing guanidine was used, and ITOBP6 and ITOBP7, which contained a His-His-Lys sequence at their N-termini, and were identified when a highly concentrated phosphate elution buffer with a low ionic strength was used. Among these peptides, ITOBP6 exhibited the strongest indium tin oxide nanoparticlesbinding affinity (dissociation constant, 585 nmol/L; amount of protein bound at saturation, 17.5 nmol/m 2 - particles). CONCLUSION These results indicate that peptides with specific binding properties can be obtained through careful selection of the buffer conditions in which the biopanning procedure is performed.
Collapse
Affiliation(s)
- Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Tatsuya Hirose
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Takamitsu Hattori
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| | - Izumi Kumagai
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Sendai, Japan
| |
Collapse
|
5
|
Baumann U. Structure-Function Relationships of the Repeat Domains of RTX Toxins. Toxins (Basel) 2019; 11:toxins11110657. [PMID: 31718085 PMCID: PMC6891781 DOI: 10.3390/toxins11110657] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/07/2019] [Accepted: 11/09/2019] [Indexed: 01/08/2023] Open
Abstract
RTX proteins are a large family of polypeptides of mainly Gram-negative origin that are secreted into the extracellular medium by a type I secretion system featuring a non-cleavable C-terminal secretion signal, which is preceded by a variable number of nine-residue tandem repeats. The three-dimensional structure forms a parallel β-roll, where β-strands of two parallel sheets are connected by calcium-binding linkers in such a way that a right-handed spiral is built. The Ca2+ ions are an integral part of the structure, which cannot form without them. The structural determinants of this unique architecture will be reviewed with its conservations and variations together with the implication for secretion and folding of these proteins. The general purpose of the RTX domains appears to act as an internal chaperone that keeps the polypeptide unfolded in the calcium-deprived cytosol and triggers folding in the calcium-rich extracellular medium. A rather recent addition to the structural biology of the RTX toxin is a variant occurring in a large RTX adhesin, where this non-canonical β-roll binds to ice and diatoms.
Collapse
Affiliation(s)
- Ulrich Baumann
- Institute of Biochemistry, University of Cologne, Zülpicherstrasse 47, D-50674 Cologne, Germany
| |
Collapse
|
6
|
Guo S, Vance TD, Stevens CA, Voets I, Davies PL. RTX Adhesins are Key Bacterial Surface Megaproteins in the Formation of Biofilms. Trends Microbiol 2019; 27:453-467. [DOI: 10.1016/j.tim.2018.12.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 11/13/2018] [Accepted: 12/12/2018] [Indexed: 12/20/2022]
|
7
|
Bulutoglu B, Banta S. Calcium-Dependent RTX Domains in the Development of Protein Hydrogels. Gels 2019; 5:E10. [PMID: 30823512 PMCID: PMC6473919 DOI: 10.3390/gels5010010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 12/12/2022] Open
Abstract
The RTX domains found in some pathogenic proteins encode repetitive peptide sequences that reversibly bind calcium and fold into the unique the β-roll secondary structure. Several of these domains have been studied in isolation, yielding key insights into their structure/function relationships. These domains are increasingly being used in protein engineering applications, where the calcium-induced control over structure can be exploited to gain new functions. Here we review recent advances in the use of RTX domains in the creation of calcium responsive biomaterials.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
8
|
Bulutoglu B, Haghpanah J, Campbell E, Banta S. Engineered Biomolecular Recognition of RDX by Using a Thermostable Alcohol Dehydrogenase as a Protein Scaffold. Chembiochem 2018; 19:247-255. [PMID: 29165861 DOI: 10.1002/cbic.201700539] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Indexed: 11/09/2022]
Abstract
There are many biotechnology applications that would benefit from simple, stable proteins with engineered biomolecular recognition. Here, we explored the hypothesis that a thermostable alcohol dehydrogenase (AdhD from Pyrococcus furiosus) could be engineered to bind a small molecule instead of a cofactor or molecules involved in the catalytic transition state. We chose the explosive molecule 1,3,5-trinitro-1,3,5-triazine (royal demolition explosive, RDX) as a proof-of-concept. Its low solubility in water was exploited for immobilization for biopanning by using ribosome display. Docking simulations were used to identify two potential binding sites in AdhD, and a randomized library focused on tyrosine or serine mutations was used to determine that RDX was binding in the substrate binding pocket of the enzyme. A fully randomized binding pocket library was selected, and affinity maturation by error-prone PCR led to the identification of a mutant (EP-16) that gained the ability to bind RDX with an affinity of (73±11) μm. These results underscore the way in which thermostable enzymes can be useful scaffolds for expanding the biomolecular recognition toolbox.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY, 10027, USA.,Present address: The Center for Engineering in Medicine, Harvard Medical School and Massachusetts General Hospital, Boston, MA, 02114, USA
| | - Jennifer Haghpanah
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY, 10027, USA
| | - Elliot Campbell
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY, 10027, USA.,Present address: Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NY, 08854, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, NY, 10027, USA
| |
Collapse
|
9
|
Liu L, Wang H, Han Y, Lv S, Chen J. Using single molecule force spectroscopy to facilitate a rational design of Ca2+-responsive β-roll peptide-based hydrogels. J Mater Chem B 2018; 6:5303-5312. [DOI: 10.1039/c8tb01511b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mechanical stability of Ca2+-responsive β-roll peptides (RTX) is largely responsible for the Ca2+-dependent mechanical properties of the RTX-based hydrogels.
Collapse
Affiliation(s)
- Lichao Liu
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Han Wang
- Department of Chemistry
- The University of British Columbia
- Vancouver
- Canada
| | - Yueying Han
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| | - Shanshan Lv
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
- Department of Chemistry
| | - Jianfeng Chen
- State Key Laboratory of Organic–Inorganic Composite Materials
- Beijing University of Chemical Technology
- Beijing 100029
- China
| |
Collapse
|
10
|
Bulutoglu B, Banta S. Block V RTX Domain of Adenylate Cyclase from Bordetella pertussis: A Conformationally Dynamic Scaffold for Protein Engineering Applications. Toxins (Basel) 2017; 9:E289. [PMID: 28926974 PMCID: PMC5618222 DOI: 10.3390/toxins9090289] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/12/2017] [Accepted: 09/12/2017] [Indexed: 01/27/2023] Open
Abstract
The isolated Block V repeats-in-toxin (RTX) peptide domain of adenylate cyclase (CyaA) from Bordetella pertussis reversibly folds into a β-roll secondary structure upon calcium binding. In this review, we discuss how the conformationally dynamic nature of the peptide is being engineered and employed as a switching mechanism to mediate different protein functions and protein-protein interactions. The peptide has been used as a scaffold for diverse applications including: a precipitation tag for bioseparations, a cross-linking domain for protein hydrogel formation and as an alternative scaffold for biomolecular recognition applications. Proteins and peptides such as the RTX domains that exhibit natural stimulus-responsive behavior are valuable building blocks for emerging synthetic biology applications.
Collapse
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 W 120th Street, New York, NY 10027, USA.
| |
Collapse
|
11
|
Bulutoglu B, Yang SJ, Banta S. Conditional Network Assembly and Targeted Protein Retention via Environmentally Responsive, Engineered β-Roll Peptides. Biomacromolecules 2017; 18:2139-2145. [PMID: 28578565 DOI: 10.1021/acs.biomac.7b00457] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Beyza Bulutoglu
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, New York 10027, United States
| | - Sarah J. Yang
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, New York 10027, United States
| | - Scott Banta
- Department of Chemical Engineering, Columbia University, 500 West 120th Street, Room 801, New York, New York 10027, United States
| |
Collapse
|