1
|
Rojano-Nisimura AM, Simmons TR, Lukasiewicz AJ, Buchser R, Ruzek JS, Avila JL, Contreras LM. Concentration-Dependent CsrA Regulation of the uxuB Transcript Leads to Development of a Post-Transcriptional Bandpass Filter. ACS Synth Biol 2025; 14:1084-1098. [PMID: 40202123 DOI: 10.1021/acssynbio.4c00668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Post-transcriptional control systems offer new avenues for designing synthetic circuits that provide reduced burden and fewer synthetic regulatory components compared to transcriptionally based tools. Herein, we repurpose a newly identified post-transcriptional interaction between the uxuB mRNA transcript, specifically the 5' UTR + 100 nucleotides of coding sequence (100 nt CDS), and the E. coli Carbon Storage Regulatory A (CsrA) protein to design a biological post-transcriptional bandpass filter. In this work, we characterize the uxuB mRNA as a heterogeneous target of CsrA, where the protein can both activate and repress uxuB activity depending on its intracellular concentration. We leverage this interaction to implement a novel strategy of regulation within the 5' UTR of an mRNA. Specifically, we report a hierarchical binding strategy that may be leveraged by CsrA within uxuB to produce a dose-dependent response in regulatory outcomes. In our semisynthetic circuit, the uxuB 5' UTR + 100 nt CDS sequence is used as a scaffold that is fused to a gene of interest, which allows the circuit to transition between ON/OFF states based on the concentration range of free natively expressed CsrA. Notably, this system exerts regulation comparable to previously developed transcriptional bandpass filters while reducing the number of synthetic circuit components and can be used in concert with additional post-transcriptionally controlled circuits to achieve complex multi-signal control. We anticipate that future characterization of native regulatory RNA-protein systems will enable the development of more complex RNP-based circuits for synthetic biology applications.
Collapse
Affiliation(s)
| | - Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| | - Alexandra J Lukasiewicz
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| | - Josie S Ruzek
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| | - Jacqueline L Avila
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| | - Lydia M Contreras
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, Texas 78712, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, Texas 78712, United States
| |
Collapse
|
2
|
Simmons TR, Partipilo G, Buchser R, Stankes AC, Srivastava R, Chiu D, Keitz BK, Contreras LM. Rewiring native post-transcriptional global regulators to achieve designer, multi-layered genetic circuits. Nat Commun 2024; 15:8752. [PMID: 39384772 PMCID: PMC11479628 DOI: 10.1038/s41467-024-52976-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 09/27/2024] [Indexed: 10/11/2024] Open
Abstract
As synthetic biology expands, creating "drag-and-drop" regulatory tools that can achieve diverse regulatory outcomes are paramount. Herein, we develop a approach for engineering complex post-transcriptional control by rewiring the Carbon Storage Regulatory (Csr) Network of Escherichia coli. We co-opt native interactions of the Csr Network to establish post-transcriptional logic gates and achieve complex bacterial regulation. First, we rationally engineer RNA-protein interactions to create a genetic toolbox of 12 BUFFER Gates that achieves a 15-fold range of expression. Subsequently, we develop a Csr-regulated NOT Gate by integrating a cognate 5' UTR that is natively Csr-activated into our platform. We then deploy the BUFFER and NOT gates to build a bi-directional regulator, two input Boolean Logic gates OR, NOR, AND and NAND and a pulse-generating circuit. Last, we port our Csr-regulated BUFFER Gate into three industrially relevant bacteria simply by leveraging the conserved Csr Network in each species.
Collapse
Affiliation(s)
- Trevor R Simmons
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gina Partipilo
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Anna C Stankes
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Rashmi Srivastava
- Department of Chemistry and Biochemistry, Baylor University, Waco, TX, 76706, USA
| | - Darian Chiu
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Benjamin K Keitz
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
3
|
Rojano-Nisimura AM, Grismore KB, Ruzek JS, Avila JL, Contreras LM. The Post-Transcriptional Regulatory Protein CsrA Amplifies Its Targetome through Direct Interactions with Stress-Response Regulatory Hubs: The EvgA and AcnA Cases. Microorganisms 2024; 12:636. [PMID: 38674581 PMCID: PMC11052181 DOI: 10.3390/microorganisms12040636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 03/08/2024] [Accepted: 03/19/2024] [Indexed: 04/28/2024] Open
Abstract
Global rewiring of bacterial gene expressions in response to environmental cues is mediated by regulatory proteins such as the CsrA global regulator from E. coli. Several direct mRNA and sRNA targets of this protein have been identified; however, high-throughput studies suggest an expanded RNA targetome for this protein. In this work, we demonstrate that CsrA can extend its network by directly binding and regulating the evgA and acnA transcripts, encoding for regulatory proteins. CsrA represses EvgA and AcnA expression and disrupting the CsrA binding sites of evgA and acnA, results in broader gene expression changes to stress response networks. Specifically, altering CsrA-evgA binding impacts the genes related to acidic stress adaptation, and disrupting the CsrA-acnA interaction affects the genes involved in metal-induced oxidative stress responses. We show that these interactions are biologically relevant, as evidenced by the improved tolerance of evgA and acnA genomic mutants depleted of CsrA binding sites when challenged with acid and metal ions, respectively. We conclude that EvgA and AcnA are intermediate regulatory hubs through which CsrA can expand its regulatory role. The indirect CsrA regulation of gene networks coordinated by EvgA and AcnA likely contributes to optimizing cellular resources to promote exponential growth in the absence of stress.
Collapse
Affiliation(s)
| | - Kobe B. Grismore
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Josie S. Ruzek
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Jacqueline L. Avila
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| | - Lydia M. Contreras
- Department of Molecular Biosciences, The University of Texas at Austin, 100 East 24th St. Stop A5000, Austin, TX 78712, USA;
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA; (K.B.G.); (J.S.R.); (J.L.A.)
| |
Collapse
|
4
|
Rojano-Nisimura AM, Miller LG, Anantharaman A, Middleton AT, Kibret E, Jung SH, Russell R, Contreras LM. A high-throughput search for intracellular factors that affect RNA folding identifies E. coli proteins PepA and YagL as RNA chaperones that promote RNA remodelling. RNA Biol 2024; 21:13-30. [PMID: 39576267 PMCID: PMC11587861 DOI: 10.1080/15476286.2024.2429956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 11/01/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
General RNA chaperones are RNA-binding proteins (RBPs) that interact transiently and non-specifically with RNA substrates and assist in their folding into their native state. In bacteria, these chaperones impact both coding and non-coding RNAs and are particularly important for large, structured RNAs which are prone to becoming kinetically trapped in misfolded states. Currently, due to the limited number of well-characterized examples and the lack of a consensus structural or sequence motif, it is difficult to identify general RNA chaperones in bacteria. Here, we adapted a previously published in vivo RNA regional accessibility probing assay to screen genome wide for intracellular factors in E. coli affecting RNA folding, among which we aimed to uncover novel RNA chaperones. Through this method, we identified eight proteins whose deletion gives changes in regional accessibility within the exogenously expressed Tetrahymena group I intron ribozyme. Furthermore, we purified and measured in vitro properties of two of these proteins, YagL and PepA, which were especially attractive as general chaperone candidates. We showed that both proteins bind RNA and that YagL accelerates native refolding of the ribozyme from a long-lived misfolded state. Further dissection of YagL showed that a putative helix-turn-helix (HTH) domain is responsible for most of its RNA-binding activity, but only the full protein shows chaperone activity. Altogether, this work expands the current repertoire of known general RNA chaperones in bacteria.
Collapse
Affiliation(s)
| | - Lucas G. Miller
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aparna Anantharaman
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aaron T. Middleton
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Elroi Kibret
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Sung H. Jung
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Rick Russell
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Lydia M. Contreras
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
5
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA selectively modulates sRNA-mRNA regulator outcomes. Front Mol Biosci 2023; 10:1249528. [PMID: 38116378 PMCID: PMC10729762 DOI: 10.3389/fmolb.2023.1249528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 10/10/2023] [Indexed: 12/21/2023] Open
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact directly with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcases CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, Austin, TX, United States
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
6
|
Rojano-Nisimura AM, Simmons TR, Leistra AN, Mihailovic MK, Buchser R, Ekdahl AM, Joseph I, Curtis NC, Contreras LM. CsrA Shows Selective Regulation of sRNA-mRNA Networks. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.29.534774. [PMID: 37034808 PMCID: PMC10081199 DOI: 10.1101/2023.03.29.534774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
Abstract
Post-transcriptional regulation, by small RNAs (sRNAs) as well as the global Carbon Storage Regulator A (CsrA) protein, play critical roles in bacterial metabolic control and stress responses. The CsrA protein affects selective sRNA-mRNA networks, in addition to regulating transcription factors and sigma factors, providing additional avenues of cross talk between other stress-response regulators. Here, we expand the known set of sRNA-CsrA interactions and study their regulatory effects. In vitro binding assays confirm novel CsrA interactions with ten sRNAs, many of which are previously recognized as key regulatory nodes. Of those 10 sRNA, we identify that McaS, FnrS, SgrS, MicL, and Spot42 interact with CsrA in vivo. We find that the presence of CsrA impacts the downstream regulation of mRNA targets of the respective sRNA. In vivo evidence supports enhanced CsrA McaS-csgD mRNA repression and showcase CsrA-dependent repression of the fucP mRNA via the Spot42 sRNA. We additionally identify SgrS and FnrS as potential new sRNA sponges of CsrA. Overall, our results further support the expanding impact of the Csr system on cellular physiology via CsrA impact on the regulatory roles of these sRNAs.
Collapse
Affiliation(s)
| | - Trevor R. Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Abigail N. Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Mia K. Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Ryan Buchser
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Alyssa M. Ekdahl
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Isabella Joseph
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Nicholas C. Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Lydia M. Contreras
- Biochemistry Graduate Program, University of Texas at Austin, 100 E. 24th Street Stop A6500, Austin, TX 78712, USA
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| |
Collapse
|
7
|
Engineering Toehold-Mediated Switches for Native RNA Detection and Regulation in Bacteria. J Mol Biol 2022; 434:167689. [PMID: 35717997 DOI: 10.1016/j.jmb.2022.167689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/19/2022] [Accepted: 06/09/2022] [Indexed: 01/24/2023]
Abstract
RNA switches are versatile tools in synthetic biology for sensing and regulation applications. The discoveries of RNA-mediated translational and transcriptional control have facilitated the development of complexde novodesigns of RNA switches. Specifically, RNA toehold-mediated switches, in which binding to the toehold sensing domain controls the transition between switch states via strand displacement, have been extensively adapted for coupling systems responses to specifictrans-RNA inputs. This review highlights some of the challenges associated with applying these switches for native RNA detectionin vivo, including transferability between organisms. The applicability and design considerations of toehold-mediated switches are discussed by highlighting twelve recently developed switch designs. This review finishes with future perspectives to address current gaps in the field, particularly regarding the power of structural prediction algorithms for improved in vivo functionality of RNA switches.
Collapse
|
8
|
Simmons TR, Ellington AD, Contreras LM. RNP-Based Control Systems for Genetic Circuits in Synthetic Biology Beyond CRISPR. Methods Mol Biol 2022; 2518:1-31. [PMID: 35666436 DOI: 10.1007/978-1-0716-2421-0_1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ribonucleoproteins (RNPs) are RNA-protein complexes utilized natively in both prokaryotes and eukaryotes to regulate essential processes within the cell. Over the past few years, many of these native systems have been adapted to provide control over custom genetic targets. Engineered RNP-based control systems allow for fine-tune regulation of desired targets, by providing customizable nucleotide-nucleotide interactions. However, as there have been several engineered RNP systems developed recently, identifying an optimal system for various bioprocesses is challenging. Here, we review the most successful engineered RNP systems and their applications to survey the current state of the field. Additionally, we provide selection criteria to provide users a streamlined method for identifying an RNP control system most useful to their own work. Lastly, we discuss future applications of RNP control systems and how they can be utilized to address the current grand challenges of the synthetic biology community.
Collapse
Affiliation(s)
- Trevor R Simmons
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
9
|
Cable J, Heard E, Hirose T, Prasanth KV, Chen LL, Henninger JE, Quinodoz SA, Spector DL, Diermeier SD, Porman AM, Kumar D, Feinberg MW, Shen X, Unfried JP, Johnson R, Chen CK, Wilusz JE, Lempradl A, McGeary SE, Wahba L, Pyle AM, Hargrove AE, Simon MD, Marcia M, Przanowska RK, Chang HY, Jaffrey SR, Contreras LM, Chen Q, Shi J, Mendell JT, He L, Song E, Rinn JL, Lalwani MK, Kalem MC, Chuong EB, Maquat LE, Liu X. Noncoding RNAs: biology and applications-a Keystone Symposia report. Ann N Y Acad Sci 2021; 1506:118-141. [PMID: 34791665 PMCID: PMC9808899 DOI: 10.1111/nyas.14713] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 10/06/2021] [Indexed: 01/07/2023]
Abstract
The human transcriptome contains many types of noncoding RNAs, which rival the number of protein-coding species. From long noncoding RNAs (lncRNAs) that are over 200 nucleotides long to piwi-interacting RNAs (piRNAs) of only 20 nucleotides, noncoding RNAs play important roles in regulating transcription, epigenetic modifications, translation, and cell signaling. Roles for noncoding RNAs in disease mechanisms are also being uncovered, and several species have been identified as potential drug targets. On May 11-14, 2021, the Keystone eSymposium "Noncoding RNAs: Biology and Applications" brought together researchers working in RNA biology, structure, and technologies to accelerate both the understanding of RNA basic biology and the translation of those findings into clinical applications.
Collapse
Affiliation(s)
| | - Edith Heard
- European Molecular Biology Laboratory (EMBL), Heidelberg, Heidelberg, Germany
- Collège de France, Paris, France
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
- Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of the Chinese Academy of Sciences, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
- School of Life Sciences, Hangzhou Institute for Advanced Study, University of the Chinese Academy of Sciences, Hangzhou, China
| | | | - Sofia A Quinodoz
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey
| | - David L Spector
- Cold Spring Harbor Laboratory, Cold Spring Harbor and Genetics Program, Stony Brook University, Stony Brook, New York
| | - Sarah D Diermeier
- Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Allison M Porman
- Biochemistry and Molecular Genetics Department, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Dhiraj Kumar
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mark W Feinberg
- Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Xiaohua Shen
- Tsinghua-Peking Joint Center for Life Sciences, School of Medicine and School of Life Sciences, Tsinghua University, Beijing, China
| | - Juan Pablo Unfried
- Center for Applied Medical Research (CIMA), Department of Gene Therapy and Regulation of Gene Expression, Universidad de Navarra (UNAV), Pamplona, Spain
| | - Rory Johnson
- Department of Medical Oncology, Inselspital, Bern University Hospital; and Department for BioMedical Research University of Bern, Bern, Switzerland
- School of Biology and Environmental Science and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| | - Chun-Kan Chen
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Department of Genetics, Stanford University School of Medicine, Stanford, California
| | - Jeremy E Wilusz
- Department of Biochemistry and Biophysics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Adelheid Lempradl
- Department of Metabolism and Nutritional Programming, Van Andel Research Institute, Grand Rapids, Michigan
| | - Sean E McGeary
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts
- Howard Hughes Medical Institute and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | - Lamia Wahba
- Department of Genetics, Stanford University School of Medicine, Stanford, California
- Department of Pathology, Stanford University School of Medicine, Stanford, California
| | - Anna Marie Pyle
- Department of Genetics, Yale School of Medicine, New Haven, Connecticut
- Connecticut and Howard Hughes Medical Institute, Chevy Chase, Maryland
| | | | - Matthew D Simon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut
| | - Marco Marcia
- European Molecular Biology Laboratory (EMBL) Grenoble, Grenoble, France
| | - Róża K Przanowska
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, California
- Howard Hughes Medical Institute, Stanford University, Stanford, California
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Medical College of Cornell University, New York, New York
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, Austin, Texas
| | - Qi Chen
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Junchao Shi
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, Riverside, California
| | - Joshua T Mendell
- Department of Molecular Biology, Harold C. Simmons Comprehensive Cancer Center, Hamon Center for Regenerative Science and Medicine; and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lin He
- Division of Cellular and Developmental Biology, Molecular and Cell Biology Department, University of California at Berkeley, Berkeley, California
| | - Erwei Song
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Medical Research Center and Breast Tumor Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University; Bioland Laboratory; Program of Molecular Medicine, Zhongshan School of Medicine, Sun Yat-sen University; and Fountain-Valley Institute for Life Sciences, Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences Guangzhou, Guangzhou, China
| | - John L Rinn
- Department of Biochemistry, BioFrontiers Institute, and Howard Hughes Medical Institute, University of Colorado Boulder, Boulder, Colorado
| | - Mukesh Kumar Lalwani
- Queens Medical Research Institute, BHF Centre for Cardiovascular Sciences, University of Edinburgh, Scotland, United Kingdom
| | - Murat Can Kalem
- Department of Microbiology and Immunology, Witebsky Center for Microbial Pathogenesis and Immunology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, SUNY, Buffalo, New York
| | - Edward B Chuong
- Department of Molecular, Cellular, and Developmental Biology and BioFrontiers Institute, University of Colorado Boulder, Boulder, Colorado
| | - Lynne E Maquat
- Department of Biochemistry and Biophysics, School of Medicine and Dentistry and Center for RNA Biology, University of Rochester, Rochester, New York
| | - Xuhang Liu
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, New York
| |
Collapse
|
10
|
Wong M, Badri A, Gasparis C, Belfort G, Koffas M. Modular optimization in metabolic engineering. Crit Rev Biochem Mol Biol 2021; 56:587-602. [PMID: 34180323 DOI: 10.1080/10409238.2021.1937928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
There is an increasing demand for bioproducts produced by metabolically engineered microbes, such as pharmaceuticals, biofuels, biochemicals and other high value compounds. In order to meet this demand, modular optimization, the optimizing of subsections instead of the whole system, has been adopted to engineer cells to overproduce products. Research into modularity has focused on traditional approaches such as DNA, RNA, and protein-level modularity of intercellular machinery, by optimizing metabolic pathways for enhanced production. While research into these traditional approaches continues, limitations such as scale-up and time cost hold them back from wider use, while at the same time there is a shift to more novel methods, such as moving from episomal expression to chromosomal integration. Recently, nontraditional approaches such as co-culture systems and cell-free metabolic engineering (CFME) are being investigated for modular optimization. Co-culture modularity looks to optimally divide the metabolic burden between different hosts. CFME seeks to modularly optimize metabolic pathways in vitro, both speeding up the design of such systems and eliminating the issues associated with live hosts. In this review we will examine both traditional and nontraditional approaches for modular optimization, examining recent developments and discussing issues and emerging solutions for future research in metabolic engineering.
Collapse
Affiliation(s)
- Matthew Wong
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Abinaya Badri
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Christopher Gasparis
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Mattheos Koffas
- Howard P. Isermann Department of Chemical and Biological Engineering and the Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, USA
| |
Collapse
|
11
|
Bioinformatic Application of Fluorescence-Based In Vivo RNA Regional Accessibility Data to Identify Novel sRNA Targets. Methods Mol Biol 2020; 2113:41-71. [PMID: 32006307 DOI: 10.1007/978-1-0716-0278-2_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Data from fluorescence-based methods that measure in vivo hybridization efficacy of unique RNA regions can be used to infer regulatory activity and to identify novel RNA: RNA interactions. Here, we document the step-by-step analysis of fluorescence data collected using an in vivo regional RNA structural sensing system (iRS3) for the purpose of identifying potential functional sites that are likely to be involved in regulatory interactions. We also detail a step-by-step protocol that couples this in vivo accessibility data with computational mRNA target predictions to inform the selection of potentially true targets from long lists of thermodynamic predictions.
Collapse
|
12
|
Lee YJ, Kim SJ, Amrofell MB, Moon TS. Establishing a Multivariate Model for Predictable Antisense RNA-Mediated Repression. ACS Synth Biol 2019; 8:45-56. [PMID: 30517781 DOI: 10.1021/acssynbio.8b00227] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Recent advances in our understanding of RNA folding and functions have facilitated the use of regulatory RNAs such as synthetic antisense RNAs (asRNAs) to modulate gene expression. However, despite the simple and universal complementarity rule, predictable asRNA-mediated repression is still challenging due to the intrinsic complexity of native asRNA-mediated gene regulation. To address this issue, we present a multivariate model, based on the change in free energy of complex formation (Δ GCF) and percent mismatch of the target binding region, which can predict synthetic asRNA-mediated repression efficiency in diverse contexts. First, 69 asRNAs that bind to multiple target mRNAs were designed and tested to create the predictive model. Second, we showed that the same model is effective predicting repression of target genes in both plasmids and chromosomes. Third, using our model, we designed asRNAs that simultaneously modulated expression of a toxin and its antitoxin to demonstrate tunable control of cell growth. Fourth, we tested and validated the same model in two different biotechnologically important organisms: Escherichia coli Nissle 1917 and Bacillus subtilis 168. Last, multiple parameters, including target locations, the presence of an Hfq binding site, GC contents, and gene expression levels, were revisited to define the conditions under which the multivariate model should be used for accurate prediction. Together, 434 different strain-asRNA combinations were tested, validating the predictive model in a variety of contexts, including multiple target genes and organisms. The result presented in this study is an important step toward achieving predictable tunability of asRNA-mediated repression.
Collapse
Affiliation(s)
- Young Je Lee
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Soo-Jung Kim
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Matthew B. Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
13
|
Abstract
In bacteria and archaea, small RNAs (sRNAs) regulate complex networks through antisense interactions with target mRNAs in trans, and riboswitches regulate gene expression in cis based on the ability to bind small-molecule ligands. Although our understanding and characterization of these two important regulatory RNA classes is far from complete, these RNA-based mechanisms have proven useful for a wide variety of synthetic biology applications. Besides classic and contemporary applications in the realm of metabolic engineering and orthogonal gene control, this review also covers newer applications of regulatory RNAs as biosensors, logic gates, and tools to determine RNA-RNA interactions. A separate section focuses on critical insights gained and challenges posed by fundamental studies of sRNAs and riboswitches that should aid future development of synthetic regulatory RNAs.
Collapse
|
14
|
Leistra AN, Curtis NC, Contreras LM. Regulatory non-coding sRNAs in bacterial metabolic pathway engineering. Metab Eng 2018; 52:190-214. [PMID: 30513348 DOI: 10.1016/j.ymben.2018.11.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 10/31/2018] [Accepted: 11/29/2018] [Indexed: 12/11/2022]
Abstract
Non-coding RNAs (ncRNAs) are versatile and powerful controllers of gene expression that have been increasingly linked to cellular metabolism and phenotype. In bacteria, identified and characterized ncRNAs range from trans-acting, multi-target small non-coding RNAs to dynamic, cis-encoded regulatory untranslated regions and riboswitches. These native regulators have inspired the design and construction of many synthetic RNA devices. In this work, we review the design, characterization, and impact of ncRNAs in engineering both native and exogenous metabolic pathways in bacteria. We also consider the opportunities afforded by recent high-throughput approaches for characterizing sRNA regulators and their corresponding networks to showcase their potential applications and impact in engineering bacterial metabolism.
Collapse
Affiliation(s)
- Abigail N Leistra
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Nicholas C Curtis
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton Street Stop C0400, Austin, TX 78712, USA.
| |
Collapse
|
15
|
Mihailovic MK, Vazquez-Anderson J, Li Y, Fry V, Vimalathas P, Herrera D, Lease RA, Powell WB, Contreras LM. High-throughput in vivo mapping of RNA accessible interfaces to identify functional sRNA binding sites. Nat Commun 2018; 9:4084. [PMID: 30287822 PMCID: PMC6172242 DOI: 10.1038/s41467-018-06207-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 08/10/2018] [Indexed: 12/18/2022] Open
Abstract
Herein we introduce a high-throughput method, INTERFACE, to reveal the capacity of contiguous RNA nucleotides to establish in vivo intermolecular RNA interactions for the purpose of functional characterization of intracellular RNA. INTERFACE enables simultaneous accessibility interrogation of an unlimited number of regions by coupling regional hybridization detection to transcription elongation outputs measurable by RNA-seq. We profile over 900 RNA interfaces in 71 validated, but largely mechanistically under-characterized, Escherichia coli sRNAs in the presence and absence of a global regulator, Hfq, and find that two-thirds of tested sRNAs feature Hfq-dependent regions. Further, we identify in vivo hybridization patterns that hallmark functional regions to uncover mRNA targets. In this way, we biochemically validate 25 mRNA targets, many of which are not captured by typically tested, top-ranked computational predictions. We additionally discover direct mRNA binding activity within the GlmY terminator, highlighting the information value of high-throughput RNA accessibility data. Mapping RNA accessibility is valuable for identifying functional/regulatory RNA regions. Here the authors introduce INTERFACE, an intracellular method that quantifies antisense hybridization efficacy of any number of RNA regions simultaneously via a transcriptional elongation output, measurable via RNA-seq
Collapse
Affiliation(s)
- Mia K Mihailovic
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Jorge Vazquez-Anderson
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Yan Li
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ, 08544, USA
| | - Victoria Fry
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Praveen Vimalathas
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA
| | - Daniel Herrera
- Department of Computer Science, University of Texas at Austin, 2317 Speedway Stop D9500, Austin, TX, 78712, USA
| | - Richard A Lease
- Department of Chemical and Biomolecular Engineering, The Ohio State University, 151W. Woodruff Ave, Columbus, OH, 43210, USA.,Department of Chemistry and Biochemistry, The Ohio State University, 100W. 18th Ave, Columbus, OH, 43210, USA
| | - Warren B Powell
- Department of Operations Research and Financial Engineering, Princeton University, Sherrerd Hall, Charlton St., Princeton, NJ, 08544, USA
| | - Lydia M Contreras
- McKetta Department of Chemical Engineering, University of Texas at Austin, 200 E. Dean Keeton St., Stop C0400, Austin, TX, 78712, USA.
| |
Collapse
|