1
|
Morozov VV, Balakireva AV, Perfilov MM, Chepurnykh TV, Yampolsky IV, Sarkisyan KS, Mishin AS. Constitutive Promoters Functional in Plant, Fungal, and Bacterial Hosts. ACS Synth Biol 2025. [PMID: 40377175 DOI: 10.1021/acssynbio.4c00802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Engineering of orthogonal systems functional across diverse hosts can benefit from employing universal regulatory DNA elements. Here, we screened a number of composite promoters in plant, fungal, and bacterial hosts, identifying variants that drive strong constitutive expression in Nicotiana tabacum, Saccharomyces cerevisiae, Escherichia coli, and Agrobacterium tumefaciens, or only in the eukaryotic subset of these organisms. These promoters can be used in universal vectors to co-optimize for different hosts in directed evolution, engineering of biosynthetic pathways, or other biotechnological tasks that require host switching.
Collapse
Affiliation(s)
- Viktor V Morozov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Anastasia V Balakireva
- Planta LLC, Moscow 121205, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Maxim M Perfilov
- Planta LLC, Moscow 121205, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Tatyana V Chepurnykh
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| | - Ilia V Yampolsky
- Planta LLC, Moscow 121205, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Karen S Sarkisyan
- Synthetic Biology Group, MRC London Institute of Medical Sciences, London W12 0HS, U.K
- Institute of Clinical Sciences and Imperial Centre for Engineering Biology, Imperial College London, London UK W12 0NN, U.K
| | - Alexander S Mishin
- Planta LLC, Moscow 121205, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
2
|
Zhang S, Cheng B, Liao Q, Huang X, Mi M, Huang M, Wu Y, Wu S, Wang X, Hu X. Multi-gene metabolic engineering of Pichia pastoris to synthesize ectoine. J Biosci Bioeng 2025; 139:347-353. [PMID: 40057455 DOI: 10.1016/j.jbiosc.2025.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Revised: 02/10/2025] [Accepted: 02/18/2025] [Indexed: 04/05/2025]
Abstract
As a promising osmolyte, ectoine has been widely applied in cosmetics, food, and pharmaceutical industries in recent years, therefore its biomanufacturer has attracted increasing interest. Ectoine-producing isolates were previously screened from halophilic microorganisms. After ectoine synthetase was identified, genetic engineering of Escherichia coli, Corynebacterium glutamicum, and Hansenula polymorpha were employed to produce ectoine. However, Pichia pastoris, another successful host capable of high-density cell culture, had not yet been exploited as an ectoine-synthesizing host. In this study, therefore, P. pastoris was employed for the first time to produce ectoine through multi-gene metabolic engineering. Firstly, Chromohalobacter salexigens HZS/E, a halophilic isolate producing 46.96 mg/mL ectoine, was identified, while ectABC encoding ectoine synthetase was cloned. Later, ectABC was introduced into P. pastoris GS115 under the control of two different promoters. The results showed that PGAP-based HZS02 accumulated 8.03 g/L, 12.62 % higher than 7.13 g/L produced by PAOX-based HZS01. Finally, to enhance the supply of the precursor l-aspartate-β-semialdehyde, three genes (aspC, aK, and asD) were individually and collectively overexpressed. The highest ectoine yield was achieved at 10.88 g/L by GS115/pGAPZ A-ectABC-aspC-aK-asD. This study demonstrated that P. pastoris was a highly effective host for ectoine biosynthesis.
Collapse
Affiliation(s)
- Shuai Zhang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China; Guangzhou Cn-Ferment Biotechnology Co., Ltd., Guangzhou 510550, China.
| | - Bingjie Cheng
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China.
| | - Qing Liao
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China.
| | - Xuewu Huang
- Center for Drug Safety Evaluation and Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Mengjiao Mi
- School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China.
| | - Ming Huang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China.
| | - Yue Wu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China.
| | - Shuyan Wu
- AgResearch Ltd., Hopkirk Research Institute, University Avenue and Library Road, Massey University, Palmerston North 4442, New Zealand.
| | - Xiaoyuang Wang
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China.
| | - Xiaoqing Hu
- State Key Laboratory of Food Science and Resources, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China; School of Biotechnology, Jiangnan University, 1800 Lihu Ave., Wuxi 214122, China.
| |
Collapse
|
3
|
Yu L, Song X, Wang G, Xia Y, Song Z, Chen G, Ai L, Xiong Z. Construction and characterization of a mutant library for the P 23 constitutive promoter in lactic acid bacteria. J Biotechnol 2025; 399:99-107. [PMID: 39848497 DOI: 10.1016/j.jbiotec.2025.01.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/16/2025] [Accepted: 01/20/2025] [Indexed: 01/25/2025]
Abstract
Promoters are crucial elements for controlling gene expression in cells, yet lactic acid bacteria (LAB) often lack a diverse set of available constitutive promoters with quantitative characterization. To enrich the LAB promoter library, this study focused on the known strong constitutive promoter P23 in LAB. Through error-prone PCR and dNTP analog-induced random mutagenesis, a library of 247 mutants of P23 was generated by using the red fluorescent protein (RFP) fluorescence intensity as a high-throughput screening indicator in Streptococcus thermophilus. The activity of P23 mutants varied from 0.01 to 3.63 times that of P23. Similar trends of promoter strength were observed in Lactobacillus plantarum and Lactococcus lactis, but significant differences in Escherichia coli, indicating the library's specificity to LAB. To assess the application potential of this P23 library, seven promoters with different strengths (0.28-2.58) were selected. The mutant promoters significantly enhanced the enzyme activities of superoxide dismutase (SOD), β-glucuronidase (GusA), and β-galactosidase (β-gal) in S. thermophilus. Notably, the mutant P23-203 expressing SOD exhibited an enzyme activity of 382.9 U/mg, which was 1.65 times higher than the control (P23). Similarly, the expression of GusA and β-gal were 1.82 and 1.28 times higher than those of P23, respectively. This study provided a set of significantly different P23 constitutive promoter mutant elements for the first time, laying the foundation for metabolic engineering and synthetic biology applications in LAB.
Collapse
Affiliation(s)
- Linbing Yu
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zibo Song
- Yunnan Provincial Key Laboratory of Applied Technology for Special Forest Fruits, Yunnan Maoduoli Group Food Co., Ltd., Yuxi 653100, China
| | - Gong Chen
- Sichuan Dongpo Chinese Paocai Industrial Technology Research Institute, Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd., Chengdou 611130, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
4
|
Li Y, Wu Y, Xu X, Liu Y, Li J, Du G, Lv X, Li Y, Liu L. A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria. Nucleic Acids Res 2025; 53:gkae1315. [PMID: 39797735 PMCID: PMC11724366 DOI: 10.1093/nar/gkae1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/13/2025] Open
Abstract
Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system. By applying this approach, two reconstructed inducible systems (a 2,4-diacetylphloroglucinol-inducible system PphlF3R1 and an anhydrotetracycline-inducible system Ptet2R2*) were successfully developed and demonstrated to function in three model microorganisms, including Escherichia coli, Bacillus subtilis and Corynebacterium glutamicum. To enhance their practicality, both inducible systems were subsequently placed on the plasmid and genome for detailed characterization to determine the optimal expression conditions. Furthermore, the more efficient inducible system Ptet2R2* was employed to express various reporter proteins and gene clusters in these three strains. Moreover, the aTc-inducible system Ptet2R2*, combined with T7 RNA polymerase and dCas12a, was utilized to develop a single-input genetic circuit that enables the simultaneous activation and repression of gene expression. Overall, the cross-species inducible system serves as a stringent, controllable and effective tool for protein expression and metabolic pathway control in different bacteria.
Collapse
Affiliation(s)
- Yang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Institute of Future Food Technology, JITRl, No.19 Wenzhuang Road, Yixing 214200, China
| | - Yaokang Wu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Yangyang Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China
| |
Collapse
|
5
|
Roldán DM, Amarelle V. Identification of novel broad host-range promoter sequences functional in diverse Pseudomonadota by a promoter-trap approach. Braz J Microbiol 2024; 55:3199-3214. [PMID: 39259478 PMCID: PMC11711732 DOI: 10.1007/s42770-024-01512-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
Finding novel promoter sequences is a cornerstone of synthetic biology. To contribute to the expanding catalog of biological parts, we employed a promoter-trap approach to identify novel sequences within an Antarctic microbial community that act as broad host-range promoters functional in diverse Pseudomonadota. Using Pseudomonas putida KT2440 as host, we generated a library comprising approximately 2,000 clones resulting in the identification of thirteen functional promoter sequences, thereby expanding the genetic toolkit available for this chassis. Some of the discovered promoter sequences prove to be broad host-range as they drove gene expression not only in P. putida KT2440 but also in Escherichia coli DH5α, Cupriavidus taiwanensis R1T, Paraburkholderia phymatum STM 815T, Ensifer meliloti 1021, and an indigenous Antarctic bacterium, Pseudomonas sp. UYIF39. Our findings enrich the existing catalog of biological parts, offering a repertoire of broad host-range promoter sequences that exhibit functionality across diverse members of the phylum Pseudomonadota, proving Antarctic microbial community as a valuable resource for prospecting new biological parts for synthetic biology.
Collapse
Affiliation(s)
- Diego M Roldán
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, 11600, Uruguay
| | - Vanesa Amarelle
- Departamento de Bioquímica y Genómica Microbianas, Instituto de Investigaciones Biológicas Clemente Estable, Av. Italia 3318, Montevideo, 11600, Uruguay.
| |
Collapse
|
6
|
Yip A, McArthur OD, Ho KC, Aucoin MG, Ingalls BP. Degradation of polyethylene terephthalate (PET) plastics by wastewater bacteria engineered via conjugation. Microb Biotechnol 2024; 17:e70015. [PMID: 39315602 PMCID: PMC11420662 DOI: 10.1111/1751-7915.70015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
Wastewater treatment plants are one of the major pathways for microplastics to enter the environment. In general, microplastics are contaminants of global concern that pose risks to ecosystems and human health. Here, we present a proof-of-concept for reduction of microplastic pollution emitted from wastewater treatment plants: delivery of recombinant DNA to bacteria in wastewater to enable degradation of polyethylene terephthalate (PET). Using a broad-host-range conjugative plasmid, we enabled various bacterial species from a municipal wastewater sample to express FAST-PETase, which was released into the extracellular environment. We found that FAST-PETase purified from some transconjugant isolates could degrade about 40% of a 0.25 mm thick commercial PET film within 4 days at 50°C. We then demonstrated partial degradation of a post-consumer PET product over 5-7 days by exposure to conditioned media from isolates. These results have broad implications for addressing the global plastic pollution problem by enabling environmental bacteria to degrade PET.
Collapse
Affiliation(s)
- Aaron Yip
- Department of Chemical EngineeringUniversity of WaterlooWaterlooOntarioCanada
| | - Owen D. McArthur
- Department of BiologyUniversity of WaterlooWaterlooOntarioCanada
| | - Kalista C. Ho
- Department of BiologyUniversity of WaterlooWaterlooOntarioCanada
| | - Marc G. Aucoin
- Department of Chemical EngineeringUniversity of WaterlooWaterlooOntarioCanada
| | - Brian P. Ingalls
- Department of Applied MathematicsUniversity of WaterlooWaterlooOntarioCanada
| |
Collapse
|
7
|
Ji L, Xu S, Zhang Y, Cheng H. Screening of broad-host expression promoters for shuttle expression vectors in non-conventional yeasts and bacteria. Microb Cell Fact 2024; 23:230. [PMID: 39152436 PMCID: PMC11330142 DOI: 10.1186/s12934-024-02506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
8
|
Lu C, Huang Y, Cui J, Wu J, Jiang C, Gu X, Cao Y, Yin S. Toward Practical Applications of Engineered Living Materials with Advanced Fabrication Techniques. ACS Synth Biol 2024; 13:2295-2312. [PMID: 39002162 DOI: 10.1021/acssynbio.4c00259] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/15/2024]
Abstract
Engineered Living Materials (ELMs) are materials composed of or incorporating living cells as essential functional units. These materials can be created using bottom-up approaches, where engineered cells spontaneously form well-defined aggregates. Alternatively, top-down methods employ advanced materials science techniques to integrate cells with various kinds of materials, creating hybrids where cells and materials are intricately combined. ELMs blend synthetic biology with materials science, allowing for dynamic responses to environmental stimuli such as stress, pH, humidity, temperature, and light. These materials exhibit unique "living" properties, including self-healing, self-replication, and environmental adaptability, making them highly suitable for a wide range of applications in medicine, environmental conservation, and manufacturing. Their inherent biocompatibility and ability to undergo genetic modifications allow for customized functionalities and prolonged sustainability. This review highlights the transformative impact of ELMs over recent decades, particularly in healthcare and environmental protection. We discuss current preparation methods, including the use of endogenous and exogenous scaffolds, living assembly, 3D bioprinting, and electrospinning. Emphasis is placed on ongoing research and technological advancements necessary to enhance the safety, functionality, and practical applicability of ELMs in real-world contexts.
Collapse
Affiliation(s)
- Chenjing Lu
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Yaying Huang
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Jian Cui
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
| | - Junhua Wu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Chunping Jiang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaosong Gu
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| | - Yi Cao
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
- Institute for Brain Sciences, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, Nanjing University, Nanjing 210093, China
- Chemistry and Biomedicine innovation center, MOE Key Laboratory of High Performance Polymer Materials and Technology, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Sheng Yin
- Collaborative Innovation Center of Advanced Microstructures, National Laboratory of Solid State Microstructure, Department of Physics, Nanjing University, Nanjing 210093, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan 250021, China
| |
Collapse
|
9
|
Zuo W, Yin G, Zhang L, Zhang W, Xu R, Wang Y, Li J, Kang Z. Engineering artificial cross-species promoters with different transcriptional strengths. Synth Syst Biotechnol 2024; 10:49-57. [PMID: 39224149 PMCID: PMC11366860 DOI: 10.1016/j.synbio.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/22/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024] Open
Abstract
As a fundamental tool in synthetic biology, promoters are pivotal in regulating gene expression, enabling precise genetic control and spurring innovation across diverse biotechnological applications. However, most advances in engineered genetic systems rely on host-specific regulation of the genetic portion. With the burgeoning diversity of synthetic biology chassis cells, there emerges a pressing necessity to broaden the universal promoter toolkit spectrum, ensuring adaptability across various microbial chassis cells for enhanced applicability and customization in the evolving landscape of synthetic biology. In this study, we analyzed and validated the primary structures of natural endogenous promoters from Escherichia coli, Bacillus subtilis, Corynebacterium glutamicum, Saccharomyces cerevisiae, and Pichia pastoris, and through strategic integration and rational modification of promoter motifs, we developed a series of cross-species promoters (Psh) with transcriptional activity in five strains (prokaryotic and eukaryotic). This series of cross species promoters can significantly expand the synthetic biology promoter toolkit while providing a foundation and inspiration for standardized development of universal components The combinatorial use of key elements from prokaryotic and eukaryotic promoters presented in this study represents a novel strategy that may offer new insights and methods for future advancements in promoter engineering.
Collapse
Affiliation(s)
- Wenjie Zuo
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guobin Yin
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Luyao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Weijiao Zhang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Ruirui Xu
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Yang Wang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Jianghua Li
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Science Center for Future Foods, Jiangnan University, Wuxi, 214122, China
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
10
|
Ma Z, Chang R, Zhu L, Zhu D, Deng Y, Guo X, Cheng Z, Chen X. Metabolic Engineering of Corynebacterium glutamicum for Highly Efficient Production of Ectoine. ACS Synth Biol 2024; 13:2081-2090. [PMID: 38607270 DOI: 10.1021/acssynbio.4c00019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ectoine is a compatible solute that functions as a cell protector from various stresses, protecting cells and stabilizing biomolecules, and is widely used in medicine, cosmetics, and biotechnology. Microbial fermentation has been widely used for the large-scale production of ectoine, and a number of fermentation strategies have been developed to increase the ectoine yield, reduce production costs, and simplify the production process. Here, Corynebacterium glutamicum was engineered for ectoine production by heterologous expression of the ectoine biosynthesis operon ectBAC gene from Halomonas elongata, and a series of genetic modifications were implemented. This included introducing the de3 gene from Escherichia coli BL21 (DE3) to express the T7 promoter, eliminating the lysine transporter protein lysE to limit lysine production, and performing a targeted mutation lysCS301Y on aspartate kinase to alleviate feedback inhibition of lysine. The new engineered strain Ect10 obtained an ectoine titer of 115.87 g/L in an optimized fed-batch fermentation, representing the highest ectoine production level in C. glutamicum and achieving the efficient production of ectoine in a low-salt environment.
Collapse
Affiliation(s)
- Zhi Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Renjie Chang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Linjiang Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Dianhao Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yanfeng Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Xinying Guo
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Ziyi Cheng
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada
| | - Xiaolong Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, PR China
- Quzhou Eco-Industrial Innovation Institute, Zhejiang University of Technology, Quzhou 324003, PR China
| |
Collapse
|
11
|
Okay S. Fine-Tuning Gene Expression in Bacteria by Synthetic Promoters. Methods Mol Biol 2024; 2844:179-195. [PMID: 39068340 DOI: 10.1007/978-1-0716-4063-0_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Promoters are key genetic elements in the initiation and regulation of gene expression. A limited number of natural promoters has been described for the control of gene expression in synthetic biology applications. Therefore, synthetic promoters have been developed to fine-tune the transcription for the desired amount of gene product. Mostly, synthetic promoters are characterized using promoter libraries that are constructed via mutagenesis of promoter sequences. The strength of promoters in the library is determined according to the expression of a reporter gene such as gfp encoding green fluorescent protein. Gene expression can be controlled using inducers. The majority of the studies on gram-negative bacteria are conducted using the expression system of the model organism Escherichia coli while that of the model organism Bacillus subtilis is mostly used in the studies on gram-positive bacteria. Additionally, synthetic promoters for the cyanobacteria, which are phototrophic microorganisms, are evaluated, especially using the model cyanobacterium Synechocystis sp. PCC 6803. Moreover, a variety of algorithms based on machine learning methods were developed to characterize the features of promoter elements. Some of these in silico models were verified using in vitro or in vivo experiments. Identification of novel synthetic promoters with improved features compared to natural ones contributes much to the synthetic biology approaches in terms of fine-tuning gene expression.
Collapse
Affiliation(s)
- Sezer Okay
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara, Türkiye
| |
Collapse
|
12
|
van Schaik J, Li Z, Cheadle J, Crook N. Engineering the Maize Root Microbiome: A Rapid MoClo Toolkit and Identification of Potential Bacterial Chassis for Studying Plant-Microbe Interactions. ACS Synth Biol 2023; 12:3030-3040. [PMID: 37712562 DOI: 10.1021/acssynbio.3c00371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2023]
Abstract
Sustainably enhancing crop production is a global necessity to meet the escalating demand for staple crops while sustainably managing their associated carbon/nitrogen inputs. Leveraging plant-associated microbiomes is a promising avenue for addressing this demand. However, studying these communities and engineering them for sustainable enhancement of crop production have remained a challenge due to limited genetic tools and methods. In this work, we detail the development of the Maize Root Microbiome ToolKit (MRMTK), a rapid Modular Cloning (MoClo) toolkit that only takes 2.5 h to generate desired constructs (5400 potential plasmids) that replicate and express heterologous genes in Enterobacter ludwigii strain AA4 (Elu), Pseudomonas putida strain AA7 (Ppu), Herbaspirillum robiniae strain AA6 (Hro), Stenotrophomonas maltophilia strain AA1 (Sma), and Brucella pituitosa strain AA2 (Bpi), which comprise a model maize root synthetic community (SynCom). In addition to these genetic tools, we describe a highly efficient transformation protocol (107-109 transformants/μg of DNA) 1 for each of these strains. Utilizing this highly efficient transformation protocol, we identified endogenous Expression Sequences (ES; promoter and ribosomal binding sites) for each strain via genomic promoter trapping. Overall, MRMTK is a scalable and adaptable platform that expands the genetic engineering toolbox while providing a standardized, high-efficiency transformation method across a diverse group of root commensals. These results unlock the ability to elucidate and engineer plant-microbe interactions promoting plant growth for each of the 5 bacterial strains in this study.
Collapse
Affiliation(s)
- John van Schaik
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Zidan Li
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - John Cheadle
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Room 2109, Partners II, 840 Main Campus Drive, Raleigh, North Carolina 27606, United States
| |
Collapse
|
13
|
Ni X, Liu Z, Guo J, Zhang G. Development of Terminator-Promoter Bifunctional Elements for Application in Saccharomyces cerevisiae Pathway Engineering. Int J Mol Sci 2023; 24:9870. [PMID: 37373018 DOI: 10.3390/ijms24129870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 05/31/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
The construction of a genetic circuit requires the substitution and redesign of different promoters and terminators. The assembly efficiency of exogenous pathways will also decrease significantly when the number of regulatory elements and genes is increased. We speculated that a novel bifunctional element with promoter and terminator functions could be created via the fusion of a termination signal with a promoter sequence. In this study, the elements from a Saccharomyces cerevisiae promoter and terminator were employed to design a synthetic bifunctional element. The promoter strength of the synthetic element is apparently regulated through a spacer sequence and an upstream activating sequence (UAS) with a ~5-fold increase, and the terminator strength could be finely regulated by the efficiency element, with a ~5-fold increase. Furthermore, the use of a TATA box-like sequence resulted in the adequate execution of both functions of the TATA box and the efficiency element. By regulating the TATA box-like sequence, UAS, and spacer sequence, the strengths of the promoter-like and terminator-like bifunctional elements were optimally fine-tuned with ~8-fold and ~7-fold increases, respectively. The application of bifunctional elements in the lycopene biosynthetic pathway showed an improved pathway assembly efficiency and higher lycopene yield. The designed bifunctional elements effectively simplified pathway construction and can serve as a useful toolbox for yeast synthetic biology.
Collapse
Affiliation(s)
- Xiaoxia Ni
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Zhengyang Liu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Jintang Guo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| | - Genlin Zhang
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi 832003, China
| |
Collapse
|
14
|
Ma Z, Wu C, Zhu L, Chang R, Ma W, Deng Y, Chen X. Bioactivity profiling of the extremolyte ectoine as a promising protectant and its heterologous production. 3 Biotech 2022; 12:331. [PMID: 36311375 PMCID: PMC9606177 DOI: 10.1007/s13205-022-03370-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 09/20/2022] [Indexed: 11/28/2022] Open
Abstract
Ectoine is a compatible solutes that is diffusely dispersed in bacteria and archaea. It plays a significant role as protectant against various external pressures, such as high temperature, high osmolarity, dryness and radiation, in cells. Ectoine can be utilized in cosmetics due to its properties of moisturizing and antiultraviolet. It can also be used in the pharmaceutical industry for treating various diseases. Therefore, strong protection of ectoine creates a high commercial value. Its current market value is approximately US$1000 kg-1. However, traditional ectoine production in high-salinity media causes high costs of equipment loss and wastewater treatment. There is a growing attention to reduce the salinity of the fermentation broth without sacrificing the production of ectoine. Thus, heterologous production of ectoine in nonhalophilic microorganisms may represent the new generation of the industrial production of ectoine. In this review, we summarized and discussed the biological activities of ectoine on cell and human health protection and its heterologous production.
Collapse
Affiliation(s)
- Zhi Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Chutian Wu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Linjiang Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Renjie Chang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Weilin Ma
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Yanfeng Deng
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| | - Xiaolong Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014 People’s Republic of China
| |
Collapse
|
15
|
Wang C, Zhang W, Tian R, Zhang J, Zhang L, Deng Z, Lv X, Li J, Liu L, Du G, Liu Y. Model‐driven design of synthetic N‐terminal coding sequences for regulating gene expression in yeast and bacteria. Biotechnol J 2022; 17:e2100655. [DOI: 10.1002/biot.202100655] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 01/12/2022] [Accepted: 01/13/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Chenyun Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Wei Zhang
- School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China
- Jiangsu Key Laboratory of Media Design and Software Technology Wuxi 214122 China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Jianing Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Linpei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
| | - Zhaohong Deng
- School of Artificial Intelligence and Computer Science Jiangnan University Wuxi 214122 China
- Jiangsu Key Laboratory of Media Design and Software Technology Wuxi 214122 China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology Jiangnan University Wuxi 214122 China
- Science Center for Future Foods Jiangnan University Wuxi 214122 China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology Jiangnan University Wuxi 214122 China
- Qingdao Special Food Research Institute Wuxi 214122 China
| |
Collapse
|
16
|
Thomas SC, Madaan T, Kamble NS, Siddiqui NA, Pauletti GM, Kotagiri N. Engineered Bacteria Enhance Immunotherapy and Targeted Therapy through Stromal Remodeling of Tumors. Adv Healthc Mater 2022; 11:e2101487. [PMID: 34738725 PMCID: PMC8770579 DOI: 10.1002/adhm.202101487] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/28/2021] [Indexed: 01/03/2023]
Abstract
Desmoplastic solid tumors are characterized by the rapid build-up of extracellular matrix (ECM) macromolecules, such as hyaluronic acid (HA). The resulting physiological barrier prevents the infiltration of immune cells and also impedes the delivery of anticancer agents. The development of a hypervesiculating Escherichia coli Nissle (ΔECHy) based tumor targeting bacterial system capable of distributing a fusion peptide, cytolysin A (ClyA)-hyaluronidase (Hy) via outer membrane vesicles (OMVs) is reported. The capability of targeting hypoxic tumors, manufacturing recombinant proteins in situ and the added advantage of an on-site OMV based distribution system makes the engineered bacterial vector a unique candidate for peptide delivery. The HA degrading potential of Hy for stromal modulation is combined with the cytolytic activity of ClyA followed by testing it within syngeneic cancer models. ΔECHy is combined with immune checkpoint antibodies and tyrosine kinase inhibitors (TKIs) to demonstrate that remodeling the tumor stroma results in the improvement of immunotherapy outcomes and enhancing the efficacy of biological signaling inhibitors. The biocompatibility of ΔECHy is also investigated to show that the engineered bacteria are effectively cleared, elicit minimal inflammatory and immune responses, and therefore could be a reliable candidate as a live biotherapeutic.
Collapse
Affiliation(s)
- Shindu C. Thomas
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Tushar Madaan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nitin S. Kamble
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Nabil A. Siddiqui
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | - Giovanni M. Pauletti
- Department of Pharmaceutical and Administrative Sciences, University of Health Sciences and Pharmacy in St. Louis, 1 Pharmacy Place, St. Louis, MO 63110, USA
| | - Nalinikanth Kotagiri
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| |
Collapse
|
17
|
Torres‐Bacete J, Luís García J, Nogales J. A portable library of phosphate-depletion based synthetic promoters for customable and automata control of gene expression in bacteria. Microb Biotechnol 2021; 14:2643-2658. [PMID: 33783967 PMCID: PMC8601176 DOI: 10.1111/1751-7915.13808] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 03/14/2021] [Indexed: 12/14/2022] Open
Abstract
Industrial biotechnology gene expression systems relay on constitutive promoters compromising cellular growth from the start of the bioprocess, or on inducible devices, which require manual addition of cognate inducers. To overcome this shortcoming, we engineered an automata regulatory system based on cell-stress mechanisms. Specifically, we engineered a synthetic and highly portable phosphate-depletion library of promoters inspired by bacterial PHO starvation system (Pliar promoters). Furthermore, we fully characterized 10 synthetic promoters within the background of two well-known bacterial workhorses such as E. coli W and P. putida KT2440. The promoters displayed an interesting host-dependent performance and a wide strength spectrum ranging from 0.4- to 1.3-fold when compared to the wild-type phosphatase alkaline promoter (PphoA). By comparing with available gene expression systems, we proved the suitability of this new library for the automata and effective decoupling of growth from production in P. putida. Growth phase-dependent expression of these promoters could therefore be activated by fine tuning the initial concentration of phosphate in the medium. Finally, the Pliar library was implemented in the SEVA platform in a ready-to-use mode allowing its broad use by the scientific community.
Collapse
Affiliation(s)
- Jesús Torres‐Bacete
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)Madrid28049Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| | - José Luís García
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
- Department of Microbial and Plant BiotechnologyCentro de Investigaciones Biológicas (CIB)Centro Nacional de Biotecnología (CSIC)MadridSpain
| | - Juan Nogales
- Department of Systems BiologyCentro Nacional de Biotecnología (CSIC)Madrid28049Spain
- Interdisciplinary Platform for Sustainable Plastics towards a Circular Economy‐Spanish National Research Council (SusPlast‐CSIC)MadridSpain
| |
Collapse
|
18
|
Ma Q, Xia L, Wu H, Zhuo M, Yang M, Zhang Y, Tan M, Zhao K, Sun Q, Xu Q, Chen N, Xie X. Metabolic engineering of Escherichia coli for efficient osmotic stress-free production of compatible solute hydroxyectoine. Biotechnol Bioeng 2021; 119:89-101. [PMID: 34612520 DOI: 10.1002/bit.27952] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/22/2021] [Accepted: 09/28/2021] [Indexed: 11/08/2022]
Abstract
Compatible solutes are key for the ability of halophilic bacteria to resist high osmotic stress. They have received wide attention from researchers for their excellent osmotic protection properties. Hydroxyectoine is a particularly important compatible solute, but its production by microbes faces several challenges, including low titer/yield, the presence of the byproduct ectoine, and the requirement of high salinity. Here, we aimed to metabolically engineer Escherichia coli to efficiently produce hydroxyectoine in the absence of osmotic stress without accumulating the byproduct ectoine. First, combinatorial optimization of the expression strength of key genes in the ectoine synthesis module and hydroxyectoine synthesis module was conducted. After optimization of the expression of these genes, 12.12 g/L hydroxyectoine and 0.24 g/L ectoine were obtained at 36 h in shake-flask fermentation with the addition of the co-substrate α-ketoglutarate. Further optimization of the addition of α-ketoglutarate achieved the sole production of hydroxyectoine (i.e., no ectoine accumulation), indicating that the supply of α-ketoglutarate is critically important for sole hydroxyectoine production. Finally, quorum sensing-based auto-regulation of intracellular α-ketoglutarate pool was implemented as an alternative to α-ketoglutarate addition by coupling the expression of sucA with the esaI/esaR circuit, which led to 14.93 g/L hydroxyectoine with a unit cell yield of 1.678 g/g and no ectoine accumulation in the absence of osmotic stress. This is the highest reported titer of sole hydroxyectoine production under salinity-free fermentation to date.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Li Xia
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Heyun Wu
- College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin, China
| | - Mingyang Zhuo
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Mengya Yang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Ying Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Miao Tan
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Kexin Zhao
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Quanwei Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Qingyang Xu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Ning Chen
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin, China.,College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China.,National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin, China
| |
Collapse
|
19
|
Cazier AP, Blazeck J. Advances in promoter engineering: novel applications and predefined transcriptional control. Biotechnol J 2021; 16:e2100239. [PMID: 34351706 DOI: 10.1002/biot.202100239] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/08/2022]
Abstract
Synthetic biology continues to progress by relying on more robust tools for transcriptional control, of which promoters are the most fundamental component. Numerous studies have sought to characterize promoter function, determine principles to guide their engineering, and create promoters with stronger expression or tailored inducible control. In this review, we will summarize promoter architecture and highlight recent advances in the field, focusing on the novel applications of inducible promoter design and engineering towards metabolic engineering and cellular therapeutic development. Additionally, we will highlight how the expansion of new, machine learning techniques for modeling and engineering promoter sequences are enabling more accurate prediction of promoter characteristics. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Andrew P Cazier
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| | - John Blazeck
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst St. NW, Atlanta, Georgia, 30332, USA
| |
Collapse
|
20
|
Meng Q, Yuan Y, Li Y, Wu S, Shi K, Liu S. Optimization of Electrotransformation Parameters and Engineered Promoters for Lactobacillus plantarum from Wine. ACS Synth Biol 2021; 10:1728-1738. [PMID: 34048225 DOI: 10.1021/acssynbio.1c00123] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Robust and versatile promoters for Lactobacillus plantarum found in wine are necessary gene expression tools for genetic research involving wine stress. We optimized the electrotransformation parameters for L. plantarum XJ25 isolated from wine and engineered five promoters based on the promoter P23; these promoters showed significantly different transcriptional activities under nonstress conditions. The activities of these promoters in vivo and the resulting growth burden to the host strain under different wine stresses were also evaluated. A range of colors (from white to dark pink) of the developing colonies with the plasmid pNZ8148 carrying an X-mCherry expression cassette, namely, P23-mCherry, trcP23-mCherry, POL1-mCherry, POL2-mCherry, POL3-mCherry, or POL4-mCherry, were analyzed. The applicability of the optimized electrotransformation parameters and synthetic promoters with different activities were also verified in several L. plantarum strains. Therefore, the optimized electrotransformation and these characterized promoters were determined to be suitable for applications in wine research in the future.
Collapse
Affiliation(s)
- Qiang Meng
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yuxin Yuan
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Yueyao Li
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shaowen Wu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Kan Shi
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuwen Liu
- College of Enology, Northwest A&F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Chen Y, Liu L, Yu S, Li J, Zhou J, Chen J. Identification of Gradient Promoters of Gluconobacter oxydans and Their Applications in the Biosynthesis of 2-Keto-L-Gulonic Acid. Front Bioeng Biotechnol 2021; 9:673844. [PMID: 33898410 PMCID: PMC8064726 DOI: 10.3389/fbioe.2021.673844] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 03/22/2021] [Indexed: 12/19/2022] Open
Abstract
The acetic acid bacterium Gluconobacter oxydans is known for its unique incomplete oxidation and therefore widely applied in the industrial production of many compounds, e.g., 2-keto-L-gulonic acid (2-KLG), the direct precursor of vitamin C. However, few molecular tools are available for metabolically engineering G. oxydans, which greatly limit the strain development. Promoters are one of vital components to control and regulate gene expression at the transcriptional level for boosting production. In this study, the low activity of SDH was found to hamper the high yield of 2-KLG, and enhancing the expression of SDH was achieved by screening the suitable promoters based on RNA sequencing data. We obtained 97 promoters from G. oxydans’s genome, including two strong shuttle promoters and six strongest promoters. Among these promoters, P3022 and P0943 revealed strong activities in both Escherichia coli and G. oxydans, and the activity of the strongest promoter (P2703) was about threefold that of the other reported strong promoters of G. oxydans. These promoters were used to overexpress SDH in G. oxydans WSH-003. The titer of 2-KLG reached 3.7 g/L when SDH was under the control of strong promoters P2057 and P2703. This study obtained a series of gradient promoters, including two strong shuttle promoters, and expanded the toolbox of available promoters for the application in metabolic engineering of G. oxydans for high-value products.
Collapse
Affiliation(s)
- Yue Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Li Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, Wuxi, China.,National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
22
|
Yuan J, Mo Q, Fan C. New Set of Yeast Vectors for Shuttle Expression in Escherichia coli. ACS OMEGA 2021; 6:7175-7180. [PMID: 33748631 PMCID: PMC7970545 DOI: 10.1021/acsomega.1c00339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 01/27/2021] [Indexed: 06/12/2023]
Abstract
Promoters that play an essential role in the gene regulation are of particular interest to the synthetic biology communities. Recent advances in high-throughput DNA sequencing have greatly increased the breadth of new genetic parts. The development of promoters with broad host properties could enable rapid phenotyping of genetic constructs in different hosts. In this study, we discovered that the GAL1/10 bidirectional promoter from Saccharomyces cerevisiae could be used for shuttle expression in Escherichia coli. Further investigation revealed that the GAL1/10 bidirectional promoter is subjected to catabolite repression in E. coli. We next constructed a set of Golden-Gate assembly vectors for shuttle expression between S. cerevisiae and E. coli. The utility of shuttle vectors was demonstrated for rapid phenotyping of a multigene pathway for cinnamyl alcohol production. Taken together, our work opens a new avenue for the future development of broad host expression systems between prokaryotic and eukaryotic hosts.
Collapse
|
23
|
Wu F, Chen W, Peng Y, Tu R, Lin Y, Xing J, Wang Q. Design and Reconstruction of Regulatory Parts for Fast-frowing Vibrio natriegens Synthetic Biology. ACS Synth Biol 2020; 9:2399-2409. [PMID: 32786358 DOI: 10.1021/acssynbio.0c00158] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The fast-growing Vibrio natriegens is an attractive robust chassis for diverse synthetic biology applications. However, V. natriegens lacks the suitable constitutive regulatory parts for precisely tuning the gene expression and, thus, recapitulating physiologically relevant changes in gene expression levels. In this study, we designed, constructed, and screened the synthetic regulatory parts by varying the promoter region and ribosome binding site element for V. natriegens with different transcriptional or translational strengths, respectively. The fluorescence intensities of the cells with different synthetic regulatory parts could distribute evenly over a wide range of 5 orders of magnitude. The selected synthetic regulatory parts had good stability in both nutrient-rich and minimal media. The precise combinatorial modulation of galP (GalP = galactose permease) and glk (Glk = glucokinase) from Escherichia coli by using three synthetic regulatory parts with different strengths was confirmed in a phosphoenolpyruvate:carbohydrate phosphotransferase system with inactive V. natriegens strain to alter the glucose transport. This work provides the simple, efficient, and standardized constitutive regulatory parts for V. natriegens synthetic biology.
Collapse
Affiliation(s)
- Fengli Wu
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Wujiu Chen
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Yanfeng Peng
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Ran Tu
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Yuping Lin
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| | - Jianmin Xing
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Qinhong Wang
- CAS Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, P. R. China
| |
Collapse
|
24
|
Zhu JW, Zhang SJ, Wang WG, Jiang H. Strategies for Discovering New Antibiotics from Bacteria in the Post-Genomic Era. Curr Microbiol 2020; 77:3213-3223. [PMID: 32929578 DOI: 10.1007/s00284-020-02197-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
New antibiotics are urgently required in clinical treatment and agriculture with the development of antimicrobial resistance. However, products discovered by repeating previous strategies are either not antibiotics or already known antibiotics. There is a growing demand for efficient strategies to discover new antibiotics. With the continuous improvement of gene sequencing technology and genomic data, some mining strategies have emerged. These strategies are expected to alleviate the current dilemma of antibiotics. In this review, we discuss the recent advances in discovery of bacterial antibiotics from the following aspects: activation of silent gene clusters, genome mining and metagenome mining. In the future, we envision the discovery of natural antibiotic will be accelerated by the combination of these strategies.
Collapse
Affiliation(s)
- Jia-Wei Zhu
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Si-Jia Zhang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Wen-Guang Wang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China
| | - Hui Jiang
- College of Life Sciences, Zhejiang University, 866 Yuhangtang Road, Hang Zhou, China.
| |
Collapse
|
25
|
Biggs BW, Bedore SR, Arvay E, Huang S, Subramanian H, McIntyre EA, Duscent-Maitland CV, Neidle EL, Tyo KEJ. Development of a genetic toolset for the highly engineerable and metabolically versatile Acinetobacter baylyi ADP1. Nucleic Acids Res 2020; 48:5169-5182. [PMID: 32246719 PMCID: PMC7229861 DOI: 10.1093/nar/gkaa167] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 02/20/2020] [Accepted: 03/04/2020] [Indexed: 01/10/2023] Open
Abstract
One primary objective of synthetic biology is to improve the sustainability of chemical manufacturing. Naturally occurring biological systems can utilize a variety of carbon sources, including waste streams that pose challenges to traditional chemical processing, such as lignin biomass, providing opportunity for remediation and valorization of these materials. Success, however, depends on identifying micro-organisms that are both metabolically versatile and engineerable. Identifying organisms with this combination of traits has been a historic hindrance. Here, we leverage the facile genetics of the metabolically versatile bacterium Acinetobacter baylyi ADP1 to create easy and rapid molecular cloning workflows, including a Cas9-based single-step marker-less and scar-less genomic integration method. In addition, we create a promoter library, ribosomal binding site (RBS) variants and test an unprecedented number of rationally integrated bacterial chromosomal protein expression sites and variants. At last, we demonstrate the utility of these tools by examining ADP1’s catabolic repression regulation, creating a strain with improved potential for lignin bioprocessing. Taken together, this work highlights ADP1 as an ideal host for a variety of sustainability and synthetic biology applications.
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Biotechnology Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Stacy R Bedore
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Erika Arvay
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA.,Biotechnology Training Program, Northwestern University, Evanston, IL 60208, USA
| | - Shu Huang
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Harshith Subramanian
- Master of Science in Biotechnology Program, Northwestern University, Evanston, IL 60208, USA
| | - Emily A McIntyre
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | | | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA 30602, USA
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
26
|
Developing rapid growing Bacillus subtilis for improved biochemical and recombinant protein production. Metab Eng Commun 2020; 11:e00141. [PMID: 32874915 PMCID: PMC7452210 DOI: 10.1016/j.mec.2020.e00141] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/05/2020] [Accepted: 08/10/2020] [Indexed: 12/28/2022] Open
Abstract
Bacillus subtilis is a model Gram-positive bacterium, which has been widely used as industrially important chassis in synthetic biology and metabolic engineering. Rapid growth of chassis is beneficial for shortening the fermentation period and enhancing production of target product. However, engineered B. subtilis with faster growth phenotype is lacking. Here, fast-growing B. subtilis were constructed through rational gene knockout and adaptive laboratory evolution using wild type strain B. subtilis 168 (BS168) as starting strain. Specifically, strains BS01, BS02, and BS03 were obtained through gene knockout of oppD, hag, and flgD genes, respectively, resulting 15.37%, 24.18% and 36.46% increases of specific growth rate compared with BS168. Next, strains A28 and A40 were obtained through adaptive laboratory evolution, whose specific growth rates increased by 39.88% and 43.53% compared to BS168, respectively. Then these two methods were combined via deleting oppD, hag, and flgD genes respectively on the basis of evolved strain A40, yielding strain A4003 with further 7.76% increase of specific growth rate, reaching 0.75 h-1 in chemical defined M9 medium. Finally, bioproduction efficiency of intracellular product (ribonucleic acid, RNA), extracellular product (acetoin), and recombinant proteins (green fluorescent protein (GFP) and ovalbumin) by fast-growing strain A4003 was tested. And the production of RNA, acetoin, GFP, and ovalbumin increased 38.09%, 5.40%, 9.47% and 19.79% using fast-growing strain A4003 as chassis compared with BS168, respectively. The developed fast-growing B. subtilis strains and strategies used for developing these strains should be useful for improving bioproduction efficiency and constructing other industrially important bacterium with faster growth phenotype. Fast-growing Bacillus subtilis were constructed through rational gene knockout and adaptive laboratory evolution. Specific growth rate of engineered B. subtilis increased 53.06% compared with B. subtilis 168, reaching 0.75 h-1 in M9 medium. Production of RNA, acetoin, and ovalbumin increased 38.09%, 5.40%, and 19.79% using fast-growing strain as chassis.
Collapse
|
27
|
Tang H, Wu Y, Deng J, Chen N, Zheng Z, Wei Y, Luo X, Keasling JD. Promoter Architecture and Promoter Engineering in Saccharomyces cerevisiae. Metabolites 2020; 10:metabo10080320. [PMID: 32781665 PMCID: PMC7466126 DOI: 10.3390/metabo10080320] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 12/23/2022] Open
Abstract
Promoters play an essential role in the regulation of gene expression for fine-tuning genetic circuits and metabolic pathways in Saccharomyces cerevisiae (S. cerevisiae). However, native promoters in S. cerevisiae have several limitations which hinder their applications in metabolic engineering. These limitations include an inadequate number of well-characterized promoters, poor dynamic range, and insufficient orthogonality to endogenous regulations. Therefore, it is necessary to perform promoter engineering to create synthetic promoters with better properties. Here, we review recent advances related to promoter architecture, promoter engineering and synthetic promoter applications in S. cerevisiae. We also provide a perspective of future directions in this field with an emphasis on the recent advances of machine learning based promoter designs.
Collapse
Affiliation(s)
- Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Yanling Wu
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Jiliang Deng
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Nanzhu Chen
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Zhaohui Zheng
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
| | - Yongjun Wei
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China;
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
- Correspondence: (X.L.); (J.D.K.)
| | - Jay D. Keasling
- Center for Synthetic Biochemistry, Shenzhen Institutes for Advanced Technologies, Chinese Academy of Sciences, Shenzhen 518055, China; (H.T.); (Y.W.); (J.D.); (N.C.); (Z.Z.)
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA 94720, USA
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
- Correspondence: (X.L.); (J.D.K.)
| |
Collapse
|
28
|
Sun J, Lu LB, Liang TX, Yang LR, Wu JP. CRISPR-Assisted Multiplex Base Editing System in Pseudomonas putida KT2440. Front Bioeng Biotechnol 2020; 8:905. [PMID: 32850749 PMCID: PMC7413065 DOI: 10.3389/fbioe.2020.00905] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 07/14/2020] [Indexed: 12/25/2022] Open
Abstract
Pseudomonas putida (P. putida) KT2440 is a paradigmatic environmental-bacterium that possesses significant potential in synthetic biology, metabolic engineering and biodegradation applications. However, most genome editing methods of P. putida KT2440 depend on heterologous repair proteins and the provision of donor DNA templates, which is laborious and inefficient. In this report, an efficient cytosine base editing system was established by using cytidine deaminase (APOBEC1), enhanced specificity Cas9 nickase (eSpCas9ppD10A) and the uracil DNA glycosylase inhibitor (UGI). This constructed base editor converts C-G into T-A in the absence of DNA strands breaks and donor DNA templates. By introducing a premature stop codon in target spacers, we successfully applied this system for gene inactivation with an efficiency of 25–100% in various Pseudomonas species, including P. putida KT2440, P. aeruginosa PAO1, P. fluorescens Pf-5 and P. entomophila L48. We engineered an eSpCas9ppD10A-NG variant with a NG protospacer adjacent motif to expand base editing candidate sites. By modifying the APOBEC1 domain, we successfully narrowed the editable window to increase gene inactivation efficiency in cytidine-rich spacers. Additionally, multiplex base editing in double and triple loci was achieved with mutation efficiencies of 90–100% and 25–35%, respectively. Taken together, the establishment of a fast, convenient and universal base editing system will accelerate the pace of future research undertaken with P. putida KT2440 and other Pseudomonas species.
Collapse
Affiliation(s)
- Jun Sun
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Li-Bing Lu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Tian-Xin Liang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Li-Rong Yang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Jian-Ping Wu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| |
Collapse
|
29
|
Wiltschi B, Cernava T, Dennig A, Galindo Casas M, Geier M, Gruber S, Haberbauer M, Heidinger P, Herrero Acero E, Kratzer R, Luley-Goedl C, Müller CA, Pitzer J, Ribitsch D, Sauer M, Schmölzer K, Schnitzhofer W, Sensen CW, Soh J, Steiner K, Winkler CK, Winkler M, Wriessnegger T. Enzymes revolutionize the bioproduction of value-added compounds: From enzyme discovery to special applications. Biotechnol Adv 2020; 40:107520. [DOI: 10.1016/j.biotechadv.2020.107520] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 10/18/2019] [Accepted: 01/13/2020] [Indexed: 12/11/2022]
|
30
|
Long M, Xu M, Ma Z, Pan X, You J, Hu M, Shao Y, Yang T, Zhang X, Rao Z. Significantly enhancing production of trans-4-hydroxy-l-proline by integrated system engineering in Escherichia coli. SCIENCE ADVANCES 2020; 6:eaba2383. [PMID: 32494747 PMCID: PMC7244267 DOI: 10.1126/sciadv.aba2383] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Accepted: 03/16/2020] [Indexed: 05/05/2023]
Abstract
Trans-4-hydroxy-l-proline is produced by trans-proline-4-hydroxylase with l-proline through glucose fermentation. Here, we designed a thorough "from A to Z" strategy to significantly improve trans-4-hydroxy-l-proline production. Through rare codon selected evolution, Escherichia coli M1 produced 18.2 g L-1 l-proline. Metabolically engineered M6 with the deletion of putA, proP, putP, and aceA, and proB mutation focused carbon flux to l-proline and released its feedback inhibition. It produced 15.7 g L-1 trans-4-hydroxy-l-proline with 10 g L-1 l-proline retained. Furthermore, a tunable circuit based on quorum sensing attenuated l-proline hydroxylation flux, resulting in 43.2 g L-1 trans-4-hydroxy-l-proline with 4.3 g L-1 l-proline retained. Finally, rationally designed l-proline hydroxylase gave 54.8 g L-1 trans-4-hydroxy-l-proline in 60 hours almost without l-proline remaining-the highest production to date. The de novo engineering carbon flux through rare codon selected evolution, dynamic precursor modulation, and metabolic engineering provides a good technological platform for efficient hydroxyl amino acid synthesis.
Collapse
Affiliation(s)
| | | | - Zhenfeng Ma
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xuewei Pan
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Mengkai Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yu Shao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
31
|
Pang B, Zhou L, Cui W, Liu Z, Zhou Z. Production of a Thermostable Pullulanase in
Bacillus subtilis
by Optimization of the Expression Elements. STARCH-STARKE 2020. [DOI: 10.1002/star.202000018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Bo Pang
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Li Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Wenjing Cui
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhongmei Liu
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| | - Zhemin Zhou
- The Key Laboratory of Industrial Biotechnology of Ministry of Education School of Biotechnology, Jiangnan University 1800 Lihu Avenue Wuxi 214122 China
| |
Collapse
|
32
|
Construction and application of a dual promoter system for efficient protein production and metabolic pathway enhancement in Bacillus licheniformis. J Biotechnol 2020; 312:1-10. [DOI: 10.1016/j.jbiotec.2020.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 02/20/2020] [Accepted: 02/28/2020] [Indexed: 12/31/2022]
|
33
|
Khan N, Yeung E, Farris Y, Fansler SJ, Bernstein HC. A broad-host-range event detector: expanding and quantifying performance between Escherichia coli and Pseudomonas species. Synth Biol (Oxf) 2020. [DOI: 10.1093/synbio/ysaa002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
AbstractModern microbial biodesign relies on the principle that well-characterized genetic parts can be reused and reconfigured for different functions. However, this paradigm has only been successful in a limited set of hosts, mostly comprised from common lab strains of Escherichia coli. It is clear that new applications such as chemical sensing and event logging in complex environments will benefit from new host chassis. This study quantitatively compared how the same chemical event logger performed across four strains and three different microbial species. An integrase-based sensor and memory device was operated by two representative soil Pseudomonads—Pseudomonas fluorescens SBW25 and Pseudomonas putida DSM 291. Quantitative comparisons were made between these two non-traditional hosts and two benchmark E. coli chassis including the probiotic Nissle 1917 and common cloning strain DH5α. The performance of sensor and memory components changed according to each host, such that a clear chassis effect was observed and quantified. These results were obtained via fluorescence from reporter proteins that were transcriptionally fused to the integrase and downstream recombinant region and via data-driven kinetic models. The Pseudomonads proved to be acceptable chassis for the operation of this event logger, which outperformed the common E. coli DH5α in many ways. This study advances an emerging frontier in synthetic biology that aims to build broad-host-range devices and understand the context by which different species can execute programmable genetic operations.
Collapse
Affiliation(s)
- Nymul Khan
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Enoch Yeung
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Yuliya Farris
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Sarah J Fansler
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Hans C Bernstein
- The Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway
- The Arctic Centre for Sustainable Energy, UiT - The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
34
|
Wang Y, Shi Y, Hu L, Du G, Chen J, Kang Z. Engineering strong and stress-responsive promoters in Bacillus subtilis by interlocking sigma factor binding motifs. Synth Syst Biotechnol 2019; 4:197-203. [PMID: 31750410 PMCID: PMC6849360 DOI: 10.1016/j.synbio.2019.10.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 10/11/2019] [Accepted: 10/29/2019] [Indexed: 01/24/2023] Open
Abstract
Prokaryotic gene expression is largely regulated on transcriptional levels with the involvement of promoters, RNA polymerase and sigma factors. Developing new promoters to customize gene transcriptional regulation becomes increasingly demanded in synthetic biology and biotechnology. In this study, we designed synthetic promoters in the Gram-positive model bacterium Bacillus subtilis by interlocking the binding motifs of σA for house-keeping gene expression and that of two alternative sigma factors σH and σB which are involved in responding post-exponential growth and general stress, respectively. The developed promoters are recognized by multiple sigma factors and hence generate strong transcriptional strength when host cells grow under normal or stressed conditions. With green fluorescent protein as the reporter, a set of strong promoters were identified, in which the transcription activities of PHA-1, PHAB-4, PHAB-7 were 18.6, 4.1, 3.3 fold of that of the commonly used promoter P43, respectively. Moreover, some of the promoters such as PHA-1, PHAB-4, PHAB-7, PBA-2 displayed increased transcriptional activities in response to high salinity or low pH. The promoters developed in this study should enrich the biotechnological toolboxes of B. subtilis.
Collapse
Affiliation(s)
- Yang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Yanan Shi
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Litao Hu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Guocheng Du
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Jian Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| | - Zhen Kang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, 214122, China
| |
Collapse
|
35
|
Jervis AJ, Carbonell P, Taylor S, Sung R, Dunstan MS, Robinson CJ, Breitling R, Takano E, Scrutton NS. SelProm: A Queryable and Predictive Expression Vector Selection Tool for Escherichia coli. ACS Synth Biol 2019; 8:1478-1483. [PMID: 30870592 DOI: 10.1021/acssynbio.8b00399] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The rapid prototyping and optimization of plasmid-based recombinant gene expression is one of the key steps in the development of bioengineered bacterial systems. Often, multiple genes or gene modules need to be coexpressed, and for this purpose compatible, inducible plasmid systems have been developed. However, inducible expression systems are not favored in industrial processes, due to their prohibitive cost, and consequently the conversion to constitutive expression systems is often desired. Here we present a set of constitutive-expression plasmids for this purpose, which were benchmarked using fluorescent reporter genes. To further facilitate the conversion between inducible and constitutive expression systems, we developed SelProm, a design tool that serves as a parts repository of plasmid expression strength and predicts portability rules between constitutive and inducible plasmids through model comparison and machine learning. The SelProm tool is freely available at http://selprom.synbiochem.co.uk .
Collapse
Affiliation(s)
- Adrian J. Jervis
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Pablo Carbonell
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Sandra Taylor
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Rehana Sung
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Mark S. Dunstan
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Christopher J. Robinson
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Rainer Breitling
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Eriko Takano
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| | - Nigel S. Scrutton
- Manchester Synthetic Biology Research Centre for Fine and Speciality Chemicals (SYNBIOCHEM), Manchester Institute of Biotechnology and School of Chemistry, University of Manchester, Manchester M1 7DN, U.K
| |
Collapse
|
36
|
Spangler JR, Caruana JC, Phillips DA, Walper SA. Broad range shuttle vector construction and promoter evaluation for the use of Lactobacillus plantarum WCFS1 as a microbial engineering platform. Synth Biol (Oxf) 2019; 4:ysz012. [PMID: 32995537 DOI: 10.1093/synbio/ysz012] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 11/13/2022] Open
Abstract
As the field of synthetic biology grows, efforts to deploy complex genetic circuits in nonlaboratory strains of bacteria will continue to be a focus of research laboratories. Members of the Lactobacillus genus are good targets for synthetic biology research as several species are already used in many foods and as probiotics. Additionally, Lactobacilli offer a relatively safe vehicle for microbiological treatment of various health issues considering these commensals are often minor constituents of the gut microbial community and maintain allochthonous behavior. In order to generate a foundation for engineering, we developed a shuttle vector for subcloning in Escherichia coli and used it to characterize the transcriptional and translational activities of a number of promoters native to Lactobacillus plantarum WCFS1. Additionally, we demonstrated the use of this vector system in multiple Lactobacillus species, and provided examples of non-native promoter recognition by both L. plantarum and E. coli strains that might allow a shortcut assessment of circuit outputs. A variety of promoter activities were observed covering a range of protein expression levels peaking at various times throughout growth, and subsequent directed mutations were demonstrated and suggested to further increase the degree of output tuning. We believe these data show the potential for L. plantarum WCFS1 to be used as a nontraditional synthetic biology chassis and provide evidence that our system can be transitioned to other probiotic Lactobacillus species as well.
Collapse
Affiliation(s)
| | - Julie C Caruana
- American Society for Engineering Education, Washington, DC, United States
| | - Daniel A Phillips
- American Society for Engineering Education, Washington, DC, United States
| | - Scott A Walper
- Center for Bio/Molecular Science and Engineering, US Naval Research Laboratory, Overlook Avenue, Washington, DC, USA
| |
Collapse
|
37
|
Synthetic Biology Toolbox and Chassis Development in Bacillus subtilis. Trends Biotechnol 2019; 37:548-562. [DOI: 10.1016/j.tibtech.2018.10.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/15/2018] [Accepted: 10/17/2018] [Indexed: 12/24/2022]
|
38
|
Xu JM, Li JQ, Zhang B, Liu ZQ, Zheng YG. Fermentative production of the unnatural amino acid L-2-aminobutyric acid based on metabolic engineering. Microb Cell Fact 2019; 18:43. [PMID: 30819198 PMCID: PMC6393993 DOI: 10.1186/s12934-019-1095-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 02/25/2019] [Indexed: 01/13/2023] Open
Abstract
Background l-2-aminobutyric acid (l-ABA) is an unnatural amino acid that is a key intermediate for the synthesis of several important pharmaceuticals. To make the biosynthesis of l-ABA environmental friendly and more suitable for the industrial-scale production. We expand the nature metabolic network of Escherichia coli using metabolic engineering approach for the production of l-ABA. Results In this study, Escherichia coli THR strain with a modified pathway for threonine-hyperproduction was engineered via deletion of the rhtA gene from the chromosome. To redirect carbon flux from 2-ketobutyrate (2-KB) to l-ABA, the ilvIH gene was deleted to block the l-isoleucine pathway. Furthermore, the ilvA gene from Escherichia coli W3110 and the leuDH gene from Thermoactinomyces intermedius were amplified and co-overexpressed. The promoter was altered to regulate the expression strength of ilvA* and leuDH. The final engineered strain E. coli THR ΔrhtAΔilvIH/Gap-ilvA*-Pbs-leuDH was able to produce 9.33 g/L of l-ABA with a yield of 0.19 g/L/h by fed-batch fermentation in a 5 L bioreactor. Conclusions This novel metabolically tailored strain offers a promising approach to fulfill industrial requirements for production of l-ABA. Electronic supplementary material The online version of this article (10.1186/s12934-019-1095-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jian-Miao Xu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jian-Qiang Li
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Bo Zhang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Zhi-Qiang Liu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China.
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
39
|
Xu N, Wei L, Liu J. Recent advances in the applications of promoter engineering for the optimization of metabolite biosynthesis. World J Microbiol Biotechnol 2019; 35:33. [DOI: 10.1007/s11274-019-2606-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 01/23/2019] [Indexed: 01/24/2023]
|
40
|
Cai D, Rao Y, Zhan Y, Wang Q, Chen S. EngineeringBacillusfor efficient production of heterologous protein: current progress, challenge and prospect. J Appl Microbiol 2019; 126:1632-1642. [DOI: 10.1111/jam.14192] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/28/2018] [Indexed: 12/18/2022]
Affiliation(s)
- D. Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Y. Zhan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - Q. Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| | - S. Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province Hubei Collaborative Innovation Center for Green Transformation of Bio‐Resources, College of Life Sciences, Hubei University Wuhan PR China
| |
Collapse
|
41
|
Nora LC, Westmann CA, Martins‐Santana L, Alves LDF, Monteiro LMO, Guazzaroni M, Silva‐Rocha R. The art of vector engineering: towards the construction of next-generation genetic tools. Microb Biotechnol 2019; 12:125-147. [PMID: 30259693 PMCID: PMC6302727 DOI: 10.1111/1751-7915.13318] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/29/2018] [Accepted: 08/31/2018] [Indexed: 12/20/2022] Open
Abstract
When recombinant DNA technology was developed more than 40 years ago, no one could have imagined the impact it would have on both society and the scientific community. In the field of genetic engineering, the most important tool developed was the plasmid vector. This technology has been continuously expanding and undergoing adaptations. Here, we provide a detailed view following the evolution of vectors built throughout the years destined to study microorganisms and their peculiarities, including those whose genomes can only be revealed through metagenomics. We remark how synthetic biology became a turning point in designing these genetic tools to create meaningful innovations. We have placed special focus on the tools for engineering bacteria and fungi (both yeast and filamentous fungi) and those available to construct metagenomic libraries. Based on this overview, future goals would include the development of modular vectors bearing standardized parts and orthogonally designed circuits, a task not fully addressed thus far. Finally, we present some challenges that should be overcome to enable the next generation of vector design and ways to address it.
Collapse
Affiliation(s)
- Luísa Czamanski Nora
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | - Cauã Antunes Westmann
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | | | - Luana de Fátima Alves
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
- School of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | | | - María‐Eugenia Guazzaroni
- School of Philosophy, Science and Letters of Ribeirão PretoUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| | - Rafael Silva‐Rocha
- Ribeirão Preto Medical SchoolUniversity of São PauloRibeirão Preto, São Paulo14049‐900Brazil
| |
Collapse
|
42
|
Martins-Santana L, Nora LC, Sanches-Medeiros A, Lovate GL, Cassiano MHA, Silva-Rocha R. Systems and Synthetic Biology Approaches to Engineer Fungi for Fine Chemical Production. Front Bioeng Biotechnol 2018; 6:117. [PMID: 30338257 PMCID: PMC6178918 DOI: 10.3389/fbioe.2018.00117] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/02/2018] [Indexed: 01/16/2023] Open
Abstract
Since the advent of systems and synthetic biology, many studies have sought to harness microbes as cell factories through genetic and metabolic engineering approaches. Yeast and filamentous fungi have been successfully harnessed to produce fine and high value-added chemical products. In this review, we present some of the most promising advances from recent years in the use of fungi for this purpose, focusing on the manipulation of fungal strains using systems and synthetic biology tools to improve metabolic flow and the flow of secondary metabolites by pathway redesign. We also review the roles of bioinformatics analysis and predictions in synthetic circuits, highlighting in silico systemic approaches to improve the efficiency of synthetic modules.
Collapse
Affiliation(s)
- Leonardo Martins-Santana
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Luisa C Nora
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Ananda Sanches-Medeiros
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Gabriel L Lovate
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Murilo H A Cassiano
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| | - Rafael Silva-Rocha
- Systems and Synthetic Biology Laboratory, Cell and Molecular Biology Department, Ribeirão Preto Medical School, São Paulo University (FMRP-USP), Ribeirão Preto, Brazil
| |
Collapse
|
43
|
Wu Y, Chen T, Liu Y, Lv X, Li J, Du G, Ledesma-Amaro R, Liu L. CRISPRi allows optimal temporal control of N-acetylglucosamine bioproduction by a dynamic coordination of glucose and xylose metabolism in Bacillus subtilis. Metab Eng 2018; 49:232-241. [DOI: 10.1016/j.ymben.2018.08.012] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/15/2018] [Accepted: 08/30/2018] [Indexed: 10/28/2022]
|
44
|
de Frias UA, Pereira GKB, Guazzaroni ME, Silva-Rocha R. Boosting Secondary Metabolite Production and Discovery through the Engineering of Novel Microbial Biosensors. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7021826. [PMID: 30079350 PMCID: PMC6069586 DOI: 10.1155/2018/7021826] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Accepted: 02/11/2018] [Indexed: 01/05/2023]
Abstract
Bacteria are a source of a large number of secondary metabolites with several biomedical and biotechnological applications. In recent years, there has been tremendous progress in the development of novel synthetic biology approaches both to increase the production rate of secondary metabolites of interest in native producers and to mine and reconstruct novel biosynthetic gene clusters in heterologous hosts. Here, we present the recent advances toward the engineering of novel microbial biosensors to detect the synthesis of secondary metabolites in bacteria and in the development of synthetic promoters and expression systems aiming at the construction of microbial cell factories for the production of these compounds. We place special focus on the potential of Gram-negative bacteria as a source of biosynthetic gene clusters and hosts for pathway assembly, on the construction and characterization of novel promoters for native hosts, and on the use of computer-aided design of novel pathways and expression systems for secondary metabolite production. Finally, we discuss some of the potentials and limitations of the approaches that are currently being developed and we highlight new directions that could be addressed in the field.
Collapse
Affiliation(s)
| | | | - María-Eugenia Guazzaroni
- Faculty of Philosophy, Science and Letters of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| | - Rafael Silva-Rocha
- Medical School of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
45
|
Collins JH, Young EM. Genetic engineering of host organisms for pharmaceutical synthesis. Curr Opin Biotechnol 2018; 53:191-200. [PMID: 29471209 DOI: 10.1016/j.copbio.2018.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/29/2018] [Accepted: 02/05/2018] [Indexed: 12/21/2022]
Abstract
Pharmaceutical production hosts may be derived from almost any organism, from Chinese Hamster Ovary (CHO) cell lines to isolated actinomycetes. Each host can be improved, historically only through adaptive evolution. Recently, the maturation of organism engineering has expanded the available models, methods, and tools for altering host phenotypes. New tools like CRISPR-associated endonucleases promise to enable precise cellular reprogramming and to access previously intractable hosts. In this review, we discuss the most recent advances in engineering several types of pharmaceutical production hosts. These include model organisms, potential platform hosts with advantageous metabolism or physiology, specialized producers capable of unique biosynthesis, and CHO, the most widely used recombinant protein production host. To realize improved engineered hosts, an increasing number of approaches involving DNA sequencing and synthesis, host rewriting technologies, computational methods, and organism engineering strategies must be used. Integrative workflows that enable application of the right combination of methods to the right production host could enable economical production solutions for emerging human health treatments.
Collapse
Affiliation(s)
- Joseph H Collins
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States
| | - Eric M Young
- Department of Chemical Engineering, Worcester Polytechnic Institute, 100 Institute Road, Worcester, MA 01609, United States.
| |
Collapse
|