1
|
Liu Y, Zhao X, Gan F, Chen X, Deng K, Crowe SA, Hudson GA, Belcher MS, Schmidt M, Astolfi MCT, Kosina SM, Pang B, Shao M, Yin J, Sirirungruang S, Iavarone AT, Reed J, Martin LBB, El-Demerdash A, Kikuchi S, Misra RC, Liang X, Cronce MJ, Chen X, Zhan C, Kakumanu R, Baidoo EEK, Chen Y, Petzold CJ, Northen TR, Osbourn A, Scheller H, Keasling JD. Complete biosynthesis of QS-21 in engineered yeast. Nature 2024; 629:937-944. [PMID: 38720067 PMCID: PMC11111400 DOI: 10.1038/s41586-024-07345-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 03/22/2024] [Indexed: 05/23/2024]
Abstract
QS-21 is a potent vaccine adjuvant and remains the only saponin-based adjuvant that has been clinically approved for use in humans1,2. However, owing to the complex structure of QS-21, its availability is limited. Today, the supply depends on laborious extraction from the Chilean soapbark tree or on low-yielding total chemical synthesis3,4. Here we demonstrate the complete biosynthesis of QS-21 and its precursors, as well as structural derivatives, in engineered yeast strains. The successful biosynthesis in yeast requires fine-tuning of the host's native pathway fluxes, as well as the functional and balanced expression of 38 heterologous enzymes. The required biosynthetic pathway spans seven enzyme families-a terpene synthase, P450s, nucleotide sugar synthases, glycosyltransferases, a coenzyme A ligase, acyl transferases and polyketide synthases-from six organisms, and mimics in yeast the subcellular compartmentalization of plants from the endoplasmic reticulum membrane to the cytosol. Finally, by taking advantage of the promiscuity of certain pathway enzymes, we produced structural analogues of QS-21 using this biosynthetic platform. This microbial production scheme will allow for the future establishment of a structure-activity relationship, and will thus enable the rational design of potent vaccine adjuvants.
Collapse
Affiliation(s)
- Yuzhong Liu
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Xixi Zhao
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Fei Gan
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Xiaoyue Chen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Kai Deng
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Biomaterials and Biomanufacturing, Sandia National Laboratories, Livermore, CA, USA
| | - Samantha A Crowe
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA
| | - Graham A Hudson
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Michael S Belcher
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Matthias Schmidt
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Institute of Applied Microbiology, Aachen Biology and Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Maria C T Astolfi
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Suzanne M Kosina
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Bo Pang
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
- Joint BioEnergy Institute, Emeryville, CA, USA
| | - Minglong Shao
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jing Yin
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Sasilada Sirirungruang
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Center for Biomolecular Structure, Function and Application, Suranaree University of Technology, Nakhon Ratchasima, Thailand
| | - Anthony T Iavarone
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA
| | - James Reed
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Amr El-Demerdash
- John Innes Centre, Norwich Research Park, Norwich, UK
- Department of Chemistry, Faculty of Sciences, Mansoura University, Mansoura, Egypt
| | | | | | - Xiaomeng Liang
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Michael J Cronce
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA
| | - Xiulai Chen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Chunjun Zhan
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Ramu Kakumanu
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Edward E K Baidoo
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Yan Chen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Christopher J Petzold
- Joint BioEnergy Institute, Emeryville, CA, USA
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Trent R Northen
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Anne Osbourn
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Henrik Scheller
- Joint BioEnergy Institute, Emeryville, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jay D Keasling
- California Institute of Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA.
- Joint BioEnergy Institute, Emeryville, CA, USA.
- Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, USA.
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Department of Bioengineering, University of California, Berkeley, Berkeley, CA, USA.
- Center for Biosustainability, Danish Technical University, Lyngby, Denmark.
| |
Collapse
|
2
|
Qiao W, Dong G, Xu S, Li L, Shi S. Engineering propionyl-CoA pools for de novo biosynthesis of odd-chain fatty acids in microbial cell factories. Crit Rev Biotechnol 2023; 43:1063-1072. [PMID: 35994297 DOI: 10.1080/07388551.2022.2100736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/28/2022] [Indexed: 11/03/2022]
Abstract
Odd-chain fatty acids (OcFAs) and their derivatives have attracted great interest due to their wide applications in the food, pharmaceutical and petrochemical industries. Microorganisms can naturally de novo produce fatty acids (FAs), where mainly, even-chain with acetyl-CoA instead of odd-chain with propionyl-CoA is used as the primer. Usually, the absence of the precursor propionyl-CoA is considered the main reason that limits the efficient production of OcFAs. It is thus crucial to explore/evaluate/identify promising propionyl-CoA biosynthetic pathways to achieve large-scale biosynthesis of OcFAs. This review discusses the latest advances in microbial metabolism engineering toward producing propionyl-CoA and considers future research directions and challenges toward optimized production of OcFAs.
Collapse
Affiliation(s)
- Weibo Qiao
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shijie Xu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, PR China
| |
Collapse
|
3
|
Jovanovic Gasovic S, Dietrich D, Gläser L, Cao P, Kohlstedt M, Wittmann C. Multi-omics view of recombinant Yarrowia lipolytica: Enhanced ketogenic amino acid catabolism increases polyketide-synthase-driven docosahexaenoic production to high selectivity at the gram scale. Metab Eng 2023; 80:45-65. [PMID: 37683719 DOI: 10.1016/j.ymben.2023.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/10/2023]
Abstract
DHA is a marine PUFA of commercial value, given its multiple health benefits. The worldwide emerging shortage in DHA supply has increased interest in microbial cell factories that can provide the compound de novo. In this regard, the present work aimed to improve DHA production in the oleaginous yeast strain Y. lipolytica Af4, which synthetized the PUFA via a heterologous myxobacterial polyketide synthase (PKS)-like gene cluster. As starting point, we used transcriptomics, metabolomics, and 13C-based metabolic pathway profiling to study the cellular dynamics of Y. lipolytica Af4. The shift from the growth to the stationary DHA-production phase was associated with fundamental changes in carbon core metabolism, including a strong upregulation of the PUFA gene cluster, as well as an increase in citrate and fatty acid degradation. At the same time, the intracellular levels of the two DHA precursors acetyl-CoA and malonyl-CoA dropped by up to 98% into the picomolar range. Interestingly, the degradation pathways for the ketogenic amino acids l-lysine, l-leucine, and l-isoleucine were transcriptionally activated, presumably to provide extra acetyl-CoA. Supplementation with small amounts of these amino acids at the beginning of the DHA production phase beneficially increased the intracellular CoA-ester pools and boosted the DHA titer by almost 40%. Isotopic 13C-tracer studies revealed that the supplements were efficiently directed toward intracellular CoA-esters and DHA. Hereby, l-lysine was found to be most efficient, as it enabled long-term activation, due to storage within the vacuole and continuous breakdown. The novel strategy enabled DHA production in Y. lipolytica at the gram scale for the first time. DHA was produced at a high selectivity (27% of total fatty acids) and free of the structurally similar PUFA DPA, which facilitates purification for high-value medical applications that require API-grade DHA. The assembled multi-omics picture of the central metabolism of Y. lipolytica provides valuable insights into this important yeast. Beyond our work, the enhanced catabolism of ketogenic amino acids seems promising for the overproduction of other compounds in Y. lipolytica, whose synthesis is limited by the availability of CoA ester precursors.
Collapse
Affiliation(s)
| | - Demian Dietrich
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Lars Gläser
- Institute of Systems Biotechnology, Saarland University, Germany
| | - Peng Cao
- Institute of Systems Biotechnology, Saarland University, Germany
| | | | | |
Collapse
|
4
|
Garces Daza F, Haitz F, Born A, Boles E. An optimized reverse β-oxidation pathway to produce selected medium-chain fatty acids in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:71. [PMID: 37101299 PMCID: PMC10134560 DOI: 10.1186/s13068-023-02317-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/06/2023] [Indexed: 04/28/2023]
Abstract
BACKGROUND Medium-chain fatty acids are molecules with applications in different industries and with growing demand. However, the current methods for their extraction are not environmentally sustainable. The reverse β-oxidation pathway is an energy-efficient pathway that produces medium-chain fatty acids in microorganisms, and its use in Saccharomyces cerevisiae, a broadly used industrial microorganism, is desired. However, the application of this pathway in this organism has so far either led to low titers or to the predominant production of short-chain fatty acids. RESULTS We genetically engineered Saccharomyces cerevisiae to produce the medium-chain fatty acids hexanoic and octanoic acid using novel variants of the reverse β-oxidation pathway. We first knocked out glycerolphosphate dehydrogenase GPD2 in an alcohol dehydrogenases knock-out strain (△adh1-5) to increase the NADH availability for the pathway, which significantly increased the production of butyric acid (78 mg/L) and hexanoic acid (2 mg/L) when the pathway was expressed from a plasmid with BktB as thiolase. Then, we tested different enzymes for the subsequent pathway reactions: the 3-hydroxyacyl-CoA dehydrogenase PaaH1 increased hexanoic acid production to 33 mg/L, and the expression of enoyl-CoA hydratases Crt2 or Ech was critical to producing octanoic acid, reaching titers of 40 mg/L in both cases. In all cases, Ter from Treponema denticola was the preferred trans-enoyl-CoA reductase. The titers of hexanoic acid and octanoic acid were further increased to almost 75 mg/L and 60 mg/L, respectively, when the pathway expression cassette was integrated into the genome and the fermentation was performed in a highly buffered YPD medium. We also co-expressed a butyryl-CoA pathway variant to increase the butyryl-CoA pool and support the chain extension. However, this mainly increased the titers of butyric acid and only slightly increased that of hexanoic acid. Finally, we also tested the deletion of two potential medium-chain acyl-CoA depleting reactions catalyzed by the thioesterase Tes1 and the medium-chain fatty acyl CoA synthase Faa2. However, their deletion did not affect the production titers. CONCLUSIONS By engineering the NADH metabolism and testing different reverse β-oxidation pathway variants, we extended the product spectrum and obtained the highest titers of octanoic acid and hexanoic acid reported in S. cerevisiae. Product toxicity and enzyme specificity must be addressed for the industrial application of the pathway in this organism.
Collapse
Affiliation(s)
- Fernando Garces Daza
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany
| | - Fabian Haitz
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany
| | - Alice Born
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany
| | - Eckhard Boles
- Faculty of Biological Sciences, Institute of Molecular Bioscience, Goethe-Universität Frankfurt Am Main, Max-von-Laue-Str.9, 60438, Frankfurt am Main, Germany.
| |
Collapse
|
5
|
Qin N, Li L, Wang Z, Shi S. Microbial production of odd-chain fatty acids. Biotechnol Bioeng 2023; 120:917-931. [PMID: 36522132 DOI: 10.1002/bit.28308] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Odd-chain fatty acids (OcFAs) and their derivatives have attracted much attention due to their beneficial physiological effects and their potential to be alternatives to advanced fuels. However, cells naturally produce even-chain fatty acids (EcFAs) with negligible OcFAs. In the process of biosynthesis of fatty acids (FAs), the acetyl-CoA serves as the starter unit for EcFAs, and propionyl-CoA works as the starter unit for OcFAs. The lack of sufficient propionyl-CoA, the precursor, is usually regarded as the main restriction for large-scale bioproduction of OcFAs. In recent years, synthetic biology strategies have been used to modify several microorganisms to produce more propionyl-CoA that would enable an efficient biosynthesis of OcFAs. This review discusses several reported and potential metabolic pathways for propionyl-CoA biosynthesis, followed by advances in engineering several cell factories for OcFAs production. Finally, trends and challenges of synthetic biology driven OcFAs production are discussed.
Collapse
Affiliation(s)
- Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
6
|
Qi N, Ding W, Dong G, Wang Z, Shi S. De novo bio-production of odd-chain fatty acids in Saccharomyces cerevisiae through a synthetic pathway via 3-hydroxypropionic acid. Biotechnol Bioeng 2023; 120:852-858. [PMID: 36464776 DOI: 10.1002/bit.28297] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 11/30/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022]
Abstract
Odd-chain fatty acids (OCFAs) and their derivatives have attracted increasing attention due to their wide applications in the chemical, fuel, and pharmaceutical industry. However, most natural fatty acids are even-chained, and OCFAs are rare. In this work, a novel pathway was designed and established for de novo synthesis of OCFAs via 3-hydroxypropionic acid (3-HP) as the intermediate in Saccharomyces cerevisiae. First, the OCFAs biosynthesis pathway from 3-HP was confirmed, followed by an optimization of the precursor 3-HP. After combining these strategies, a de novo production of OCFAs at 74.8 mg/L was achieved, and the percentage of OCFAs in total lipids reached 20.3%, reaching the highest ratio of de novo-produced OCFAs. Of the OCFAs produced by the engineered strain, heptadecenoic acid (C17:1) and heptadecanoic acid (C17:0) accounted for 12.1% and 7.6% in total lipid content, respectively. This work provides a new and promising pathway for the de novo bio-production of OCFAs.
Collapse
Affiliation(s)
- Nailing Qi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Genlai Dong
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zhihui Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
7
|
Laqtom NN, Dong W, Medoh UN, Cangelosi AL, Dharamdasani V, Chan SH, Kunchok T, Lewis CA, Heinze I, Tang R, Grimm C, Dang Do AN, Porter FD, Ori A, Sabatini DM, Abu-Remaileh M. CLN3 is required for the clearance of glycerophosphodiesters from lysosomes. Nature 2022; 609:1005-1011. [PMID: 36131016 PMCID: PMC10510443 DOI: 10.1038/s41586-022-05221-y] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 08/10/2022] [Indexed: 11/09/2022]
Abstract
Lysosomes have many roles, including degrading macromolecules and signalling to the nucleus1. Lysosomal dysfunction occurs in various human conditions, such as common neurodegenerative diseases and monogenic lysosomal storage disorders (LSDs)2-4. For most LSDs, the causal genes have been identified but, in some, the function of the implicated gene is unknown, in part because lysosomes occupy a small fraction of the cellular volume so that changes in lysosomal contents are difficult to detect. Here we develop the LysoTag mouse for the tissue-specific isolation of intact lysosomes that are compatible with the multimodal profiling of their contents. We used the LysoTag mouse to study CLN3, a lysosomal transmembrane protein with an unknown function. In children, the loss of CLN3 causes juvenile neuronal ceroid lipofuscinosis (Batten disease), a lethal neurodegenerative LSD. Untargeted metabolite profiling of lysosomes from the brains of mice lacking CLN3 revealed a massive accumulation of glycerophosphodiesters (GPDs)-the end products of glycerophospholipid catabolism. GPDs also accumulate in the lysosomes of CLN3-deficient cultured cells and we show that CLN3 is required for their lysosomal egress. Loss of CLN3 also disrupts glycerophospholipid catabolism in the lysosome. Finally, we found elevated levels of glycerophosphoinositol in the cerebrospinal fluid of patients with Batten disease, suggesting the potential use of glycerophosphoinositol as a disease biomarker. Our results show that CLN3 is required for the lysosomal clearance of GPDs and reveal Batten disease as a neurodegenerative LSD with a defect in glycerophospholipid metabolism.
Collapse
Affiliation(s)
- Nouf N Laqtom
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Wentao Dong
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - Uche N Medoh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Andrew L Cangelosi
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Sze Ham Chan
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
- Department of Pharmacology, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Tenzin Kunchok
- Whitehead Institute for Biomedical Research, Cambridge, MA, USA
| | | | - Ivonne Heinze
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Rachel Tang
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilians-Universität, Munich, Germany
| | - An N Dang Do
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Forbes D Porter
- Division of Translational Medicine, Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD, USA
| | - Alessandro Ori
- Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | | | - Monther Abu-Remaileh
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University, Stanford, CA, USA.
- The Institute for Chemistry, Engineering & Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
| |
Collapse
|
8
|
Tippelt A, Nett M. Saccharomyces cerevisiae as host for the recombinant production of polyketides and nonribosomal peptides. Microb Cell Fact 2021; 20:161. [PMID: 34412657 PMCID: PMC8374128 DOI: 10.1186/s12934-021-01650-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/05/2021] [Indexed: 01/30/2023] Open
Abstract
As a robust, fast growing and genetically tractable organism, the budding yeast Saccharomyces cerevisiae is one of the most widely used hosts in biotechnology. Its applications range from the manufacturing of vaccines and hormones to bulk chemicals and biofuels. In recent years, major efforts have been undertaken to expand this portfolio to include structurally complex natural products, such as polyketides and nonribosomally synthesized peptides. These compounds often have useful pharmacological properties, which make them valuable drugs for the treatment of infectious diseases, cancer, or autoimmune disorders. In nature, polyketides and nonribosomal peptides are generated by consecutive condensation reactions of short chain acyl-CoAs or amino acids, respectively, with the substrates and reaction intermediates being bound to large, multidomain enzymes. For the reconstitution of these multistep catalytic processes, the enzymatic assembly lines need to be functionally expressed and the required substrates must be supplied in reasonable quantities. Furthermore, the production hosts need to be protected from the toxicity of the biosynthetic products. In this review, we will summarize and evaluate the status quo regarding the heterologous production of polyketides and nonribosomal peptides in S. cerevisiae. Based on a comprehensive literature analysis, prerequisites for a successful pathway reconstitution could be deduced, as well as recurring bottlenecks in this microbial host.
Collapse
Affiliation(s)
- Anna Tippelt
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany
| | - Markus Nett
- Department of Biochemical and Chemical Engineering, Laboratory of Technical Biology, TU Dortmund University, Emil-Figge-Strasse 66, 44227, Dortmund, Germany.
| |
Collapse
|
9
|
Lacerda MP, Oh EJ, Eckert C. The Model System Saccharomyces cerevisiae Versus Emerging Non-Model Yeasts for the Production of Biofuels. Life (Basel) 2020; 10:E299. [PMID: 33233378 PMCID: PMC7700301 DOI: 10.3390/life10110299] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 02/07/2023] Open
Abstract
Microorganisms are effective platforms for the production of a variety of chemicals including biofuels, commodity chemicals, polymers and other natural products. However, deep cellular understanding is required for improvement of current biofuel cell factories to truly transform the Bioeconomy. Modifications in microbial metabolic pathways and increased resistance to various types of stress caused by the production of these chemicals are crucial in the generation of robust and efficient production hosts. Recent advances in systems and synthetic biology provide new tools for metabolic engineering to design strategies and construct optimal biocatalysts for the sustainable production of desired chemicals, especially in the case of ethanol and fatty acid production. Yeast is an efficient producer of bioethanol and most of the available synthetic biology tools have been developed for the industrial yeast Saccharomyces cerevisiae. Non-conventional yeast systems have several advantageous characteristics that are not easily engineered such as ethanol tolerance, low pH tolerance, thermotolerance, inhibitor tolerance, genetic diversity and so forth. Currently, synthetic biology is still in its initial steps for studies in non-conventional yeasts such as Yarrowia lipolytica, Kluyveromyces marxianus, Issatchenkia orientalis and Pichia pastoris. Therefore, the development and application of advanced synthetic engineering tools must also focus on these underexploited, non-conventional yeast species. Herein, we review the basic synthetic biology tools that can be applied to the standard S. cerevisiae model strain, as well as those that have been developed for non-conventional yeasts. In addition, we will discuss the recent advances employed to develop non-conventional yeast strains that are efficient for the production of a variety of chemicals through the use of metabolic engineering and synthetic biology.
Collapse
Affiliation(s)
- Maria Priscila Lacerda
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO 80303, USA;
| | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN 47907, USA;
| | - Carrie Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado, Boulder, CO 80303, USA;
- National Renewable Energy Laboratory (NREL), Biosciences Center, Golden, CO 80401, USA
| |
Collapse
|
10
|
Zhou S, Hao T, Xu S, Deng Y. Coenzyme A thioester-mediated carbon chain elongation as a paintbrush to draw colorful chemical compounds. Biotechnol Adv 2020; 43:107575. [PMID: 32512221 DOI: 10.1016/j.biotechadv.2020.107575] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 05/31/2020] [Accepted: 06/01/2020] [Indexed: 12/23/2022]
Abstract
The biosynthesis of various useful chemicals from simple substrates using industrial microorganisms is becoming increasingly crucial to address the challenge of dwindling non-renewable resources. As the most common intermediate substrates in organisms, Coenzyme A (CoA) thioesters play a central role in the carbon chain elongation process of their products. As a result, numerous of chemicals can be synthesized by the iterative addition of various CoA thioester extender units at a given CoA thioester primer backbone. However, these elongation reactions and the product yields are still restricted due to the low enzymatic performance and supply of CoA thioesters. This review highlights the current protein and metabolic engineering strategies used to enhance the diversity and product yield by coupling different primers, extender units, enzymes, and termination pathways, in an attempt to provide a road map for producing a more diverse range of industrial chemicals.
Collapse
Affiliation(s)
- Shenghu Zhou
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Tingting Hao
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shumin Xu
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- National Engineering Laboratory for Cereal Fermentation Technology (NELCF), Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
11
|
Xu Y, Caldo KMP, Falarz L, Jayawardhane K, Chen G. Kinetic improvement of an algal diacylglycerol acyltransferase 1 via fusion with an acyl-CoA binding protein. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:856-871. [PMID: 31991039 DOI: 10.1111/tpj.14708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/26/2019] [Accepted: 01/21/2020] [Indexed: 05/03/2023]
Abstract
Microalgal oils in the form of triacylglycerols (TAGs) are broadly used as nutritional supplements and biofuels. Diacylglycerol acyltransferase (DGAT) catalyzes the final step of acyl-CoA-dependent biosynthesis of TAG, and is considered a key target for manipulating oil production. Although a growing number of DGAT1s have been identified and over-expressed in some algal species, the detailed structure-function relationship, as well as the improvement of DGAT1 performance via protein engineering, remain largely untapped. Here, we explored the structure-function features of the hydrophilic N-terminal domain of DGAT1 from the green microalga Chromochloris zofingiensis (CzDGAT1). The results indicated that the N-terminal domain of CzDGAT1 was less disordered than those of the higher eukaryotic enzymes and its partial truncation or complete removal could substantially decrease enzyme activity, suggesting its possible role in maintaining enzyme performance. Although the N-terminal domains of animal and plant DGAT1s were previously found to bind acyl-CoAs, replacement of CzDGAT1 N-terminus by an acyl-CoA binding protein (ACBP) could not restore enzyme activity. Interestingly, the fusion of ACBP to the N-terminus of the full-length CzDGAT1 could enhance the enzyme affinity for acyl-CoAs and augment protein accumulation levels, which ultimately drove oil accumulation in yeast cells and tobacco leaves to higher levels than the full-length CzDGAT1. Overall, our findings unravel the distinct features of the N-terminus of algal DGAT1 and provide a strategy to engineer enhanced performance in DGAT1 via protein fusion, which may open a vista in generating improved membrane-bound acyl-CoA-dependent enzymes and boosting oil biosynthesis in plants and oleaginous microorganisms.
Collapse
Affiliation(s)
- Yang Xu
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Kristian Mark P Caldo
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Lucas Falarz
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
- Department of Biological Sciences, University of Manitoba, Winnipeg, Manitoba, R3T 2N2, Canada
| | - Kethmi Jayawardhane
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| | - Guanqun Chen
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, T6G 2P5, Canada
| |
Collapse
|
12
|
Matsuyama T. Recent developments in terminator technology in Saccharomyces cerevisiae. J Biosci Bioeng 2019; 128:655-661. [PMID: 31324384 DOI: 10.1016/j.jbiosc.2019.06.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/07/2019] [Accepted: 06/07/2019] [Indexed: 11/26/2022]
Abstract
Metabolically engineered microorganisms that produce useful organic compounds will be helpful for realizing a sustainable society. The budding yeast Saccharomyces cerevisiae has high utility as a metabolic engineering platform because of its high fermentation ability, non-pathogenicity, and ease of handling. When producing yeast strains that produce exogenous compounds, it is a prerequisite to control the expression of exogenous enzyme-encoding genes. Terminator region in a gene expression cassette, as well as promoter region, could be used to improve metabolically engineered yeasts by increasing or decreasing the expression of the target enzyme-encoding genes. The findings on terminators have grown rapidly in the last decade, so an overview of these findings should provide a foothold for new developments.
Collapse
|
13
|
O’Kane PT, Dudley QM, McMillan AK, Jewett MC, Mrksich M. High-throughput mapping of CoA metabolites by SAMDI-MS to optimize the cell-free biosynthesis of HMG-CoA. SCIENCE ADVANCES 2019; 5:eaaw9180. [PMID: 31183410 PMCID: PMC6551189 DOI: 10.1126/sciadv.aaw9180] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 05/02/2019] [Indexed: 05/30/2023]
Abstract
Metabolic engineering uses enzymes to produce small molecules with industrial, pharmaceutical, and energy applications. However, efforts to optimize enzymatic pathways for commercial production are limited by the throughput of assays for quantifying metabolic intermediates and end products. We developed a multiplexed method for profiling CoA-dependent pathways that uses a cysteine-terminated peptide to covalently capture CoA-bound metabolites. Captured metabolites are then rapidly separated from the complex mixture by immobilization onto arrays of self-assembled monolayers and directly quantified by SAMDI mass spectrometry. We demonstrate the throughput of the assay by characterizing the cell-free synthesis of HMG-CoA, a key intermediate in the biosynthesis of isoprenoids, collecting over 10,000 individual spectra to map more than 800 unique reaction conditions. We anticipate that our rapid and robust analytical method will accelerate efforts to engineer metabolic pathways.
Collapse
Affiliation(s)
- Patrick T. O’Kane
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Quentin M. Dudley
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Aislinn K. McMillan
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
| | - Michael C. Jewett
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| | - Milan Mrksich
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA
- Department of Chemistry, Northwestern University, Evanston, IL, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
14
|
Callari R, Fischer D, Heider H, Weber N. Biosynthesis of angelyl-CoA in Saccharomyces cerevisiae. Microb Cell Fact 2018; 17:72. [PMID: 29753326 PMCID: PMC5948907 DOI: 10.1186/s12934-018-0925-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 05/07/2018] [Indexed: 11/24/2022] Open
Abstract
Background The angelic acid moiety represents an essential modification in many biologically active products. These products are commonly known as angelates and several studies have demonstrated their therapeutic benefits, including anti-inflammatory and anti-cancer effects. However, their availability for use in the development of therapeutics is limited due to poor extraction yields. Chemical synthesis has been achieved but its complexity prevents application, therefore microbial production may offer a promising alternative. Here, we engineered the budding yeast Saccharomyces cerevisiae to produce angelyl-CoA, the CoA-activated form of angelic acid. Results For yeast-based production of angelyl-CoA we first expressed genes recently identified in the biosynthetic cluster ssf of Streptomyces sp. SF2575 in S. cerevisiae. Exogenous feeding of propionate and heterologous expression of a propionyl-CoA synthase from Streptomyces sp. were initially employed to increase the intracellular propionyl-CoA level, resulting in production of angelyl-CoA in the order of 5 mg/L. Substituting the Streptomyces sp. propionyl-CoA carboxylase with a carboxylase derived from Streptomyces coelicolor resulted in angelyl-CoA levels up to 6.4 mg/L. In vivo analysis allowed identification of important intermediates in the pathway, including methyl-malonyl-CoA and 3-hydroxyl-2-methyl-butyryl-CoA. Furthermore, methyl-malonate supplementation and expression of matB CoA ligase from S. coelicolor allowed for methyl-malonyl-CoA synthesis and supported, together with parts of the ssf pathway, angelyl-CoA titres of approximately 1.5 mg/L. Finally, feeding of angelic acid to yeasts expressing acyl-CoA ligases from plant species led to angelyl-CoA production rates of approximately 40 mg/L. Conclusions Our results demonstrate the biosynthesis of angelyl-CoA in yeast from exogenously supplied carboxylic acid precursors. This is the first report on the activity of the ssf genes. We envision that our approach will provide a platform for a more sustainable production of the pharmaceutically important compound class of angelates. Electronic supplementary material The online version of this article (10.1186/s12934-018-0925-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Roberta Callari
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland.,Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg C, Denmark
| | - David Fischer
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland
| | - Harald Heider
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland
| | - Nora Weber
- Evolva SA, Duggingerstrasse 23, 4153, Reinach, Switzerland.
| |
Collapse
|