1
|
Marin Ž, Lacombe C, Rostami S, Arasteh Kani A, Borgonovo A, Cserjan-Puschmann M, Mairhofer J, Striedner G, Wiltschi B. Residue-Specific Incorporation of Noncanonical Amino Acids in Auxotrophic Hosts: Quo Vadis?. Chem Rev 2025. [PMID: 40378355 DOI: 10.1021/acs.chemrev.4c00280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The residue-specific incorporation of noncanonical amino acids in auxotrophic hosts allows the global exchange of a canonical amino acid with its noncanonical analog. Noncanonical amino acids are not encoded by the standard genetic code, but they carry unique side chain chemistries, e.g., to perform bioorthogonal conjugation reactions or to manipulate the physicochemical properties of a protein such as folding and stability. The method was introduced nearly 70 years ago and is still in widespread use because of its simplicity and robustness. In our study, we review the trends in the field during the last two decades. We give an overview of the application of the method for artificial post-translational protein modifications and the selective functionalization and directed immobilization of proteins. We highlight the trends in the use of noncanonical amino acids for the analysis of nascent proteomes and the engineering of enzymes and biomaterials, and the progress in the biosynthesis of amino acid analogs. We also discuss the challenges for the scale-up of the technique.
Collapse
Affiliation(s)
- Žana Marin
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Claudia Lacombe
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Simindokht Rostami
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Arshia Arasteh Kani
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Andrea Borgonovo
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Monika Cserjan-Puschmann
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | | | - Gerald Striedner
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
| | - Birgit Wiltschi
- Department of Biotechnology and Food Sciences, Institute of Bioprocess Science and Engineering, BOKU University, Muthgasse 18, 1190 Vienna, Austria
- acib - Austrian Centre of Industrial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| |
Collapse
|
2
|
Lerner A, Benzvi C, Vojdani A. The Frequently Used Industrial Food Process Additive, Microbial Transglutaminase: Boon or Bane. Nutr Rev 2025; 83:e1286-e1294. [PMID: 38960726 DOI: 10.1093/nutrit/nuae087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024] Open
Abstract
Microbial transglutaminase (mTG) is a frequently consumed processed food additive, and use of its cross-linked complexes is expanding rapidly. It was designated as a processing aid and was granted the generally recognized as safe (GRAS) classification decades ago, thus avoiding thorough assessment according to current criteria of toxicity and public health safety. In contrast to the manufacturer's declarations and claims, mTG and/or its transamidated complexes are proinflammatory, immunogenic, allergenic, pathogenic, and potentially toxic, hence raising concerns for public health. Being a member of the transglutaminase family and functionally imitating the tissue transglutaminase, mTG was recently identified as a potential inducer of celiac disease. Microbial transglutaminase and its docked complexes have numerous detrimental effects. Those harmful aspects are denied by the manufacturers, who claim the enzyme is deactivated when heated or by gastric acidity, and that its covalently linked isopeptide bonds are safe. The present narrative review describes the potential side effects of mTG, highlighting its thermostability and activity over a broad pH range, thus, challenging the manufacturers' and distributers' safety claims. The national food regulatory authorities and the scientific community are urged to reevaluate mTG's GRAS status, prioritizing public health protection against the possible risks associated with this enzyme and its health-damaging consequences.
Collapse
Affiliation(s)
- Aaron Lerner
- Research Department, Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, 52621 Tel Hashomer, Israel
| | - Carina Benzvi
- Research Department, Chaim Sheba Medical Center, The Zabludowicz Research Center for Autoimmune Diseases, 52621 Tel Hashomer, Israel
| | - Aristo Vojdani
- Research Department, Immunosciences Lab., Inc., Los Angeles, CA 90035, USA
| |
Collapse
|
3
|
Teramoto H, Amano Y, Kojima K, Iga M, Sakamoto K. Engineering of Silkworm Tyrosyl-tRNA Synthetase Variants to Create Halogenated Silk Fiber with Improved Thermal Stability. Biomacromolecules 2025; 26:1053-1062. [PMID: 39836923 DOI: 10.1021/acs.biomac.4c01377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Silk fiber, produced by the silkworm Bombyx mori, is a protein fiber with an excellent mechanical strength and broad biocompatibility. Multiple approaches, including genetic and chemical methods, must be combined to tailor silk fiber properties for wide applications, such as textiles and biomaterials. Genetic code expansion (GCE) is an alternative method to alter proteins' chemical and physical properties by incorporating synthetic amino acids into their primary structures. Here, we report an efficient system for selecting variants of B. mori tyrosyl-tRNA synthetase (BmTyrRS) used for GCE in silkworms. Four BmTyrRS variants with expanded substrate recognition toward halogenated tyrosine (Tyr) derivatives were selected, and transgenic silkworms expressing these variants were generated. The silkworms incorporated halogenated Tyr derivatives into silk fibroin to produce halogenated silk fiber with improved thermal stability. These results demonstrate the power of GCE to create protein materials with improved physical properties.
Collapse
Affiliation(s)
- Hidetoshi Teramoto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Yoshimi Amano
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| | - Katsura Kojima
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Masatoshi Iga
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), 1-2 Owashi, Tsukuba, Ibaraki 305-8634, Japan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
4
|
Brouwer B, Della-Felice F, Illies JH, Iglesias-Moncayo E, Roelfes G, Drienovská I. Noncanonical Amino Acids: Bringing New-to-Nature Functionalities to Biocatalysis. Chem Rev 2024; 124:10877-10923. [PMID: 39329413 PMCID: PMC11467907 DOI: 10.1021/acs.chemrev.4c00136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024]
Abstract
Biocatalysis has become an important component of modern organic chemistry, presenting an efficient and environmentally friendly approach to synthetic transformations. Advances in molecular biology, computational modeling, and protein engineering have unlocked the full potential of enzymes in various industrial applications. However, the inherent limitations of the natural building blocks have sparked a revolutionary shift. In vivo genetic incorporation of noncanonical amino acids exceeds the conventional 20 amino acids, opening new avenues for innovation. This review provides a comprehensive overview of applications of noncanonical amino acids in biocatalysis. We aim to examine the field from multiple perspectives, ranging from their impact on enzymatic reactions to the creation of novel active sites, and subsequent catalysis of new-to-nature reactions. Finally, we discuss the challenges, limitations, and promising opportunities within this dynamic research domain.
Collapse
Affiliation(s)
- Bart Brouwer
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Franco Della-Felice
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Jan Hendrik Illies
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Emilia Iglesias-Moncayo
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| | - Gerard Roelfes
- Stratingh
Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ivana Drienovská
- Department
of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1105, 1081 HV, Amsterdam, The Netherlands
| |
Collapse
|
5
|
Dunkelmann DL, Chin JW. Engineering Pyrrolysine Systems for Genetic Code Expansion and Reprogramming. Chem Rev 2024; 124:11008-11062. [PMID: 39235427 PMCID: PMC11467909 DOI: 10.1021/acs.chemrev.4c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/29/2024] [Accepted: 07/31/2024] [Indexed: 09/06/2024]
Abstract
Over the past 16 years, genetic code expansion and reprogramming in living organisms has been transformed by advances that leverage the unique properties of pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs. Here we summarize the discovery of the pyrrolysine system and describe the unique properties of PylRS/tRNAPyl pairs that provide a foundation for their transformational role in genetic code expansion and reprogramming. We describe the development of genetic code expansion, from E. coli to all domains of life, using PylRS/tRNAPyl pairs, and the development of systems that biosynthesize and incorporate ncAAs using pyl systems. We review applications that have been uniquely enabled by the development of PylRS/tRNAPyl pairs for incorporating new noncanonical amino acids (ncAAs), and strategies for engineering PylRS/tRNAPyl pairs to add noncanonical monomers, beyond α-L-amino acids, to the genetic code of living organisms. We review rapid progress in the discovery and scalable generation of mutually orthogonal PylRS/tRNAPyl pairs that can be directed to incorporate diverse ncAAs in response to diverse codons, and we review strategies for incorporating multiple distinct ncAAs into proteins using mutually orthogonal PylRS/tRNAPyl pairs. Finally, we review recent advances in the encoded cellular synthesis of noncanonical polymers and macrocycles and discuss future developments for PylRS/tRNAPyl pairs.
Collapse
Affiliation(s)
- Daniel L. Dunkelmann
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
- Max
Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Jason W. Chin
- Medical
Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, England, United Kingdom
| |
Collapse
|
6
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
7
|
Terasawa K, Seike T, Sakamoto K, Ohtake K, Watabe T, Yokoyama S, Hara-Yokoyama M. Protein-Protein Interface Identification by Site-Specific Photo-Cross-linking/Cleavage in Mammalian Cells. Curr Protoc 2024; 4:e1103. [PMID: 39105689 DOI: 10.1002/cpz1.1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Identification of protein-protein interfaces is necessary for understanding and regulating biological events. Genetic code expansion enables site-specific photo-cross-linking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the cross-linked region still remains challenging. Our new protocol enables its identification by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε-allyloxycarbonyl-α-hydroxyl-L-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located on within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. This combination of site-specific crosslinking and cleavage promises to be useful for revealing binding interfaces and protein complex geometries. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Search for crosslinkable sites Basic Protocol 2: Site-specific photo-cross-linking/cleavage.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- LiberoThera Co., Ltd., Chuo-ku, Tokyo, Japan
| | - Tatsuro Seike
- Department of Periodontology, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, RIKEN, Tsurumi-ku, Yokohama, Japan
- Department of Drug Target Protein Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
| | - Kazumasa Ohtake
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, RIKEN, Tsurumi-ku, Yokohama, Japan
- Department of Electrical Engineering and Bioscience, Waseda University, Shinjuku, Tokyo, Japan
| | - Tetsuro Watabe
- Department of Biochemistry, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Department of Structural Biology and Biochemistry, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| | - Shigeyuki Yokoyama
- Department of Drug Target Protein Research, Shinshu University School of Medicine, Matsumoto, Nagano, Japan
- Department of Structural Biology and Biochemistry, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
- Laboratory for Protein Function and Structural Biology, RIKEN Cluster for Science, RIKEN, Tsurumi-ku, Yokohama, Japan
| | - Miki Hara-Yokoyama
- Department of Biochemistry, Tokyo Medical and Dental University (TMDU), Bunkyo-ku, Tokyo, Japan
| |
Collapse
|
8
|
Birch-Price Z, Hardy FJ, Lister TM, Kohn AR, Green AP. Noncanonical Amino Acids in Biocatalysis. Chem Rev 2024; 124:8740-8786. [PMID: 38959423 PMCID: PMC11273360 DOI: 10.1021/acs.chemrev.4c00120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/05/2024]
Abstract
In recent years, powerful genetic code reprogramming methods have emerged that allow new functional components to be embedded into proteins as noncanonical amino acid (ncAA) side chains. In this review, we will illustrate how the availability of an expanded set of amino acid building blocks has opened a wealth of new opportunities in enzymology and biocatalysis research. Genetic code reprogramming has provided new insights into enzyme mechanisms by allowing introduction of new spectroscopic probes and the targeted replacement of individual atoms or functional groups. NcAAs have also been used to develop engineered biocatalysts with improved activity, selectivity, and stability, as well as enzymes with artificial regulatory elements that are responsive to external stimuli. Perhaps most ambitiously, the combination of genetic code reprogramming and laboratory evolution has given rise to new classes of enzymes that use ncAAs as key catalytic elements. With the framework for developing ncAA-containing biocatalysts now firmly established, we are optimistic that genetic code reprogramming will become a progressively more powerful tool in the armory of enzyme designers and engineers in the coming years.
Collapse
Affiliation(s)
| | | | | | | | - Anthony P. Green
- Manchester Institute of Biotechnology,
School of Chemistry, University of Manchester, Manchester M1 7DN, U.K.
| |
Collapse
|
9
|
Ariyoshi R, Matsuzaki T, Sato R, Minamihata K, Hayashi K, Koga T, Orita K, Nishioka R, Wakabayashi R, Goto M, Kamiya N. Engineering the Propeptide of Microbial Transglutaminase Zymogen: Enabling Substrate-Dependent Activation for Bioconjugation Applications. Bioconjug Chem 2024; 35:340-350. [PMID: 38421254 DOI: 10.1021/acs.bioconjchem.3c00544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Microbial transglutaminase (MTG) from Streptomyces mobaraensis is a powerful biocatalytic glue for site-specific cross-linking of a range of biomolecules and synthetic molecules that have an MTG-reactive moiety. The preparation of active recombinant MTG requires post-translational proteolytic digestion of a propeptide that functions as an intramolecular chaperone to assist the correct folding of the MTG zymogen (MTGz) in the biosynthesis. Herein, we report engineered active zymogen of MTG (EzMTG) that is expressed in soluble form in the host Escherichia coli cytosol and exhibits cross-linking activity without limited proteolysis of the propeptide. We found that the saturation mutagenesis of residues K10 or Y12 in the propeptide domain generated several active MTGz mutants. In particular, the K10D/Y12G mutant exhibited catalytic activity comparable to that of mature MTG. However, the expression level was low, possibly because of decreased chaperone activity and/or the promiscuous substrate specificity of MTG, which is potentially harmful to the host cells. The K10R/Y12A mutant exhibited specific substrate-dependent reactivity toward peptidyl substrates. Quantitative analysis of the binding affinity of the mutated propeptides to the active site of MTG suggested an inverse relationship between the binding affinity and the catalytic activity of EzMTG. Our proof-of-concept study provides insights into the design of a new biocatalyst using the MTGz as a scaffold and a potential route to high-throughput screening of EzMTG mutants for bioconjugation applications.
Collapse
Affiliation(s)
- Ryutaro Ariyoshi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Takashi Matsuzaki
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Ryo Sato
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kosuke Minamihata
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kounosuke Hayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Taisei Koga
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Kensei Orita
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Riko Nishioka
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Rie Wakabayashi
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Masahiro Goto
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| | - Noriho Kamiya
- Department of Applied Chemistry, Graduate School of Engineering, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
- Division of Biotechnology, Center for Future Chemistry, Kyushu University, 744 Motooka, Fukuoka 819-0395, Japan
| |
Collapse
|
10
|
Terasawa K, Seike T, Sakamoto K, Ohtake K, Terada T, Iwata T, Watabe T, Yokoyama S, Hara‐Yokoyama M. Site-specific photo-crosslinking/cleavage for protein-protein interface identification reveals oligomeric assembly of lysosomal-associated membrane protein type 2A in mammalian cells. Protein Sci 2023; 32:e4823. [PMID: 37906694 PMCID: PMC10659947 DOI: 10.1002/pro.4823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/16/2023] [Accepted: 10/21/2023] [Indexed: 11/02/2023]
Abstract
Genetic code expansion enables site-specific photo-crosslinking by introducing photo-reactive non-canonical amino acids into proteins at defined positions during translation. This technology is widely used for analyzing protein-protein interactions and is applicable in mammalian cells. However, the identification of the crosslinked region still remains challenging. Here, we developed a new method to identify the crosslinked region by pre-installing a site-specific cleavage site, an α-hydroxy acid (Nε -allyloxycarbonyl-α-hydroxyl-l-lysine acid, AllocLys-OH), into the target protein. Alkaline treatment cleaves the crosslinked complex at the position of the α-hydroxy acid residue and thus helps to identify which side of the cleavage site, either closer to the N-terminus or C-terminus, the crosslinked site is located within the target protein. A series of AllocLys-OH introductions narrows down the crosslinked region. By applying this method, we identified the crosslinked regions in lysosomal-associated membrane protein type 2A (LAMP2A), a receptor of chaperone-mediated autophagy, in mammalian cells. The results suggested that at least two interfaces are involved in the homophilic interaction, which requires a trimeric or higher oligomeric assembly of adjacent LAMP2A molecules. Thus, the combination of site-specific crosslinking and site-specific cleavage promises to be useful for revealing binding interfaces and protein complex geometries.
Collapse
Affiliation(s)
- Kazue Terasawa
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
- LiberoThera Co., Ltd.Chuo‐kuJapan
| | - Tatsuro Seike
- Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid TechnologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
- Department of Drug Target Protein ResearchShinshu University School of MedicineNaganoJapan
| | - Kazumasa Ohtake
- Laboratory for Nonnatural Amino Acid TechnologyRIKEN Center for Biosystems Dynamics ResearchYokohamaJapan
- Department of Electrical Engineering and BioscienceWaseda UniversityTokyoJapan
| | - Tohru Terada
- Department of Biotechnology, Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Takanori Iwata
- Department of Periodontology, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Tetsuro Watabe
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Shigeyuki Yokoyama
- Department of Drug Target Protein ResearchShinshu University School of MedicineNaganoJapan
- Laboratory for Protein Function and Structural BiologyRIKEN Cluster for Science, Technology and Innovation HubYokohamaJapan
- Department of Structural Biology and Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| | - Miki Hara‐Yokoyama
- Department of Biochemistry, Graduate School of Medical and Dental SciencesTokyo Medical and Dental University (TMDU)TokyoJapan
| |
Collapse
|
11
|
Hanaee-Ahvaz H, Cserjan-Puschmann M, Mayer F, Tauer C, Albrecht B, Furtmüller PG, Wiltschi B, Hahn R, Striedner G. Antibody fragments functionalized with non-canonical amino acids preserving structure and functionality - A door opener for new biological and therapeutic applications. Heliyon 2023; 9:e22463. [PMID: 38046162 PMCID: PMC10686840 DOI: 10.1016/j.heliyon.2023.e22463] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 11/10/2023] [Accepted: 11/13/2023] [Indexed: 12/05/2023] Open
Abstract
Functionalization of proteins by incorporating reactive non-canonical amino acids (ncAAs) has been widely applied for numerous biological and therapeutic applications. The requirement not to lose the intrinsic properties of these proteins is often underestimated and not considered. Main purpose of this study was to answer the question whether functionalization via residue-specific incorporation of the ncAA N6-[(2-Azidoethoxy) carbonyl]-l-lysine (Azk) influences the properties of the anti-tumor-necrosis-factor-α-Fab (FTN2). Therefore, FTN2Azk variants with different Azk incorporation sites were designed and amber codon suppression was used for production. The functionalized FTN2Azk variants were efficiently produced in fed-batch like μ-bioreactor cultivations in the periplasm of E. coli displaying correct structure and antigen binding affinities comparable to those of wild-type FTN2. Our FTN2Azk variants with reactive handles for diverse conjugates enable tracking of recombinant protein in the production cell, pharmacological studies and translation into new pharmaceutical applications.
Collapse
Affiliation(s)
- Hana Hanaee-Ahvaz
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Monika Cserjan-Puschmann
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Florian Mayer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Christopher Tauer
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Bernd Albrecht
- Biopharma Austria, Process Science, Boehringer Ingelheim Regional Center Vienna GmbH & Co KG, Dr.-Boehringer-Gasse 5-11, A-1121, Vienna, Austria
| | - Paul G. Furtmüller
- University of Natural Resources and Life Sciences, Vienna, Department of Chemistry, Institute of Biochemistry, Muthgasse 18, 1190, Vienna, Austria
| | - Birgit Wiltschi
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Rainer Hahn
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| | - Gerald Striedner
- Christian Doppler Laboratory for Production of Next-Level Biopharmaceuticals in E. coli, University of Natural Resources and Life Sciences, Vienna, Department of Biotechnology, Institute of Bioprocess Science and Engineering, Muthgasse 18, 1190, Vienna, Austria
| |
Collapse
|
12
|
Vasić K, Knez Ž, Leitgeb M. Transglutaminase in Foods and Biotechnology. Int J Mol Sci 2023; 24:12402. [PMID: 37569776 PMCID: PMC10419021 DOI: 10.3390/ijms241512402] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 08/01/2023] [Accepted: 08/02/2023] [Indexed: 08/13/2023] Open
Abstract
Stabilization and reusability of enzyme transglutaminase (TGM) are important goals for the enzymatic process since immobilizing TGM plays an important role in different technologies and industries. TGM can be used in many applications. In the food industry, it plays a role as a protein-modifying enzyme, while, in biotechnology and pharmaceutical applications, it is used in mediated bioconjugation due to its extraordinary crosslinking ability. TGMs (EC 2.3.2.13) are enzymes that catalyze the formation of a covalent bond between a free amino group of protein-bound or peptide-bound lysine, which acts as an acyl acceptor, and the γ-carboxamide group of protein-bound or peptide-bound glutamine, which acts as an acyl donor. This results in the modification of proteins through either intramolecular or intermolecular crosslinking, which improves the use of the respective proteins significantly.
Collapse
Affiliation(s)
- Katja Vasić
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
| | - Željko Knez
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| | - Maja Leitgeb
- Laboratory for Separation Processes and Product Design, Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, SI-2000 Maribor, Slovenia; (K.V.); (Ž.K.)
- Faculty of Medicine, University of Maribor, Taborska Ulica 8, SI-2000 Maribor, Slovenia
| |
Collapse
|
13
|
Beattie AT, Dunkelmann DL, Chin JW. Quintuply orthogonal pyrrolysyl-tRNA synthetase/tRNA Pyl pairs. Nat Chem 2023; 15:948-959. [PMID: 37322102 PMCID: PMC7615293 DOI: 10.1038/s41557-023-01232-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 05/03/2023] [Indexed: 06/17/2023]
Abstract
Mutually orthogonal aminoacyl transfer RNA synthetase/transfer RNA pairs provide a foundation for encoding non-canonical amino acids into proteins, and encoded non-canonical polymer and macrocycle synthesis. Here we discover quintuply orthogonal pyrrolysyl-tRNA synthetase (PylRS)/pyrrolysyl-tRNA (tRNAPyl) pairs. We discover empirical sequence identity thresholds for mutual orthogonality and use these for agglomerative clustering of PylRS and tRNAPyl sequences; this defines numerous sequence clusters, spanning five classes of PylRS/tRNAPyl pairs (the existing classes +N, A and B, and newly defined classes C and S). Most of the PylRS clusters belong to classes that were unexplored for orthogonal pair generation. By testing pairs from distinct clusters and classes, and pyrrolysyl-tRNAs with unusual structures, we resolve 80% of the pairwise specificities required to make quintuply orthogonal PylRS/tRNAPyl pairs; we control the remaining specificities by engineering and directed evolution. Overall, we create 924 mutually orthogonal PylRS/tRNAPyl pairs, 1,324 triply orthogonal pairs, 128 quadruply orthogonal pairs and 8 quintuply orthogonal pairs. These advances may provide a key foundation for encoded polymer synthesis.
Collapse
Affiliation(s)
- Adam T Beattie
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | | | - Jason W Chin
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK.
| |
Collapse
|
14
|
Gong X, Zhang H, Shen Y, Fu X. Update of the Pyrrolysyl-tRNA Synthetase/tRNA Pyl Pair and Derivatives for Genetic Code Expansion. J Bacteriol 2023; 205:e0038522. [PMID: 36695595 PMCID: PMC9945579 DOI: 10.1128/jb.00385-22] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The cotranslational incorporation of pyrrolysine (Pyl), the 22nd proteinogenic amino acid, into proteins in response to the UAG stop codon represents an outstanding example of natural genetic code expansion. Genetic encoding of Pyl is conducted by the pyrrolysyl-tRNA synthetase (PylRS) and its cognate tRNA, tRNAPyl. Owing to the high tolerance of PylRS toward diverse amino acid substrates and great orthogonality in various model organisms, the PylRS/tRNAPyl-derived pairs are ideal for genetic code expansion to insert noncanonical amino acids (ncAAs) into proteins of interest. Since the discovery of cellular components involved in the biosynthesis and genetic encoding of Pyl, synthetic biologists have been enthusiastic about engineering PylRS/tRNAPyl-derived pairs to rewrite the genetic code of living cells. Recently, considerable progress has been made in understanding the molecular phylogeny, biochemical properties, and structural features of the PylRS/tRNAPyl pair, guiding its further engineering and optimization. In this review, we cover the basic and updated knowledge of the PylRS/tRNAPyl pair's unique characteristics that make it an outstanding tool for reprogramming the genetic code. In addition, we summarize the recent efforts to create efficient and (mutually) orthogonal PylRS/tRNAPyl-derived pairs for incorporation of diverse ncAAs by genome mining, rational design, and advanced directed evolution methods.
Collapse
Affiliation(s)
- Xuemei Gong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Haolin Zhang
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
| | - Yue Shen
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| | - Xian Fu
- BGI Research-Shenzhen, BGI, Shenzhen, China
- Guangdong Provincial Key Laboratory of Genome Read and Write, Shenzhen, China
- BGI Research-Changzhou, BGI, Changzhou, China
| |
Collapse
|
15
|
Lugtenburg T, Gran-Scheuch A, Drienovská I. Non-canonical amino acids as a tool for the thermal stabilization of enzymes. Protein Eng Des Sel 2023; 36:gzad003. [PMID: 36897290 PMCID: PMC10064326 DOI: 10.1093/protein/gzad003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/31/2023] [Accepted: 02/20/2023] [Indexed: 03/11/2023] Open
Abstract
Biocatalysis has become a powerful alternative for green chemistry. Expanding the range of amino acids used in protein biosynthesis can improve industrially appealing properties such as enantioselectivity, activity and stability. This review will specifically delve into the thermal stability improvements that non-canonical amino acids (ncAAs) can confer to enzymes. Methods to achieve this end, such as the use of halogenated ncAAs, selective immobilization and rational design, will be discussed. Additionally, specific enzyme design considerations using ncAAs are discussed along with the benefits and limitations of the various approaches available to enhance the thermal stability of enzymes.
Collapse
Affiliation(s)
- Tim Lugtenburg
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Alejandro Gran-Scheuch
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| | - Ivana Drienovská
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
16
|
Spinck M, Piedrafita C, Robertson WE, Elliott TS, Cervettini D, de la Torre D, Chin JW. Genetically programmed cell-based synthesis of non-natural peptide and depsipeptide macrocycles. Nat Chem 2023; 15:61-69. [PMID: 36550233 PMCID: PMC9836938 DOI: 10.1038/s41557-022-01082-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 09/30/2022] [Indexed: 12/24/2022]
Abstract
The direct genetically encoded cell-based synthesis of non-natural peptide and depsipeptide macrocycles is an outstanding challenge. Here we programme the encoded synthesis of 25 diverse non-natural macrocyclic peptides, each containing two non-canonical amino acids, in Syn61Δ3-derived cells; these cells contain a synthetic Escherichia coli genome in which the annotated occurrences of two sense codons and a stop codon, and the cognate transfer RNAs (tRNAs) and release factor that normally decode these codons, have been removed. We further demonstrate that pyrrolysyl-tRNA synthetase/tRNA pairs from distinct classes can be engineered to direct the co-translational incorporation of diverse alpha hydroxy acids, with both aliphatic and aromatic side chains. We define 49 engineered mutually orthogonal pairs that recognize distinct non-canonical amino acids or alpha hydroxy acids and decode distinct codons. Finally, we combine our advances to programme Syn61Δ3-derived cells for the encoded synthesis of 12 diverse non-natural depsipeptide macrocycles, which contain two non-canonical side chains and either one or two ester bonds.
Collapse
Affiliation(s)
- Martin Spinck
- grid.42475.300000 0004 0605 769XMedical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Carlos Piedrafita
- grid.42475.300000 0004 0605 769XMedical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Wesley E. Robertson
- grid.42475.300000 0004 0605 769XMedical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Thomas S. Elliott
- grid.42475.300000 0004 0605 769XMedical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Daniele Cervettini
- grid.42475.300000 0004 0605 769XMedical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Daniel de la Torre
- grid.42475.300000 0004 0605 769XMedical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Jason W. Chin
- grid.42475.300000 0004 0605 769XMedical Research Council Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
17
|
Zhang H, Gong X, Zhao Q, Mukai T, Vargas-Rodriguez O, Zhang H, Zhang Y, Wassel P, Amikura K, Maupin-Furlow J, Ren Y, Xu X, Wolf YI, Makarova K, Koonin E, Shen Y, Söll D, Fu X. The tRNA discriminator base defines the mutual orthogonality of two distinct pyrrolysyl-tRNA synthetase/tRNAPyl pairs in the same organism. Nucleic Acids Res 2022; 50:4601-4615. [PMID: 35466371 PMCID: PMC9071458 DOI: 10.1093/nar/gkac271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 04/01/2022] [Accepted: 04/07/2022] [Indexed: 12/24/2022] Open
Abstract
Site-specific incorporation of distinct non-canonical amino acids into proteins via genetic code expansion requires mutually orthogonal aminoacyl-tRNA synthetase/tRNA pairs. Pyrrolysyl-tRNA synthetase (PylRS)/tRNAPyl pairs are ideal for genetic code expansion and have been extensively engineered for developing mutually orthogonal pairs. Here, we identify two novel wild-type PylRS/tRNAPyl pairs simultaneously present in the deep-rooted extremely halophilic euryarchaeal methanogen Candidatus Methanohalarchaeum thermophilum HMET1, and show that both pairs are functional in the model halophilic archaeon Haloferax volcanii. These pairs consist of two different PylRS enzymes and two distinct tRNAs with dissimilar discriminator bases. Surprisingly, these two PylRS/tRNAPyl pairs display mutual orthogonality enabled by two unique features, the A73 discriminator base of tRNAPyl2 and a shorter motif 2 loop in PylRS2. In vivo translation experiments show that tRNAPyl2 charging by PylRS2 is defined by the enzyme's shortened motif 2 loop. Finally, we demonstrate that the two HMET1 PylRS/tRNAPyl pairs can simultaneously decode UAG and UAA codons for incorporation of two distinct noncanonical amino acids into protein. This example of a single base change in a tRNA leading to additional coding capacity suggests that the growth of the genetic code is not yet limited by the number of identity elements fitting into the tRNA structure.
Collapse
Affiliation(s)
| | | | | | - Takahito Mukai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Oscar Vargas-Rodriguez
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Huiming Zhang
- BGI-Shenzhen, Shenzhen, 518083, China,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yuxing Zhang
- BGI-Shenzhen, Shenzhen, 518083, China,Sino-Danish College, University of the Chinese Academy of Sciences, Beijing, China
| | - Paul Wassel
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA
| | - Kazuaki Amikura
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Julie Maupin-Furlow
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL 32611, USA,Genetics Institute, University of Florida, Gainesville, FL 32611, USA
| | - Yan Ren
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Xun Xu
- BGI-Shenzhen, Shenzhen, 518083, China
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yue Shen
- Correspondence may also be addressed to Yue Shen.
| | - Dieter Söll
- To whom correspondence should be addressed. Tel: +1 203 4326200;
| | - Xian Fu
- Correspondence may also be addressed to Xian Fu.
| |
Collapse
|
18
|
Pagar AD, Jeon H, Khobragade TP, Sarak S, Giri P, Lim S, Yoo TH, Ko BJ, Yun H. Non-Canonical Amino Acid-Based Engineering of ( R)-Amine Transaminase. Front Chem 2022; 10:839636. [PMID: 35295971 PMCID: PMC8918476 DOI: 10.3389/fchem.2022.839636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 02/07/2022] [Indexed: 01/07/2023] Open
Abstract
Non-canonical amino acids (ncAAs) have been utilized as an invaluable tool for modulating the active site of the enzymes, probing the complex enzyme mechanisms, improving catalytic activity, and designing new to nature enzymes. Here, we report site-specific incorporation of p-benzoyl phenylalanine (pBpA) to engineer (R)-amine transaminase previously created from d-amino acid aminotransferase scaffold. Replacement of the single Phe88 residue at the active site with pBpA exhibits a significant 15-fold and 8-fold enhancement in activity for 1-phenylpropan-1-amine and benzaldehyde, respectively. Reshaping of the enzyme's active site afforded an another variant F86A/F88pBpA, with 30% higher thermostability at 55°C without affecting parent enzyme activity. Moreover, various racemic amines were successfully resolved by transaminase variants into (S)-amines with excellent conversions (∼50%) and enantiomeric excess (>99%) using pyruvate as an amino acceptor. Additionally, kinetic resolution of the 1-phenylpropan-1-amine was performed using benzaldehyde as an amino acceptor, which is cheaper than pyruvate. Our results highlight the utility of ncAAs for designing enzymes with enhanced functionality beyond the limit of 20 canonical amino acids.
Collapse
Affiliation(s)
- Amol D. Pagar
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Hyunwoo Jeon
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | | | - Sharad Sarak
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Pritam Giri
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Seonga Lim
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Byoung Joon Ko
- School of Biopharmaceutical and Medical Sciences, Sungshin Women’s University, Seoul, South Korea
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, Seoul, South Korea
| |
Collapse
|
19
|
Zhang Y, Li C, Geary T, Jardim A, He S, Simpson BK. Cold setting of gelatin–antioxidant peptides composite hydrogels using a new psychrophilic recombinant transglutaminase (rTGase). Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Padhi AK, Kumar A, Haruna KI, Sato H, Tamura H, Nagatoishi S, Tsumoto K, Yamaguchi A, Iraha F, Takahashi M, Sakamoto K, Zhang KYJ. An integrated computational pipeline for designing high-affinity nanobodies with expanded genetic codes. Brief Bioinform 2021; 22:6355418. [PMID: 34415295 DOI: 10.1093/bib/bbab338] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/28/2021] [Accepted: 07/29/2021] [Indexed: 01/09/2023] Open
Abstract
Protein engineering and design principles employing the 20 standard amino acids have been extensively used to achieve stable protein scaffolds and deliver their specific activities. Although this confers some advantages, it often restricts the sequence, chemical space, and ultimately the functional diversity of proteins. Moreover, although site-specific incorporation of non-natural amino acids (nnAAs) has been proven to be a valuable strategy in protein engineering and therapeutics development, its utility in the affinity-maturation of nanobodies is not fully explored. Besides, current experimental methods do not routinely employ nnAAs due to their enormous library size and infinite combinations. To address this, we have developed an integrated computational pipeline employing structure-based protein design methodologies, molecular dynamics simulations and free energy calculations, for the binding affinity prediction of an nnAA-incorporated nanobody toward its target and selection of potent binders. We show that by incorporating halogenated tyrosines, the affinity of 9G8 nanobody can be improved toward epidermal growth factor receptor (EGFR), a crucial cancer target. Surface plasmon resonance (SPR) assays showed that the binding of several 3-chloro-l-tyrosine (3MY)-incorporated nanobodies were improved up to 6-fold into a picomolar range, and the computationally estimated binding affinities shared a Pearson's r of 0.87 with SPR results. The improved affinity was found to be due to enhanced van der Waals interactions of key 3MY-proximate nanobody residues with EGFR, and an overall increase in the nanobody's structural stability. In conclusion, we show that our method can facilitate screening large libraries and predict potent site-specific nnAA-incorporated nanobody binders against crucial disease-targets.
Collapse
Affiliation(s)
- Aditya K Padhi
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ashutosh Kumar
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Ken-Ichi Haruna
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Haruna Sato
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan
| | - Hiroko Tamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoru Nagatoishi
- Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Institute of Medical Sciences, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.,Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Atushi Yamaguchi
- Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Fumie Iraha
- Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Mihoko Takahashi
- Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Nonnatural Amino Acid Technology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kensaku Sakamoto
- Division of Structural and Synthetic Biology, Center for Life Science Technologies, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan.,Laboratory for Nonnatural Amino Acid Technology, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| | - Kam Y J Zhang
- Laboratory for Structural Bioinformatics, Center for Biosystems Dynamics Research, RIKEN, 1-7-22 Suehiro, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
21
|
Song W, Ko J, Choi YH, Hwang NS. Recent advancements in enzyme-mediated crosslinkable hydrogels: In vivo-mimicking strategies. APL Bioeng 2021; 5:021502. [PMID: 33834154 PMCID: PMC8018798 DOI: 10.1063/5.0037793] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/03/2021] [Indexed: 12/19/2022] Open
Abstract
Enzymes play a central role in fundamental biological processes and have been traditionally used to trigger various processes. In recent years, enzymes have been used to tune biomaterial responses and modify the chemical structures at desired sites. These chemical modifications have allowed the fabrication of various hydrogels for tissue engineering and therapeutic applications. This review provides a comprehensive overview of recent advancements in the use of enzymes for hydrogel fabrication. Strategies to enhance the enzyme function and improve biocompatibility are described. In addition, we describe future opportunities and challenges for the production of enzyme-mediated crosslinkable hydrogels.
Collapse
Affiliation(s)
- Wonmoon Song
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Junghyeon Ko
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Hwan Choi
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Nathaniel S. Hwang
- Author to whom correspondence should be addressed:. Tel.: 82-2-880-1635. Fax: 82-2-880-7295
| |
Collapse
|
22
|
Pagar AD, Patil MD, Flood DT, Yoo TH, Dawson PE, Yun H. Recent Advances in Biocatalysis with Chemical Modification and Expanded Amino Acid Alphabet. Chem Rev 2021; 121:6173-6245. [PMID: 33886302 DOI: 10.1021/acs.chemrev.0c01201] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The two main strategies for enzyme engineering, directed evolution and rational design, have found widespread applications in improving the intrinsic activities of proteins. Although numerous advances have been achieved using these ground-breaking methods, the limited chemical diversity of the biopolymers, restricted to the 20 canonical amino acids, hampers creation of novel enzymes that Nature has never made thus far. To address this, much research has been devoted to expanding the protein sequence space via chemical modifications and/or incorporation of noncanonical amino acids (ncAAs). This review provides a balanced discussion and critical evaluation of the applications, recent advances, and technical breakthroughs in biocatalysis for three approaches: (i) chemical modification of cAAs, (ii) incorporation of ncAAs, and (iii) chemical modification of incorporated ncAAs. Furthermore, the applications of these approaches and the result on the functional properties and mechanistic study of the enzymes are extensively reviewed. We also discuss the design of artificial enzymes and directed evolution strategies for enzymes with ncAAs incorporated. Finally, we discuss the current challenges and future perspectives for biocatalysis using the expanded amino acid alphabet.
Collapse
Affiliation(s)
- Amol D Pagar
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Mahesh D Patil
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| | - Dillon T Flood
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Tae Hyeon Yoo
- Department of Molecular Science and Technology, Ajou University, 206 World cup-ro, Yeongtong-gu, Suwon 16499, Korea
| | - Philip E Dawson
- Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States
| | - Hyungdon Yun
- Department of Systems Biotechnology, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Korea
| |
Collapse
|
23
|
Manandhar M, Chun E, Romesberg FE. Genetic Code Expansion: Inception, Development, Commercialization. J Am Chem Soc 2021; 143:4859-4878. [DOI: 10.1021/jacs.0c11938] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Miglena Manandhar
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | - Eugene Chun
- Synthorx, a Sanofi Company, La Jolla, California 92037, United States
| | | |
Collapse
|
24
|
Walsh SJ, Bargh JD, Dannheim FM, Hanby AR, Seki H, Counsell AJ, Ou X, Fowler E, Ashman N, Takada Y, Isidro-Llobet A, Parker JS, Carroll JS, Spring DR. Site-selective modification strategies in antibody-drug conjugates. Chem Soc Rev 2021; 50:1305-1353. [PMID: 33290462 DOI: 10.1039/d0cs00310g] [Citation(s) in RCA: 248] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Antibody-drug conjugates (ADCs) harness the highly specific targeting capabilities of an antibody to deliver a cytotoxic payload to specific cell types. They have garnered widespread interest in drug discovery, particularly in oncology, as discrimination between healthy and malignant tissues or cells can be achieved. Nine ADCs have received approval from the US Food and Drug Administration and more than 80 others are currently undergoing clinical investigations for a range of solid tumours and haematological malignancies. Extensive research over the past decade has highlighted the critical nature of the linkage strategy adopted to attach the payload to the antibody. Whilst early generation ADCs were primarily synthesised as heterogeneous mixtures, these were found to have sub-optimal pharmacokinetics, stability, tolerability and/or efficacy. Efforts have now shifted towards generating homogeneous constructs with precise drug loading and predetermined, controlled sites of attachment. Homogeneous ADCs have repeatedly demonstrated superior overall pharmacological profiles compared to their heterogeneous counterparts. A wide range of methods have been developed in the pursuit of homogeneity, comprising chemical or enzymatic methods or a combination thereof to afford precise modification of specific amino acid or sugar residues. In this review, we discuss advances in chemical and enzymatic methods for site-specific antibody modification that result in the generation of homogeneous ADCs.
Collapse
Affiliation(s)
- Stephen J Walsh
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hayashi A, Haruna KI, Sato H, Ito K, Makino C, Ito T, Sakamoto K. Incorporation of Halogenated Amino Acids into Antibody Fragments at Multiple Specific Sites Enhances Antigen Binding. Chembiochem 2020; 22:120-123. [PMID: 32815262 DOI: 10.1002/cbic.202000429] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/08/2020] [Indexed: 01/20/2023]
Abstract
Expansion of the amino-acid repertoire with synthetic derivatives introduces novel structures and functionalities into proteins. In this study, we improved the antigen binding of antibodies by incorporating halogenated tyrosines at multiple selective sites. Tyrosines in the Fab fragment of an anti-EGF-receptor antibody 059-152 were systematically replaced with 3-bromo- and 3-chlorotyrosines, and simultaneous replacements at four specific sites were found to cause a tenfold increase in the affinity toward the antigen. Structure modeling suggested that this effect was due to enhanced shape complementarity between the antigen and antibody molecules. On the other hand, we showed that chlorination in the constant domain, far from the binding interface, of Rituximab Fab also increased the affinity significantly (up to 17-fold). Our results showed that antigen binding is tunable with the halogenation in and out of the binding motifs.
Collapse
Affiliation(s)
- Akiko Hayashi
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Ken-Ichi Haruna
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki, 210-8681, Japan
| | - Haruna Sato
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki, 210-8681, Japan
| | - Kenichiro Ito
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki, 210-8681, Japan
| | - Chisato Makino
- Research Institute for Bioscience Products and Fine Chemicals, Ajinomoto Co., Inc., 1-1 Suzuki-Cho, Kawasaki-Ku, Kawasaki, 210-8681, Japan
| | - Takuhiro Ito
- Laboratory for Translation Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Kensaku Sakamoto
- Laboratory for Nonnatural Amino Acid Technology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| |
Collapse
|
26
|
Ros E, Torres AG, Ribas de Pouplana L. Learning from Nature to Expand the Genetic Code. Trends Biotechnol 2020; 39:460-473. [PMID: 32896440 DOI: 10.1016/j.tibtech.2020.08.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/29/2020] [Accepted: 08/04/2020] [Indexed: 01/14/2023]
Abstract
The genetic code is the manual that cells use to incorporate amino acids into proteins. It is possible to artificially expand this manual through cellular, molecular, and chemical manipulations to improve protein functionality. Strategies for in vivo genetic code expansion are under the same functional constraints as natural protein synthesis. Here, we review the approaches used to incorporate noncanonical amino acids (ncAAs) into designer proteins through the manipulation of the translation machinery and draw parallels between these methods and natural adaptations that improve translation in extant organisms. Following this logic, we propose new nature-inspired tactics to improve genetic code expansion (GCE) in synthetic organisms.
Collapse
Affiliation(s)
- Enric Ros
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, 08028, Spain
| | - Adrian Gabriel Torres
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, 08028, Spain
| | - Lluís Ribas de Pouplana
- Institute for Research in Biomedicine, The Barcelona Institute of Science and Technology, Barcelona, Catalonia, 08028, Spain; Catalan Institution for Research and Advanced Studies, Barcelona, Catalonia, 08010, Spain.
| |
Collapse
|
27
|
Zhang Y, Li C, Geary T, Simpson BK. Contribution of Special Structural Features to High Thermal Stability of a Cold-Active Transglutaminase. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7935-7945. [PMID: 32643372 DOI: 10.1021/acs.jafc.0c03344] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A cold-active transglutaminase (TGase, EC 2.3.2.13) that catalyzes the reaction of protein glutamine + protein lysine ↔ protein with γ-glutamyl-ε-lysine cross-link + NH3 at low temperatures was reported previously. This study verified the thermal stability of the TGase from 0-80 °C. Fluorescence and CD spectra studies confirmed tertiary structural damage at 40 °C, α-helix reduction at 60 °C, and refolding during cooling to 20 °C. The TGase sequence was obtained by transcriptomics and used to build its structure. Its catalytic triad was Cys333-His403-Asp426 and its catalytic process was inferred from the model. Molecular dynamics simulation illustrated that its cold activity resulted from its flexible active site, while high thermostability was conferred by an overall rigid structure, a large amount of stable Val and Lys, and strong electrostatic interactions at the N- and C- terminals. This study fills gaps in the correlation of conformational changes with stability and activity of TGase.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Food Science & Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Chen Li
- School of Life Science, Shanxi University, Taiyuan 030006, China
| | - Timothy Geary
- Institute of Parasitology, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| | - Benjamin Kofi Simpson
- Department of Food Science & Agricultural Chemistry, McGill University, Ste-Anne-de-Bellevue, Québec H9X 3V9, Canada
| |
Collapse
|
28
|
Duarte L, Matte CR, Bizarro CV, Ayub MAZ. Transglutaminases: part I-origins, sources, and biotechnological characteristics. World J Microbiol Biotechnol 2020; 36:15. [PMID: 31897837 DOI: 10.1007/s11274-019-2791-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 12/20/2019] [Indexed: 12/17/2022]
Abstract
The transglutaminases form a large family of intracellular and extracellular enzymes that catalyze cross-links between protein molecules. Transglutaminases crosslinking properties are widely applied to various industrial processes, to improve the firmness, viscosity, elasticity, and water-holding capacity of products in the food and pharmaceutical industries. However, the extremely high costs of obtaining transglutaminases from animal sources have prompted scientists to search for new sources of these enzymes. Therefore, research has been focused on producing transglutaminases by microorganisms, which may present wider scope of use, based on enzyme-specific characteristics. In this review, we present an overview of the literature addressing the origins, types, reactions, and general characterizations of this important enzyme family. A second review will deal with transglutaminases applications in the area of food industry, medicine, pharmaceuticals and biomaterials, as well as applications in the textile and leather industries.
Collapse
Affiliation(s)
- Lovaine Duarte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Carla Roberta Matte
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil
| | - Cristiano Valim Bizarro
- Centro de Pesquisas em Biologia Molecular e Funcional (CPBMF), Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), 92A Building at TECNOPUC, 4592 Bento Gonçalves Avenue, Porto Alegre, 90650-001, Brazil
| | - Marco Antônio Záchia Ayub
- Biotechnology, Bioprocess, and Biocatalysis Group, Food Science and Technology Institute, Federal University of Rio Grande Do Sul, Av. Bento Gonçalves 9500, PO Box 15090, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
29
|
Enzymatic activity and thermoresistance of improved microbial transglutaminase variants. Amino Acids 2019; 52:313-326. [DOI: 10.1007/s00726-019-02764-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 07/17/2019] [Indexed: 01/31/2023]
|
30
|
Versatility of Synthetic tRNAs in Genetic Code Expansion. Genes (Basel) 2018; 9:genes9110537. [PMID: 30405060 PMCID: PMC6267555 DOI: 10.3390/genes9110537] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 10/31/2018] [Accepted: 11/05/2018] [Indexed: 12/16/2022] Open
Abstract
Transfer RNA (tRNA) is a dynamic molecule used by all forms of life as a key component of the translation apparatus. Each tRNA is highly processed, structured, and modified, to accurately deliver amino acids to the ribosome for protein synthesis. The tRNA molecule is a critical component in synthetic biology methods for the synthesis of proteins designed to contain non-canonical amino acids (ncAAs). The multiple interactions and maturation requirements of a tRNA pose engineering challenges, but also offer tunable features. Major advances in the field of genetic code expansion have repeatedly demonstrated the central importance of suppressor tRNAs for efficient incorporation of ncAAs. Here we review the current status of two fundamentally different translation systems (TSs), selenocysteine (Sec)- and pyrrolysine (Pyl)-TSs. Idiosyncratic requirements of each of these TSs mandate how their tRNAs are adapted and dictate the techniques used to select or identify the best synthetic variants.
Collapse
|
31
|
Pyrrolysyl-tRNA Synthetase with a Unique Architecture Enhances the Availability of Lysine Derivatives in Synthetic Genetic Codes. Molecules 2018; 23:molecules23102460. [PMID: 30261594 PMCID: PMC6222415 DOI: 10.3390/molecules23102460] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/25/2018] [Accepted: 09/25/2018] [Indexed: 11/16/2022] Open
Abstract
Genetic code expansion has largely relied on two types of the tRNA—aminoacyl-tRNA synthetase pairs. One involves pyrrolysyl-tRNA synthetase (PylRS), which is used to incorporate various lysine derivatives into proteins. The widely used PylRS from Methanosarcinaceae comprises two distinct domains while the bacterial molecules consist of two separate polypeptides. The recently identified PylRS from Candidatus Methanomethylophilus alvus (CMaPylRS) is a single-domain, one-polypeptide enzyme that belongs to a third category. In the present study, we showed that the PylRS—tRNAPyl pair from C. M. alvus can incorporate lysine derivatives much more efficiently (up to 14-times) than Methanosarcinaceae PylRSs in Escherichia coli cell-based and cell-free systems. Then we investigated the tRNA and amino-acid recognition by CMaPylRS. The cognate tRNAPyl has two structural idiosyncrasies: no connecting nucleotide between the acceptor and D stems and an additional nucleotide in the anticodon stem and it was found that these features are hardly recognized by CMaPylRS. Lastly, the Tyr126Ala and Met129Leu substitutions at the amino-acid binding pocket were shown to allow CMaPylRS to recognize various derivatives of the bulky Nε-benzyloxycarbonyl-l-lysine (ZLys). With the high incorporation efficiency and the amenability to engineering, CMaPylRS would enhance the availability of lysine derivatives in expanded codes.
Collapse
|