1
|
Cáceres JC, Michellys NG, Greene BL. Nitric Oxide Inhibition of Glycyl Radical Enzymes and Their Activases. J Am Chem Soc 2025; 147:11777-11788. [PMID: 40133071 PMCID: PMC11987019 DOI: 10.1021/jacs.4c14786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/06/2025] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Innate immune response cells produce high concentrations of the free radical nitric oxide (NO) in response to pathogen infection. The antimicrobial properties of NO include nonspecific damage to essential biomolecules and specific inactivation of enzymes central to aerobic metabolism. However, the molecular targets of NO in anaerobic metabolism are less understood. Here, we demonstrate that the Escherichia coli glycyl radical enzyme pyruvate formate lyase (PFL), which catalyzes the anaerobic metabolism of pyruvate, is irreversibly inhibited by NO. Using electron paramagnetic resonance and site-directed mutagenesis we show that NO destroys the glycyl radical of PFL. The activation of PFL by its cognate radical S-adenosyl-l-methionine-dependent activating enzyme (PFL-AE) is also inhibited by NO, resulting in the conversion of the essential iron-sulfur cluster to dinitrosyl iron complexes. Whole-cell EPR and metabolic flux analyses of anaerobically growing E. coli show that PFL and PFL-AE are inhibited by physiologically relevant levels of NO in bacterial cell cultures, resulting in diminished growth and a metabolic shift to lactate fermentation. The class III ribonucleotide reductase (RNR) glycyl radical enzyme and its corresponding RNR-AE are also inhibited by NO in a mechanism analogous to those observed in PFL and PFL-AE, which likely contributes to the bacteriostatic effect of NO. Based on the similarities in reactivity of the PFL/RNR and PFL-AE/RNR-AE enzymes with NO, the mechanism of inactivation by NO appears to be general to the respective enzyme classes. The results implicate an immunological role of NO in inhibiting glycyl radical enzyme chemistry in the gut.
Collapse
Affiliation(s)
- Juan Carlos Cáceres
- Interdisciplinary
Program in Quantitative Biosciences, University
of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Nathan G. Michellys
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| | - Brandon L. Greene
- Interdisciplinary
Program in Quantitative Biosciences, University
of California Santa Barbara, Santa Barbara, California 93106, United States
- Department
of Chemistry and Biochemistry, University
of California Santa Barbara, Santa
Barbara, California 93106, United States
| |
Collapse
|
2
|
Cáceres JC, Michellys NG, Greene BL. Nitric Oxide Inhibition of Glycyl Radical Enzymes and Their Activases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639758. [PMID: 40060521 PMCID: PMC11888291 DOI: 10.1101/2025.02.23.639758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/25/2025]
Abstract
Innate immune response cells produce high concentrations of the free radical nitric oxide (NO) in response to pathogen infection. The antimicrobial properties of NO include non-specific damage to essential biomolecules and specific inactivation of enzymes central to aerobic metabolism. However, the molecular targets of NO in anaerobic metabolism are less understood. Here, we demonstrate that the Escherichia coli glycyl radical enzyme pyruvate formate lyase (PFL), which catalyzes the anaerobic metabolism of pyruvate, is irreversibly inhibited by NO. Using electron paramagnetic resonance and site-directed mutagenesis we show that NO destroys the glycyl radical of PFL. The activation of PFL by its cognate radical S-adenosyl-L-methionine-dependent activating enzyme (PFL-AE) is also inhibited by NO, resulting in the conversion of the essential iron-sulfur cluster to dinitrosyl iron complexes. Whole-cell EPR and metabolic flux analyses of anaerobically growing Escherichia coli show that PFL and PFL-AE are inhibited by physiologically relevant levels of NO in bacterial cell cultures, resulting in diminished growth and a metabolic shift to lactate fermentation. The class III ribonucleotide reductase (RNR) glycyl radical enzyme and its corresponding RNR-AE are also inhibited by NO in a mechanism analogous to those observed in PFL and PFL-AE, which likely contributes to the bacteriostatic effect of NO. Based on the similarities in reactivity of the PFL/RNR and PFL-AE/RNR-AE enzymes with NO, the mechanism of inactivation by NO appears to be general to the respective enzyme classes. The results implicate an immunological role of NO in inhibiting glycyl radical enzyme chemistry in the gut.
Collapse
Affiliation(s)
- Juan Carlos Cáceres
- Interdisciplinary Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, 93106 United States
| | - Nathan G. Michellys
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106 United States
| | - Brandon L. Greene
- Interdisciplinary Program in Quantitative Biosciences, University of California Santa Barbara, Santa Barbara, CA, 93106 United States
- Department of Chemistry and Biochemistry, University of California Santa Barbara, Santa Barbara, CA, 93106 United States
| |
Collapse
|
3
|
Li F, Scheller S, Lienemann M. A growth-based screening strategy for engineering the catalytic activity of an oxygen-sensitive formate dehydrogenase. Appl Environ Microbiol 2024; 90:e0147224. [PMID: 39194220 PMCID: PMC11409667 DOI: 10.1128/aem.01472-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/29/2024] Open
Abstract
Enzyme engineering is a powerful tool for improving or altering the properties of biocatalysts for industrial, research, and therapeutic applications. Fast and accurate screening of variant libraries is often the bottleneck of enzyme engineering and may be overcome by growth-based screening strategies with simple processes to enable high throughput. The currently available growth-based screening strategies have been widely employed for enzymes but not yet for catalytically potent and oxygen-sensitive metalloenzymes. Here, we present a screening system that couples the activity of an oxygen-sensitive formate dehydrogenase to the growth of Escherichia coli. This system relies on the complementation of the E. coli formate hydrogenlyase (FHL) complex by Mo-dependent formate dehydrogenase H (EcFDH-H). Using an EcFDH-H-deficient strain, we demonstrate that growth inhibition by acidic glucose fermentation products can be alleviated by FHL complementation. This allows the identification of catalytically active EcFDH-H variants at a readily measurable cell density readout, reduced handling efforts, and a low risk of oxygen contamination. Furthermore, a good correlation between cell density and formate oxidation activity was established using EcFDH-H variants with variable catalytic activities. As proof of concept, the growth assay was employed to screen a library of 1,032 EcFDH-H variants and reduced the library size to 96 clones. During the subsequent colorimetric screening of these clones, the variant A12G exhibiting an 82.4% enhanced formate oxidation rate was identified. Since many metal-dependent formate dehydrogenases and hydrogenases form functional complexes resembling E. coli FHL, the demonstrated growth-based screening strategy may be adapted to components of such electron-transferring complexes.IMPORTANCEOxygen-sensitive metalloenzymes are highly potent catalysts that allow the reduction of chemically inert substrates such as CO2 and N2 at ambient pressure and temperature and have, therefore, been considered for the sustainable production of biofuels and commodity chemicals such as ammonia, formic acid, and glycine. A proven method to optimize natural enzymes for such applications is enzyme engineering using high-throughput variant library screening. However, most screening methods are incompatible with the oxygen sensitivity of these metalloenzymes and thereby limit their relevance for the development of biosynthetic production processes. A microtiter plate-based assay was developed for the screening of metal-dependent formate dehydrogenase that links the activity of the tested enzyme variant to the growth of the anaerobically grown host cell. The presented work extends the application range of growth-based screening to metalloenzymes and is thereby expected to advance their adoption to biosynthesis applications.
Collapse
Affiliation(s)
- Feilong Li
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Silvan Scheller
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | | |
Collapse
|
4
|
Van Gelder K, Lindner SN, Hanson AD, Zhou J. Strangers in a foreign land: 'Yeastizing' plant enzymes. Microb Biotechnol 2024; 17:e14525. [PMID: 39222378 PMCID: PMC11368087 DOI: 10.1111/1751-7915.14525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 07/02/2024] [Indexed: 09/04/2024] Open
Abstract
Expressing plant metabolic pathways in microbial platforms is an efficient, cost-effective solution for producing many desired plant compounds. As eukaryotic organisms, yeasts are often the preferred platform. However, expression of plant enzymes in a yeast frequently leads to failure because the enzymes are poorly adapted to the foreign yeast cellular environment. Here, we first summarize the current engineering approaches for optimizing performance of plant enzymes in yeast. A critical limitation of these approaches is that they are labour-intensive and must be customized for each individual enzyme, which significantly hinders the establishment of plant pathways in cellular factories. In response to this challenge, we propose the development of a cost-effective computational pipeline to redesign plant enzymes for better adaptation to the yeast cellular milieu. This proposition is underpinned by compelling evidence that plant and yeast enzymes exhibit distinct sequence features that are generalizable across enzyme families. Consequently, we introduce a data-driven machine learning framework designed to extract 'yeastizing' rules from natural protein sequence variations, which can be broadly applied to all enzymes. Additionally, we discuss the potential to integrate the machine learning model into a full design-build-test cycle.
Collapse
Affiliation(s)
- Kristen Van Gelder
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Steffen N. Lindner
- Department of Systems and Synthetic MetabolismMax Planck Institute of Molecular Plant PhysiologyPotsdamGermany
- Department of BiochemistryCharité Universitätsmedizin Berlin, Freie Universität Berlin and Humboldt‐UniversitätBerlinGermany
| | - Andrew D. Hanson
- Horticultural Sciences DepartmentUniversity of FloridaGainesvilleFloridaUSA
| | - Juannan Zhou
- Department of BiologyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
5
|
Orsi E, Schada von Borzyskowski L, Noack S, Nikel PI, Lindner SN. Automated in vivo enzyme engineering accelerates biocatalyst optimization. Nat Commun 2024; 15:3447. [PMID: 38658554 PMCID: PMC11043082 DOI: 10.1038/s41467-024-46574-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 03/04/2024] [Indexed: 04/26/2024] Open
Abstract
Achieving cost-competitive bio-based processes requires development of stable and selective biocatalysts. Their realization through in vitro enzyme characterization and engineering is mostly low throughput and labor-intensive. Therefore, strategies for increasing throughput while diminishing manual labor are gaining momentum, such as in vivo screening and evolution campaigns. Computational tools like machine learning further support enzyme engineering efforts by widening the explorable design space. Here, we propose an integrated solution to enzyme engineering challenges whereby ML-guided, automated workflows (including library generation, implementation of hypermutation systems, adapted laboratory evolution, and in vivo growth-coupled selection) could be realized to accelerate pipelines towards superior biocatalysts.
Collapse
Affiliation(s)
- Enrico Orsi
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | | | - Stephan Noack
- Institute of Bio- and Geosciences, IBG-1: Biotechnology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany.
- Department of Biochemistry, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität, 10117, Berlin, Germany.
| |
Collapse
|
6
|
Yang H, Zhang B, Wu ZD, Chen LF, Pan JY, Xiu XL, Cai X, Liu ZQ, Zheng YG. Combinatorial Metabolic Engineering of Escherichia coli for Enhanced L-Cysteine Production: Insights into Crucial Regulatory Modes and Optimization of Carbon-Sulfur Metabolism and Cofactor Availability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:13409-13418. [PMID: 37639615 DOI: 10.1021/acs.jafc.3c03709] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Microbial production of valuable compounds can be enhanced by various metabolic strategies. This study proposed combinatorial metabolic engineering to develop an effective Escherichia coli cell factory dedicated to L-cysteine production. First, the crucial regulatory modes that control L-cysteine levels were investigated to guide metabolic modifications. A two-stage fermentation was achieved by employing multi-copy gene expression, improving the balance between production and growth. Subsequently, carbon flux distribution was further optimized by modifying the C1 unit metabolism and the glycolytic pathway. The modifications of sulfur assimilation demonstrated superior performance of thiosulfate utilization pathways in enhancing L-cysteine titer. Furthermore, the studies focusing on cofactor availability and preference emphasized the vital role of synergistic enhancement of sulfur-carbon metabolism in L-cysteine overproduction. In a 5 L bioreactor, the strain BW15-3/pED accumulated 12.6 g/L of L-cysteine. This work presented an effective metabolic engineering strategy for the development of L-cysteine-producing strains.
Collapse
Affiliation(s)
- Hui Yang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Bo Zhang
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Zi-Dan Wu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Li-Feng Chen
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Jia-Yuan Pan
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xiao-Ling Xiu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Xue Cai
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Zhi-Qiang Liu
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| | - Yu-Guo Zheng
- The National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P. R. China
| |
Collapse
|
7
|
Tan DZJ, Fung V, Sun T, Tian K, Li Z, Zhou K. Developing a Nanopore Sequencing Workflow for Protein Engineering Applications. ACS Synth Biol 2023; 12:2041-2050. [PMID: 37403232 DOI: 10.1021/acssynbio.3c00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Sequencing plays a critical role in protein engineering, where the genetic information encoding for a desired mutation can be identified. We evaluated the performance of two commercially available NGS technologies (Illumina NGS and nanopore sequencing) on the available mutant libraries that were either previously constructed for other protein engineering projects or constructed in-house for this study. The sequencing results from Illumina sequencing indicated that a substantial proportion of the reads exhibited strand exchange, which mixed information of different mutants. When nanopore sequencing was used, the occurrence of strand exchange was substantially reduced compared with that of Illumina sequencing. We then developed a new library preparation workflow for nanopore sequencing and were successful in further reducing the incidence of strand exchange. The optimized workflow was successfully used to aid selection of improved alcohol dehydrogenase mutants in cells where their activities were coupled with the cell growth rate. The workflow quantified the enrichment fold change of most mutants in the library (size = 1728) in the growth-based selection passaging. A mutant that was >500% more active than its parent variant was identified based on the fold change data but not with the absolute abundance data (random sampling of the passaged cells), highlighting the usefulness of this rapid and affordable sequencing workflow in protein engineering.
Collapse
Affiliation(s)
- Daniel Zhi Jun Tan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Vincent Fung
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Tao Sun
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Kaiyuan Tian
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| | - Kang Zhou
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117585, Singapore
| |
Collapse
|
8
|
Nielsen JR, Weusthuis RA, Huang WE. Growth-coupled enzyme engineering through manipulation of redox cofactor regeneration. Biotechnol Adv 2023; 63:108102. [PMID: 36681133 DOI: 10.1016/j.biotechadv.2023.108102] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 01/11/2023] [Accepted: 01/15/2023] [Indexed: 01/20/2023]
Abstract
Enzymes need to be efficient, robust, and highly specific for their effective use in commercial bioproduction. These properties can be introduced using various enzyme engineering techniques, with random mutagenesis and directed evolution (DE) often being chosen when there is a lack of structural information -or mechanistic understanding- of the enzyme. The screening or selection step of DE is the limiting part of this process, since it must ideally be (ultra)-high throughput, specifically target the catalytic activity of the enzyme and have an accurately quantifiable metric for said activity. Growth-coupling selection strategies involve coupling a desired enzyme activity to cellular metabolism and therefore growth, where growth (rate) becomes the output metric. Redox cofactors (NAD+/NADH and NADP+/NADPH) have recently been identified as promising target molecules for growth coupling, owing to their essentiality for cellular metabolism and ubiquitous nature. Redox cofactor oxidation or reduction can be disrupted through metabolic engineering and the use of specific culturing conditions, rendering the cell inviable unless a 'rescue' reaction complements the imposed metabolic deficiency. Using this principle, enzyme variants displaying improved cofactor oxidation or reduction rates can be selected for through an increased growth rate of the cell. In recent years, several E. coli strains have been developed that are deficient in the oxidation or reduction of NAD+/NADH and NADP+/NADPH pairs, and of non-canonical redox cofactor pairs NMN+/NMNH and NCD+/NCDH, which provides researchers with a versatile toolbox of enzyme engineering platforms. A range of redox cofactor dependent enzymes have since been engineered using a variety of these strains, demonstrating the power of using this growth-coupling technique for enzyme engineering. This review aims to summarize the metabolic engineering involved in creating strains auxotrophic for the reduced or oxidized state of redox cofactors, and the resulting successes in using them for enzyme engineering. Perspectives on the unique features and potential future applications of this technique are also presented.
Collapse
Affiliation(s)
- Jochem R Nielsen
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
| | - Ruud A Weusthuis
- Department of Bioprocess Engineering, Wageningen University & Research, Wageningen 6700AA, the Netherlands.
| | - Wei E Huang
- Department of Engineering Science, University of Oxford, Oxford OX1 3PJ, United Kingdom.
| |
Collapse
|
9
|
Li N, Li L, Yu S, Zhou J. Dual-channel glycolysis balances cofactor supply for l-homoserine biosynthesis in Corynebacterium glutamicum. BIORESOURCE TECHNOLOGY 2023; 369:128473. [PMID: 36509305 DOI: 10.1016/j.biortech.2022.128473] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 06/17/2023]
Abstract
l-Homoserine is an important platform compound that is widely used to produce many valuable bio-based products, but production of l-homoserine in Corynebacterium glutamicum remains low. In this study, an efficient l-homoserine-producing strain was constructed. Native pentose phosphate pathway (PPP) was enhanced and heterologous Entner-Doudoroff (ED) pathway was carefully introduced into l-homoserine-producing strain, which increased the l-homoserine titer. Coexpression of NADH-dependent aspartate-4-semialdehyde dehydrogenase and aspartate dehydrogenase could increase the titer from 11.3 to 13.3 g/L. Next, NADP+-dependent glyceraldehyde-3-phosphate dehydrogenase (NADP-GPD) was coexpressed with that of NAD+-dependent (NAD-GPD) to construct dual-channel glycolysis for balance of intracellular cofactors, which increased the l-homoserine titer by 48.6 % to 16.8 g/L. Finally, engineered strain Cg18-1 accumulated 63.5 g/L l-homoserine after 96 h in a 5 L bioreactor, the highest titer reported to date for C. glutamicum. This dual-channel glycolysis strategy provides a reference for automatic cofactor regulation to promote efficient biosynthesis of other target products.
Collapse
Affiliation(s)
- Ning Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lihong Li
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
10
|
King E, Maxel S, Zhang Y, Kenney KC, Cui Y, Luu E, Siegel JB, Weiss GA, Luo R, Li H. Orthogonal glycolytic pathway enables directed evolution of noncanonical cofactor oxidase. Nat Commun 2022; 13:7282. [PMID: 36435948 PMCID: PMC9701214 DOI: 10.1038/s41467-022-35021-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 11/15/2022] [Indexed: 11/28/2022] Open
Abstract
Noncanonical cofactor biomimetics (NCBs) such as nicotinamide mononucleotide (NMN+) provide enhanced scalability for biomanufacturing. However, engineering enzymes to accept NCBs is difficult. Here, we establish a growth selection platform to evolve enzymes to utilize NMN+-based reducing power. This is based on an orthogonal, NMN+-dependent glycolytic pathway in Escherichia coli which can be coupled to any reciprocal enzyme to recycle the ensuing reduced NMN+. With a throughput of >106 variants per iteration, the growth selection discovers a Lactobacillus pentosus NADH oxidase variant with ~10-fold increase in NMNH catalytic efficiency and enhanced activity for other NCBs. Molecular modeling and experimental validation suggest that instead of directly contacting NCBs, the mutations optimize the enzyme's global conformational dynamics to resemble the WT with the native cofactor bound. Restoring the enzyme's access to catalytically competent conformation states via deep navigation of protein sequence space with high-throughput evolution provides a universal route to engineer NCB-dependent enzymes.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Sarah Maxel
- Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA
| | - Yulai Zhang
- Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA
| | - Karissa C Kenney
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - Youtian Cui
- Genome Center, University of California Davis, Davis, CA, 95616, USA
| | - Emma Luu
- Genome Center, University of California Davis, Davis, CA, 95616, USA
| | - Justin B Siegel
- Genome Center, University of California Davis, Davis, CA, 95616, USA
- Department of Chemistry, Molecular Medicine University of California, Davis, Davis, CA, USA
- Department of Biochemistry and Molecular Medicine University of California, Davis, Davis, CA, USA
| | - Gregory A Weiss
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Chemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Pharmaceutical Sciences, University of California Irvine, Irvine, CA, 92697, USA
| | - Ray Luo
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA
- Department Materials Science and Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Han Li
- Department Chemical and Biomolecular Engineering University of California Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
11
|
Zhang L, King E, Black WB, Heckmann CM, Wolder A, Cui Y, Nicklen F, Siegel JB, Luo R, Paul CE, Li H. Directed evolution of phosphite dehydrogenase to cycle noncanonical redox cofactors via universal growth selection platform. Nat Commun 2022; 13:5021. [PMID: 36028482 PMCID: PMC9418148 DOI: 10.1038/s41467-022-32727-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/13/2022] [Indexed: 11/09/2022] Open
Abstract
Noncanonical redox cofactors are attractive low-cost alternatives to nicotinamide adenine dinucleotide (phosphate) (NAD(P)+) in biotransformation. However, engineering enzymes to utilize them is challenging. Here, we present a high-throughput directed evolution platform which couples cell growth to the in vivo cycling of a noncanonical cofactor, nicotinamide mononucleotide (NMN+). We achieve this by engineering the life-essential glutathione reductase in Escherichia coli to exclusively rely on the reduced NMN+ (NMNH). Using this system, we develop a phosphite dehydrogenase (PTDH) to cycle NMN+ with ~147-fold improved catalytic efficiency, which translates to an industrially viable total turnover number of ~45,000 in cell-free biotransformation without requiring high cofactor concentrations. Moreover, the PTDH variants also exhibit improved activity with another structurally deviant noncanonical cofactor, 1-benzylnicotinamide (BNA+), showcasing their broad applications. Structural modeling prediction reveals a general design principle where the mutations and the smaller, noncanonical cofactors together mimic the steric interactions of the larger, natural cofactors NAD(P)+.
Collapse
Affiliation(s)
- Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
| | - William B Black
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Christian M Heckmann
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Allison Wolder
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Youtian Cui
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
| | - Francis Nicklen
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, One Shields Avenue, Davis, CA, 95616, USA
- Department of Biochemistry and Molecular Medicine, University of California, Davis, 2700 Stockton Boulevard, Suite 2102, Sacramento, CA, 95817, USA
- Genome Center, University of California, Davis, 451 Health Sciences Drive, Davis, CA, 95616, USA
| | - Ray Luo
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, CA, 92697, USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA
- Department Materials Science and Engineering, University of California Irvine, Irvine, CA, 92697, USA
| | - Caroline E Paul
- Biocatalysis, Department of Biotechnology, Delft University of Technology, 2629 HZ, Delft, Netherlands
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California Irvine, Irvine, CA, 92697, USA.
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
12
|
A phosphite-based screening platform for identification of enzymes favoring nonnatural cofactors. Sci Rep 2022; 12:12484. [PMID: 35864126 PMCID: PMC9304416 DOI: 10.1038/s41598-022-16599-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
Enzymes with dedicated cofactor preference are essential for advanced biocatalysis and biomanufacturing, especially when employing nonnatural nicotinamide cofactors in redox reactions. However, directed evolution of an enzyme to switch its cofactor preference is often hindered by the lack of efficient and affordable method for screening as the cofactor per se or the substrate can be prohibitively expensive. Here, we developed a growth-based selection platform to identify nonnatural cofactor-dependent oxidoreductase mutants. The growth of bacteria depended on the nicotinamide cytosine dinucleotide (NCD) mediated conversion of non-metabolizable phosphite into phosphate. The strain BW14329 lacking the ability to oxidize phosphite was suitable as host, and NCD-dependent phosphite dehydrogenase (Pdh*) is essential to the selection platform. Previously confirmed NCD synthetase with NCD synthesis capacity and NCD-dependent malic enzyme were successfully identified by using the platform. The feasibility of this strategy was successfully demonstrated using derived NCD-active malic enzyme as well as for the directed evolution of NCD synthetase in Escherichia coli. A phosphite-based screening platform was built for identification of enzymes favoring nonnatural cofactor NCD. In the future, once Pdh variants favoring other biomimetic or nonnatural cofactors are available this selection platform may be readily redesigned to attain new enzyme variants with anticipated cofactor preference, providing opportunities to further expand the chemical space of redox cofactors in chemical biology and synthetic biology.
Collapse
|
13
|
Li J, Sun Y, Liu F, Zhou Y, Yan Y, Zhou Z, Wang P, Zhou S. Increasing NADPH impairs fungal H 2O 2 resistance by perturbing transcriptional regulation of peroxiredoxin. BIORESOUR BIOPROCESS 2022; 9:1. [PMID: 38647831 PMCID: PMC10992141 DOI: 10.1186/s40643-021-00489-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 12/14/2021] [Indexed: 12/27/2022] Open
Abstract
NADPH provides the reducing power for decomposition of reactive oxygen species (ROS), making it an indispensable part during ROS defense. It remains uncertain, however, if living cells respond to the ROS challenge with an elevated intracellular NADPH level or a more complex NADPH-mediated manner. Herein, we employed a model fungus Aspergillus nidulans to probe this issue. A conditional expression of glucose-6-phosphate dehydrogenase (G6PD)-strain was constructed to manipulate intracellular NADPH levels. As expected, turning down the cellular NADPH concentration drastically lowered the ROS response of the strain; it was interesting to note that increasing NADPH levels also impaired fungal H2O2 resistance. Further analysis showed that excess NADPH promoted the assembly of the CCAAT-binding factor AnCF, which in turn suppressed NapA, a transcriptional activator of PrxA (the key NADPH-dependent ROS scavenger), leading to low antioxidant ability. In natural cell response to oxidative stress, we noticed that the intracellular NADPH level fluctuated "down then up" in the presence of H2O2. This might be the result of a co-action of the PrxA-dependent NADPH consumption and NADPH-dependent feedback of G6PD. The fluctuation of NADPH is well correlated to the formation of AnCF assembly and expression of NapA, thus modulating the ROS defense. Our research elucidated how A. nidulans precisely controls NADPH levels for ROS defense.
Collapse
Affiliation(s)
- Jingyi Li
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yanwei Sun
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Feiyun Liu
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yao Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yunfeng Yan
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhemin Zhou
- Key Laboratory of Industrial Biotechnology (Ministry of Education), School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, Jiangsu, China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Twin cities, Saint Paul, MN, 55108, USA.
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| |
Collapse
|
14
|
Pillay CS, John N. Can thiol-based redox systems be utilized as parts for synthetic biology applications? Redox Rep 2021; 26:147-159. [PMID: 34378494 PMCID: PMC8366655 DOI: 10.1080/13510002.2021.1966183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVES Synthetic biology has emerged from molecular biology and engineering approaches and aims to develop novel, biologically-inspired systems for industrial and basic research applications ranging from biocomputing to drug production. Surprisingly, redoxin (thioredoxin, glutaredoxin, peroxiredoxin) and other thiol-based redox systems have not been widely utilized in many of these synthetic biology applications. METHODS We reviewed thiol-based redox systems and the development of synthetic biology applications that have used thiol-dependent parts. RESULTS The development of circuits to facilitate cytoplasmic disulfide bonding, biocomputing and the treatment of intestinal bowel disease are amongst the applications that have used thiol-based parts. We propose that genetically encoded redox sensors, thiol-based biomaterials and intracellular hydrogen peroxide generators may also be valuable components for synthetic biology applications. DISCUSSION Thiol-based systems play multiple roles in cellular redox metabolism, antioxidant defense and signaling and could therefore offer a vast and diverse portfolio of components, parts and devices for synthetic biology applications. However, factors limiting the adoption of redoxin systems for synthetic biology applications include the orthogonality of thiol-based components, limitations in the methods to characterize thiol-based systems and an incomplete understanding of the design principles of these systems.
Collapse
Affiliation(s)
- Ché S. Pillay
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| | - Nolyn John
- School of Life Sciences, University of KwaZulu-Natal, Pietermaritzburg, South Africa
| |
Collapse
|
15
|
Sellés Vidal L, Murray JW, Heap JT. Versatile selective evolutionary pressure using synthetic defect in universal metabolism. Nat Commun 2021; 12:6859. [PMID: 34824282 PMCID: PMC8616928 DOI: 10.1038/s41467-021-27266-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 11/04/2021] [Indexed: 11/13/2022] Open
Abstract
The non-natural needs of industrial applications often require new or improved enzymes. The structures and properties of enzymes are difficult to predict or design de novo. Instead, semi-rational approaches mimicking evolution entail diversification of parent enzymes followed by evaluation of isolated variants. Artificial selection pressures coupling desired enzyme properties to cell growth could overcome this key bottleneck, but are usually narrow in scope. Here we show diverse enzymes using the ubiquitous cofactors nicotinamide adenine dinucleotide (NAD) or nicotinamide adenine dinucleotide phosphate (NADP) can substitute for defective NAD regeneration, representing a very broadly-applicable artificial selection. Inactivation of Escherichia coli genes required for anaerobic NAD regeneration causes a conditional growth defect. Cells are rescued by foreign enzymes connected to the metabolic network only via NAD or NADP, but only when their substrates are supplied. Using this principle, alcohol dehydrogenase, imine reductase and nitroreductase variants with desired selectivity modifications, and a high-performing isopropanol metabolic pathway, are isolated from libraries of millions of variants in single-round experiments with typical limited information to guide design.
Collapse
Affiliation(s)
- Lara Sellés Vidal
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - James W. Murray
- grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK
| | - John T. Heap
- grid.7445.20000 0001 2113 8111Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ UK ,grid.7445.20000 0001 2113 8111Department of Life Sciences, Imperial College London, London, SW7 2AZ UK ,grid.4563.40000 0004 1936 8868School of Life Sciences, The University of Nottingham, Biodiscovery Institute, University Park, Nottingham, NG7 2RD UK
| |
Collapse
|
16
|
Maxel S, Saleh S, King E, Aspacio D, Zhang L, Luo R, Li H. Growth-Based, High-Throughput Selection for NADH Preference in an Oxygen-Dependent Biocatalyst. ACS Synth Biol 2021; 10:2359-2370. [PMID: 34469126 PMCID: PMC10362907 DOI: 10.1021/acssynbio.1c00258] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cyclohexanone monooxygenases (CHMO) consume molecular oxygen and NADPH to catalyze the valuable oxidation of cyclic ketones. However, CHMO usage is restricted by poor stability and stringent specificity for NADPH. Efforts to engineer CHMO have been limited by the sensitivity of the enzyme to perturbations in conformational dynamics and long-range interactions that cannot be predicted. We demonstrate an aerobic, high-throughput growth selection platform in Escherichia coli for oxygenase evolution based on NADH redox balance. We applied this NADH-dependent selection to alter the cofactor specificity of CHMO to accept NADH, a less expensive cofactor than NADPH. We first identified the variant CHMO DTNP (S208D-K326T-K349N-L143P) with a ∼1200-fold relative cofactor specificity switch from NADPH to NADH compared to the wild type through semirational design. Molecular modeling suggests CHMO DTNP activity is driven by cooperative fine-tuning of cofactor contacts. Additional evolution of CHMO DTNP through random mutagenesis yielded the variant CHMO DTNPY with a ∼2900-fold relative specificity switch compared to the wild type afforded by an additional distal mutation, H163Y. These results highlight the difficulty in engineering functionally innovative variants from static models and rational designs, and the need for high throughput selection methods. Our introduced tools for oxygenase engineering accelerate the advancements of characteristics essential for industrial feasibility.
Collapse
Affiliation(s)
- Sarah Maxel
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Samer Saleh
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Edward King
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
| | - Derek Aspacio
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Linyue Zhang
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
| | - Ray Luo
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Molecular Biology and Biochemistry, University of California, Irvine, California 92697, United States
- Biomedical Engineering, University of California, Irvine, California 92697, United States
| | - Han Li
- Departments of Chemical and Biomolecular Engineering, University of California, Irvine, California 92697, United States
- Biomedical Engineering, University of California, Irvine, California 92697, United States
| |
Collapse
|
17
|
Orsi E, Claassens NJ, Nikel PI, Lindner SN. Growth-coupled selection of synthetic modules to accelerate cell factory development. Nat Commun 2021; 12:5295. [PMID: 34489458 PMCID: PMC8421431 DOI: 10.1038/s41467-021-25665-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/23/2021] [Indexed: 11/18/2022] Open
Abstract
Synthetic biology has brought about a conceptual shift in our ability to redesign microbial metabolic networks. Combining metabolic pathway-modularization with growth-coupled selection schemes is a powerful tool that enables deep rewiring of the cell factories’ biochemistry for rational bioproduction.
Collapse
Affiliation(s)
- Enrico Orsi
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Steffen N Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany.
| |
Collapse
|
18
|
Change in Cofactor Specificity of Oxidoreductases by Adaptive Evolution of an Escherichia coli NADPH-Auxotrophic Strain. mBio 2021; 12:e0032921. [PMID: 34399608 PMCID: PMC8406311 DOI: 10.1128/mbio.00329-21] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
The nicotinamide cofactor specificity of enzymes plays a key role in regulating metabolic processes and attaining cellular homeostasis. Multiple studies have used enzyme engineering tools or a directed evolution approach to switch the cofactor preference of specific oxidoreductases. However, whole-cell adaptation toward the emergence of novel cofactor regeneration routes has not been previously explored. To address this challenge, we used an Escherichia coli NADPH-auxotrophic strain. We continuously cultivated this strain under selective conditions. After 500 to 1,100 generations of adaptive evolution using different carbon sources, we isolated several strains capable of growing without an external NADPH source. Most isolated strains were found to harbor a mutated NAD+-dependent malic enzyme (MaeA). A single mutation in MaeA was found to switch cofactor specificity while lowering enzyme activity. Most mutated MaeA variants also harbored a second mutation that restored the catalytic efficiency of the enzyme. Remarkably, the best MaeA variants identified this way displayed overall superior kinetics relative to the wild-type variant with NAD+. In other evolved strains, the dihydrolipoamide dehydrogenase (Lpd) was mutated to accept NADP+, thus enabling the pyruvate dehydrogenase and 2-ketoglutarate dehydrogenase complexes to regenerate NADPH. Interestingly, no other central metabolism oxidoreductase seems to evolve toward reducing NADP+, which we attribute to several biochemical constraints, including unfavorable thermodynamics. This study demonstrates the potential and biochemical limits of evolving oxidoreductases within the cellular context toward changing cofactor specificity, further showing that long-term adaptive evolution can optimize enzyme activity beyond what is achievable via rational design or directed evolution using small libraries.
Collapse
|
19
|
Lindenburg L, Hollfelder F. “NAD‐display”: Ultrahigh‐Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Laurens Lindenburg
- Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
- Current address: Genmab Uppsalalaan 15 3584 CT Utrecht The Netherlands
| | - Florian Hollfelder
- Department of Biochemistry University of Cambridge Tennis Court Road Cambridge CB2 1GA UK
| |
Collapse
|
20
|
Lindenburg L, Hollfelder F. "NAD-display": Ultrahigh-Throughput in Vitro Screening of NAD(H) Dehydrogenases Using Bead Display and Flow Cytometry. Angew Chem Int Ed Engl 2021; 60:9015-9021. [PMID: 33470025 PMCID: PMC8048591 DOI: 10.1002/anie.202013486] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/21/2020] [Indexed: 12/25/2022]
Abstract
NAD(H)‐utiliing enzymes have been the subject of directed evolution campaigns to improve their function. To enable access to a larger swath of sequence space, we demonstrate the utility of a cell‐free, ultrahigh‐throughput directed evolution platform for dehydrogenases. Microbeads (1.5 million per sample) carrying both variant DNA and an immobilised analogue of NAD+ were compartmentalised in water‐in‐oil emulsion droplets, together with cell‐free expression mixture and enzyme substrate, resulting in the recording of the phenotype on each bead. The beads’ phenotype could be read out and sorted for on a flow cytometer by using a highly sensitive fluorescent protein‐based sensor of the NAD+:NADH ratio. Integration of this “NAD‐display” approach with our previously described Split & Mix (SpliMLiB) method for generating large site‐saturation libraries allowed straightforward screening of fully balanced site saturation libraries of formate dehydrogenase, with diversities of 2×104. Based on modular design principles of synthetic biology NAD‐display offers access to sophisticated in vitro selections, avoiding complex technology platforms.
Collapse
Affiliation(s)
- Laurens Lindenburg
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK.,Current address: Genmab, Uppsalalaan 15, 3584 CT, Utrecht, The Netherlands
| | - Florian Hollfelder
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, CB2 1GA, UK
| |
Collapse
|
21
|
King E, Maxel S, Li H. Engineering natural and noncanonical nicotinamide cofactor-dependent enzymes: design principles and technology development. Curr Opin Biotechnol 2020; 66:217-226. [PMID: 32956903 PMCID: PMC7744333 DOI: 10.1016/j.copbio.2020.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/14/2020] [Accepted: 08/16/2020] [Indexed: 12/20/2022]
Abstract
Nicotinamide cofactors enable oxidoreductases to catalyze a myriad of important reactions in biomanufacturing. Decades of research has focused on optimizing enzymes which utilize natural nicotinamide cofactors, namely nicotinamide adenine dinucleotide (phosphate) (NAD(P)+). Recent findings reignite the interest in engineering enzymes to utilize noncanonical cofactors, the mimetics of NAD+ (mNADs), which exhibit superior industrial properties in vitro and enable specific electron delivery in vivo. We compare recent advances in engineering natural versus noncanonical cofactor-utilizing enzymes, discuss design principles discovered, and survey emerging high-throughput platforms beyond the traditional 96-well plate-based methods. Obtaining mNAD-dependent enzymes remains challenging with a limited toolkit. To this end, we highlight design principles and technologies which can potentially be translated from engineering natural to noncanonical cofactor-dependent enzymes.
Collapse
Affiliation(s)
- Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.
| |
Collapse
|
22
|
Maxel S, King E, Zhang Y, Luo R, Li H. Leveraging Oxidative Stress to Regulate Redox Balance-Based, In Vivo Growth Selections for Oxygenase Engineering. ACS Synth Biol 2020; 9:3124-3133. [PMID: 32966747 PMCID: PMC10441625 DOI: 10.1021/acssynbio.0c00380] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Directed evolution methods based on high-throughput growth selection enable efficient discovery of enzymes with improved function in vivo. High-throughput selection is particularly useful when engineering oxygenases, which are sensitive to structural perturbations and prone to uncoupled activity. In this work, we combine the principle that reactive oxygen species (ROS) produced by uncoupled oxygenase activity are detrimental to cell fitness with a redox balance-based growth selection method for oxygenase engineering that enables concurrent advancement in catalytic activity and coupling efficiency. As a proof-of-concept, we engineered P450-BM3 for degradation of acenaphthene (ACN), a recalcitrant environmental pollutant. Selection of site-saturation mutagenesis libraries in E. coli strain MX203 identified P450-BM3 variants GVQ-AL and GVQ-D222N, which have both improved coupling efficiency and catalytic activity compared to the starting variant. Computational modeling indicates that the discovered mutations cooperatively optimize binding pocket shape complementarity to ACN, and shift the protein's conformational dynamics to favor the lid-closed, catalytically competent state. We further demonstrated that the selective pressure on coupling efficiency can be tuned by modulating cellular ROS defense mechanisms.
Collapse
|
23
|
Maxel S, Zhang L, King E, Acosta AP, Luo R, Li H. In Vivo, High-Throughput Selection of Thermostable Cyclohexanone Monooxygenase (CHMO). Catalysts 2020; 10:935. [PMID: 37637965 PMCID: PMC10453637 DOI: 10.3390/catal10080935] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Cyclohexanone monooxygenase (CHMO) from Acinetobacter sp. NCIMB 9871 is characterized as having wide substrate versatility for the biooxidation of (cyclic) ketones into esters and lactones with high stereospecificity. Despite industrial potential, CHMO usage is restricted by poor thermostability. Limited high-throughput screening tools and challenges in rationally engineering thermostability have impeded CHMO engineering efforts. We demonstrate the application of an aerobic, high-throughput growth selection platform in Escherichia coli (strain MX203) for the discovery of thermostability enhancing mutations for CHMO. The selection employs growth for the easy readout of CHMO activity in vivo, by requiring nicotinamide adenine dinucleotide phosphate (NADPH)-consuming enzymes to restore cellular redox balance. In the presence of the native substrate cyclohexanone, variant CHMO GV (A245G-A288V) was discovered from a random mutagenesis library screened at 42 °C. This variant retained native activity, exhibited ~4.4-fold improvement in residual activity after 30 °C incubation, and demonstrated ~5-fold higher cyclohexanone conversion at 37 °C compared to the wild type. Molecular modeling indicates that CHMO GV experiences more favorable residue packing and supports additional backbone hydrogen bonding. Further rational design resulted in CHMO A245G-A288V-T415C with improved thermostability at 45 °C. Our platform for oxygenase evolution enabled the rapid engineering of protein stability critical for industrial scalability.
Collapse
Affiliation(s)
- Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
| | - Ana Paula Acosta
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| | - Ray Luo
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA
- Department of Materials Science and Engineering, University of California, Irvine, CA 92697, USA
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA
| |
Collapse
|
24
|
Kramer L, Le X, Rodriguez M, Wilson MA, Guo J, Niu W. Engineering Carboxylic Acid Reductase (CAR) through a Whole-Cell Growth-Coupled NADPH Recycling Strategy. ACS Synth Biol 2020; 9:1632-1637. [PMID: 32589835 DOI: 10.1021/acssynbio.0c00290] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Rapid evolution of enzyme activities is often hindered by the lack of efficient and affordable methods to identify beneficial mutants. We report the development of a new growth-coupled selection method for evolving NADPH-consuming enzymes based on the recycling of this redox cofactor. The method relies on a genetically modified Escherichia coli strain, which overaccumulates NADPH. This method was applied to the engineering of a carboxylic acid reductase (CAR) for improved catalytic activities on 2-methoxybenzoate and adipate. Mutant enzymes with up to 17-fold improvement in catalytic efficiency were identified from single-site saturated mutagenesis libraries. Obtained mutants were successfully applied to whole-cell conversions of adipate into 1,6-hexanediol, a C6 monomer commonly used in polymer industry.
Collapse
Affiliation(s)
- Levi Kramer
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Xuan Le
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Marisa Rodriguez
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Mark A. Wilson
- Department of Biochemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Jiantao Guo
- Department of Chemistry, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| | - Wei Niu
- Department of Chemical & Biomolecular Engineering, University of Nebraska—Lincoln, Lincoln, Nebraska 68588, United States
| |
Collapse
|
25
|
Maxel S, Aspacio D, King E, Zhang L, Acosta AP, Li H. A Growth-Based, High-Throughput Selection Platform Enables Remodeling of 4-Hydroxybenzoate Hydroxylase Active Site. ACS Catal 2020; 10:6969-6974. [PMID: 34295569 PMCID: PMC8294663 DOI: 10.1021/acscatal.0c01892] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report an aerobic, growth-based selection platform founded on NADP(H) redox balance restoration in Escherichia coli, and we demonstrate its application in the high-throughput evolution of an oxygenase. A single round of selection followed by a facile growth assay enabled Pseudomonas aeruginosa 4-hydroxybenzoate hydroxylase (PobA) to efficiently hydroxylate both 4-hydroxybenzoic acid (4-HBA) and 3,4-dihydroxybenzoic acid (3,4-DHBA), two consecutive steps in gallic acid biosynthesis. Structural modeling suggests precise reorganization of active site hydrogen bond network, which is difficult to obtain without deep navigation of combinatorial sequence space. We envision universal application of this selection platform in engineering NADPH-dependent oxidoreductases.
Collapse
Affiliation(s)
- Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Derek Aspacio
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, California 92697, United States
| | - Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Ana Paula Acosta
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California 92697, United States
| |
Collapse
|
26
|
Held JM. Redox Systems Biology: Harnessing the Sentinels of the Cysteine Redoxome. Antioxid Redox Signal 2020; 32:659-676. [PMID: 31368359 PMCID: PMC7047077 DOI: 10.1089/ars.2019.7725] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 12/16/2022]
Abstract
Significance: Cellular redox processes are highly interconnected, yet not in equilibrium, and governed by a wide range of biochemical parameters. Technological advances continue refining how specific redox processes are regulated, but broad understanding of the dynamic interconnectivity between cellular redox modules remains limited. Systems biology investigates multiple components in complex environments and can provide integrative insights into the multifaceted cellular redox state. This review describes the state of the art in redox systems biology as well as provides an updated perspective and practical guide for harnessing thousands of cysteine sensors in the redoxome for multiparameter characterization of cellular redox networks. Recent Advances: Redox systems biology has been applied to genome-scale models and large public datasets, challenged common conceptions, and provided new insights that complement reductionist approaches. Advances in public knowledge and user-friendly tools for proteome-wide annotation of cysteine sentinels can now leverage cysteine redox proteomics datasets to provide spatial, functional, and protein structural information. Critical Issues: Careful consideration of available analytical approaches is needed to broadly characterize the systems-level properties of redox signaling networks and be experimentally feasible. The cysteine redoxome is an informative focal point since it integrates many aspects of redox biology. The mechanisms and redox modules governing cysteine redox regulation, cysteine oxidation assays, proteome-wide annotation of the biophysical and biochemical properties of individual cysteines, and their clinical application are discussed. Future Directions: Investigating the cysteine redoxome at a systems level will uncover new insights into the mechanisms of selectivity and context dependence of redox signaling networks.
Collapse
Affiliation(s)
- Jason M. Held
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Department of Anesthesiology, Washington University School of Medicine in St. Louis, St. Louis, Missouri
- Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, Missouri
| |
Collapse
|
27
|
Black WB, Zhang L, Mak WS, Maxel S, Cui Y, King E, Fong B, Sanchez Martinez A, Siegel JB, Li H. Engineering a nicotinamide mononucleotide redox cofactor system for biocatalysis. Nat Chem Biol 2020; 16:87-94. [PMID: 31768035 PMCID: PMC7546441 DOI: 10.1038/s41589-019-0402-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/07/2019] [Indexed: 01/29/2023]
Abstract
Biological production of chemicals often requires the use of cellular cofactors, such as nicotinamide adenine dinucleotide phosphate (NADP+). These cofactors are expensive to use in vitro and difficult to control in vivo. We demonstrate the development of a noncanonical redox cofactor system based on nicotinamide mononucleotide (NMN+). The key enzyme in the system is a computationally designed glucose dehydrogenase with a 107-fold cofactor specificity switch toward NMN+ over NADP+ based on apparent enzymatic activity. We demonstrate that this system can be used to support diverse redox chemistries in vitro with high total turnover number (~39,000), to channel reducing power in Escherichia coli whole cells specifically from glucose to a pharmaceutical intermediate, levodione, and to sustain the high metabolic flux required for the central carbon metabolism to support growth. Overall, this work demonstrates efficient use of a noncanonical cofactor in biocatalysis and metabolic pathway design.
Collapse
Affiliation(s)
- William B Black
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Linyue Zhang
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Wai Shun Mak
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Sarah Maxel
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Youtian Cui
- Department of Chemistry, University of California, Davis, Davis, CA, USA
- Genome Center, University of California, Davis, Davis, CA, USA
| | - Edward King
- Department of Molecular Biology and Biochemistry, University of California, Irvine, Irvine, CA, USA
| | - Bonnie Fong
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Alicia Sanchez Martinez
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA
| | - Justin B Siegel
- Department of Chemistry, University of California, Davis, Davis, CA, USA.
- Genome Center, University of California, Davis, Davis, CA, USA.
- Department of Biochemistry and Molecular Medicine, University of California, Davis, Davis, CA, USA.
| | - Han Li
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
28
|
Lindner SN, Ramirez LC, Krüsemann JL, Yishai O, Belkhelfa S, He H, Bouzon M, Döring V, Bar-Even A. NADPH-Auxotrophic E. coli: A Sensor Strain for Testing in Vivo Regeneration of NADPH. ACS Synth Biol 2018; 7:2742-2749. [PMID: 30475588 DOI: 10.1021/acssynbio.8b00313] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Insufficient rate of NADPH regeneration often limits the activity of biosynthetic pathways. Expression of NADPH-regenerating enzymes is commonly used to address this problem and increase cofactor availability. Here, we construct an Escherichia coli NADPH-auxotroph strain, which is deleted in all reactions that produce NADPH with the exception of 6-phosphogluconate dehydrogenase. This strain grows on a minimal medium only if gluconate is added as NADPH source. When gluconate is omitted, the strain serves as a "biosensor" for the capability of enzymes to regenerate NADPH in vivo. We show that the NADPH-auxotroph strain can be used to quantitatively assess different NADPH-regenerating enzymes and provide essential information on expression levels and concentrations of reduced substrates required to support optimal NADPH production rate. The NADPH-auxotroph strain thus serves as an effective metabolic platform for evaluating NADPH regeneration within the cellular context.
Collapse
Affiliation(s)
- Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | | | - Jan L. Krüsemann
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Oren Yishai
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Sophia Belkhelfa
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Hai He
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| | - Madeleine Bouzon
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Volker Döring
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, 91057, France
| | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm, 14476, Germany
| |
Collapse
|