1
|
James JS, Dai J, Chew WL, Cai Y. The design and engineering of synthetic genomes. Nat Rev Genet 2025; 26:298-319. [PMID: 39506144 DOI: 10.1038/s41576-024-00786-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Synthetic genomics seeks to design and construct entire genomes to mechanistically dissect fundamental questions of genome function and to engineer organisms for diverse applications, including bioproduction of high-value chemicals and biologics, advanced cell therapies, and stress-tolerant crops. Recent progress has been fuelled by advancements in DNA synthesis, assembly, delivery and editing. Computational innovations, such as the use of artificial intelligence to provide prediction of function, also provide increasing capabilities to guide synthetic genome design and construction. However, translating synthetic genome-scale projects from idea to implementation remains highly complex. Here, we aim to streamline this implementation process by comprehensively reviewing the strategies for design, construction, delivery, debugging and tailoring of synthetic genomes as well as their potential applications.
Collapse
Affiliation(s)
- Joshua S James
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Junbiao Dai
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Shenzhen Key Laboratory of Agricultural Synthetic Biology, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Wei Leong Chew
- Genome Institute of Singapore (GIS), Agency for Science, Technology and Research (A*STAR), Singapore, Republic of Singapore
| | - Yizhi Cai
- Manchester Institute of Biotechnology, University of Manchester, Manchester, UK.
| |
Collapse
|
2
|
Graham E, Rampazzo L, Leung CWB, Wall J, Gerőcz EZ, Liskovykh M, Goncharov N, Saayman X, Gundogdu R, Kanemaki MT, Masumoto H, Larionov V, Kouprina N, Esashi F. The homologous recombination factors BRCA2 and PALB2 interplay with mismatch repair pathways to maintain centromere stability and cell viability. Cell Rep 2025; 44:115259. [PMID: 39893637 PMCID: PMC11860765 DOI: 10.1016/j.celrep.2025.115259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 09/06/2024] [Accepted: 01/13/2025] [Indexed: 02/04/2025] Open
Abstract
Centromeres are crucial for chromosome segregation but are vulnerable to breakage and recombination due to their repetitive DNA. The mechanisms protecting centromeres from these instabilities remain incompletely understood. This study investigates the role of the homologous recombination (HR) mediators BRCA2 and PALB2 in centromere stability. We find that BRCA2, but not PALB2, is essential for maintaining a human artificial chromosome. In native chromosomes, BRCA2 ensures CENP-A occupancy and prevents DNA fragility at centromeres. Conversely, PALB2 does not affect CENP-A, whereas its depletion increases centromeric DNA breaks in non-cancerous cells only. Interestingly, depleting the mismatch repair (MMR) factor MLH1 masks centromere fragility caused by BRCA2 or PALB2 loss, suggesting that MLH1 contributes to DNA instability when BRCA2 or PALB2 is absent. However, cells deficient in both BRCA2/PALB2 and MLH1 have reduced survival. These results highlight a critical balance between HR and MMR factors in preserving centromere integrity and cell viability.
Collapse
Affiliation(s)
- Emily Graham
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Lucia Rampazzo
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Jacob Wall
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | | | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nikolay Goncharov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Xanita Saayman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK
| | - Ramazan Gundogdu
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK; Department of Pharmacy Services, Vocational School of Health Services, Bingol University, Bingol, Türkiye
| | - Masato T Kanemaki
- Department of Chromosome Science, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Shizuoka, Japan; Department of Advanced Studies, SOKENDAI, Shizuoka, Japan; Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba 292-0818d, Japan
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fumiko Esashi
- Sir William Dunn School of Pathology, University of Oxford, Oxford, UK.
| |
Collapse
|
3
|
Wang JY, Xie ZX, Cui YZ, Li BZ, Yuan YJ. Artificial design of the genome: from sequences to the 3D structure of chromosomes. Trends Biotechnol 2025; 43:304-317. [PMID: 39299833 DOI: 10.1016/j.tibtech.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/18/2024] [Accepted: 08/27/2024] [Indexed: 09/22/2024]
Abstract
Genome design is the foundation of genome synthesis, which provides a new platform for deepening our understanding of biological systems by exploring the fundamental components and structure of the genome. Artificial genome designs can endow unnatural genomes with desired functions. We provide a comprehensive overview of genome design principles ranging from DNA sequences to the 3D structure of chromosomes. Furthermore, we highlight applications of genome design in gene expression, genome structure, genome function, and biocontainment, and discuss the potential of artificial intelligence (AI) in genome design.
Collapse
Affiliation(s)
- Jun-Yi Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Ze-Xiong Xie
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - You-Zhi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Frontiers Research Institute for Synthetic Biology, Tianjin University, Tianjin 300072, China
| |
Collapse
|
4
|
Mao Y, Zhao Y, Zhou Q, Li W. Chromosome Engineering: Technologies, Applications, and Challenges. Annu Rev Anim Biosci 2025; 13:25-47. [PMID: 39541223 DOI: 10.1146/annurev-animal-111523-102225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Chromosome engineering is a transformative field at the cutting edge of biological science, offering unprecedented precision in manipulating large-scale genomic DNA within cells. This discipline is central to deciphering how the multifaceted roles of chromosomes-guarding genetic information, encoding sequence positional information, and influencing organismal traits-shape the genetic blueprint of life. This review comprehensively examines the technological advancements in chromosome engineering, which center on engineering chromosomal rearrangements, generating artificial chromosomes, de novo synthesizing chromosomes, and transferring chromosomes. Additionally, we introduce the application progress of chromosome engineering in basic and applied research fields, showcasing its capacity to deepen our knowledge of genetics and catalyze breakthroughs in therapeutic strategies. Finally, we conclude with a discussion of the challenges the field faces and highlight the profound implications that chromosome engineering holds for the future of modern biology and medical applications.
Collapse
Affiliation(s)
- Yihuan Mao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Yulong Zhao
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Qi Zhou
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| | - Wei Li
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology and Key Laboratory of Organ Regeneration and Reconstruction, Chinese Academy of Sciences, Beijing, China;
| |
Collapse
|
5
|
La Grua A, Rao I, Susani L, Lucchini F, Raimondi E, Vezzoni P, Paulis M. Chromosome Transplantation: Opportunities and Limitations. Cells 2024; 13:666. [PMID: 38667281 PMCID: PMC11048979 DOI: 10.3390/cells13080666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/04/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
There are thousands of rare genetic diseases that could be treated with classical gene therapy strategies such as the addition of the defective gene via viral or non-viral delivery or by direct gene editing. However, several genetic defects are too complex for these approaches. These "genomic mutations" include aneuploidies, intra and inter chromosomal rearrangements, large deletions, or inversion and copy number variations. Chromosome transplantation (CT) refers to the precise substitution of an endogenous chromosome with an exogenous one. By the addition of an exogenous chromosome and the concomitant elimination of the endogenous one, every genetic defect, irrespective of its nature, could be resolved. In the current review, we analyze the state of the art of this technique and discuss its possible application to human pathology. CT might not be limited to the treatment of human diseases. By working on sex chromosomes, we showed that female cells can be obtained from male cells, since chromosome-transplanted cells can lose either sex chromosome, giving rise to 46,XY or 46,XX diploid cells, a modification that could be exploited to obtain female gametes from male cells. Moreover, CT could be used in veterinary biology, since entire chromosomes containing an advantageous locus could be transferred to animals of zootechnical interest without altering their specific genetic background and the need for long and complex interbreeding. CT could also be useful to rescue extinct species if only male cells were available. Finally, the generation of "synthetic" cells could be achieved by repeated CT into a recipient cell. CT is an additional tool for genetic modification of mammalian cells.
Collapse
Affiliation(s)
- Angela La Grua
- Department of Medical Biotechnologies and Translational Medicine, University of Milan, 20129 Milan, Italy
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Ilaria Rao
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Department of Biomedical Sciences, Humanitas University, 20072 Pieve Emanuele, Italy
| | - Lucia Susani
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Franco Lucchini
- Department for Sustainable Food Process, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Elena Raimondi
- Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Paolo Vezzoni
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| | - Marianna Paulis
- IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- UOS Milan Unit, Istituto di Ricerca Genetica e Biomedica (IRGB), CNR, 20138 Milan, Italy
| |
Collapse
|
6
|
Wang ML, Lin XJ, Mo BX, Kong WW. Plant Artificial Chromosomes: Construction and Transformation. ACS Synth Biol 2024; 13:15-24. [PMID: 38163256 DOI: 10.1021/acssynbio.3c00555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
With the decline of cultivated land and increase of the population in recent years, an agricultural revolution is urgently needed to produce more food to improve the living standards of humans. As one of the foundations of synthetic biology, artificial chromosomes hold great potential for advancing crop improvement. They offer opportunities to increase crop yield and quality, while enhancing crop resistance to disease. The progress made in plant artificial chromosome technology enables selective modification of existing chromosomes or the synthesis of new ones to improve crops and study gene function. However, current artificial chromosome technologies still face limitations, particularly in the synthesis of repeat sequences and the transformation of large DNA fragments. In this review, we will introduce the structure of plant centromeres, the construction of plant artificial chromosomes, and possible methods for transforming large fragments into plant cells.
Collapse
Affiliation(s)
- Ming L Wang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Xiao J Lin
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Bei X Mo
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Wen W Kong
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
7
|
Guo L, Yang G. Pioneering DNA assembling techniques and their applications in eukaryotic microalgae. Biotechnol Adv 2024; 70:108301. [PMID: 38101551 DOI: 10.1016/j.biotechadv.2023.108301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/12/2023] [Accepted: 12/08/2023] [Indexed: 12/17/2023]
Abstract
Assembling DNA fragments is a fundamental manipulation of cloning microalgal genes and carrying out microalgal synthetic biological studies. From the earliest DNA recombination to current trait and metabolic pathway engineering, we are always accompanied by homology-based DNA assembling. The improvement and modification of pioneering DNA assembling techniques and the combinational applications of the available assembling techniques have diversified and complicated the literature environment and aggravated our identification of the core and pioneering methodologies. Identifying the core assembling methodologies and using them appropriately and flourishing them even are important for researchers. A group of microalgae have been evolving as the models for both industrial applications and biological studies. DNA assembling requires researchers to know the methods available and their improvements and evolvements. In this review, we summarized the pioneering (core; leading) DNA assembling techniques developed previously, extended these techniques to their modifications, improvements and their combinations, and highlighted their applications in eukaryotic microalgae. We predicted that the gene(s) will be assembled into a functional cluster (e.g., those involving in a metabolic pathway, and stacked on normal microalgal chromosomes, their artificial episomes and looming artificial chromosomes. It should be particularly pointed out that the techniques mentioned in this review are classified according to the strategy used to assemble the final construct.
Collapse
Affiliation(s)
- Li Guo
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China
| | - Guanpin Yang
- College of Marine Life Sciences, Ocean University of China, Qingdao 266003, PR China; Institutes of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; MoE Laboratory of Evolution and Marine Biodiversity, Ocean University of China, Qingdao 266003, PR China; Key Laboratory of Marine Genetics and Breeding of Ministry of Education, Ocean University of China, Qingdao 266003, China.
| |
Collapse
|
8
|
Kouprina N, Larionov V. Transformation-associated recombination (TAR) cloning and its applications for gene function; genome architecture and evolution; biotechnology and biomedicine. Oncotarget 2023; 14:1009-1033. [PMID: 38147065 PMCID: PMC10750837 DOI: 10.18632/oncotarget.28546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/27/2023] [Indexed: 12/27/2023] Open
Abstract
Transformation-associated recombination (TAR) cloning represents a unique tool to selectively and efficiently recover a given chromosomal segment up to several hundred kb in length from complex genomes (such as animals and plants) and simple genomes (such as bacteria and viruses). The technique exploits a high level of homologous recombination in the yeast Sacharomyces cerevisiae. In this review, we summarize multiple applications of the pioneering TAR cloning technique, developed previously for complex genomes, for functional, evolutionary, and structural studies, and extended the modified TAR versions to isolate biosynthetic gene clusters (BGCs) from microbes, which are the major source of pharmacological agents and industrial compounds, and to engineer synthetic viruses with novel properties to design a new generation of vaccines. TAR cloning was adapted as a reliable method for the assembly of synthetic microbe genomes for fundamental research. In this review, we also discuss how the TAR cloning in combination with HAC (human artificial chromosome)- and CRISPR-based technologies may contribute to the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
9
|
Liskovykh M, Petrov NS, Noskov VN, Masumoto H, Earnshaw WC, Schlessinger D, Shabalina SA, Larionov V, Kouprina N. Actively transcribed rDNA and distal junction (DJ) sequence are involved in association of NORs with nucleoli. Cell Mol Life Sci 2023; 80:121. [PMID: 37043028 PMCID: PMC10097779 DOI: 10.1007/s00018-023-04770-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/27/2023] [Accepted: 03/28/2023] [Indexed: 04/13/2023]
Abstract
Although they are organelles without a limiting membrane, nucleoli have an exclusive structure, built upon the rDNA-rich acrocentric short arms of five human chromosomes (nucleolar organizer regions or NORs). This has raised the question: what are the structural features of a chromosome required for its inclusion in a nucleolus? Previous work has suggested that sequences adjacent to the tandemly repeated rDNA repeat units (DJ, distal junction sequence) may be involved, and we have extended such studies by addressing several issues related to the requirements for the association of NORs with nucleoli. We exploited both a set of somatic cell hybrids containing individual human acrocentric chromosomes and a set of Human Artificial Chromosomes (HACs) carrying different parts of a NOR, including an rDNA unit or DJ or PJ (proximal junction) sequence. Association of NORs with nucleoli was increased when constituent rDNA was transcribed and may be also affected by the status of heterochromatin blocks formed next to the rDNA arrays. Furthermore, our data suggest that a relatively small size DJ region, highly conserved in evolution, is also involved, along with the rDNA repeats, in the localization of p-arms of acrocentric chromosomes in nucleoli. Thus, we infer a cooperative action of rDNA sequence-stimulated by its activity-and sequences distal to rDNA contributing to incorporation into nucleoli. Analysis of NOR sequences also identified LncRNA_038958 in the DJ, a candidate transcript with the region of the suggested promoter that is located close to the DJ/rDNA boundary and contains CTCF binding sites. This LncRNA may affect RNA Polymerase I and/or nucleolar activity. Our findings provide the basis for future studies to determine which RNAs and proteins interact critically with NOR sequences to organize the higher-order structure of nucleoli and their function in normal cells and pathological states.
Collapse
Affiliation(s)
- Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Nikolai S Petrov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vladimir N Noskov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, 292-0818, Japan
| | - William C Earnshaw
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3JR, Scotland, UK
| | - David Schlessinger
- National Institute on Aging, Laboratory of Genetics and Genomics, NIH, Baltimore, MD, 21224, USA
| | - Svetlana A Shabalina
- National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| |
Collapse
|
10
|
Episomes and Transposases-Utilities to Maintain Transgene Expression from Nonviral Vectors. Genes (Basel) 2022; 13:genes13101872. [PMID: 36292757 PMCID: PMC9601623 DOI: 10.3390/genes13101872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/07/2022] [Accepted: 10/14/2022] [Indexed: 11/04/2022] Open
Abstract
The efficient delivery and stable transgene expression are critical for applications in gene therapy. While carefully selected and engineered viral vectors allowed for remarkable clinical successes, they still bear significant safety risks. Thus, nonviral vectors are a sound alternative and avoid genotoxicity and adverse immunological reactions. Nonviral vector systems have been extensively studied and refined during the last decades. Emerging knowledge of the epigenetic regulation of replication and spatial chromatin organisation, as well as new technologies, such as Crispr/Cas, were employed to enhance the performance of different nonviral vector systems. Thus, nonviral vectors are in focus and hold some promising perspectives for future applications in gene therapy. This review addresses three prominent nonviral vector systems: the Sleeping Beauty transposase, S/MAR-based episomes, and viral plasmid replicon-based EBV vectors. Exemplarily, we review different utilities, modifications, and new concepts that were pursued to overcome limitations regarding stable transgene expression and mitotic stability. New insights into the nuclear localisation of nonviral vector molecules and the potential consequences thereof are highlighted. Finally, we discuss the remaining limitations and provide an outlook on possible future developments in nonviral vector technology.
Collapse
|
11
|
Kan M, Huang T, Zhao P. Artificial chromosome technology and its potential application in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:970943. [PMID: 36186059 PMCID: PMC9519882 DOI: 10.3389/fpls.2022.970943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 08/26/2022] [Indexed: 06/16/2023]
Abstract
Plant genetic engineering and transgenic technology are powerful ways to study the function of genes and improve crop yield and quality in the past few years. However, only a few genes could be transformed by most available genetic engineering and transgenic technologies, so changes still need to be made to meet the demands for high throughput studies, such as investigating the whole genetic pathway of crop traits and avoiding undesirable genes simultaneously in the next generation. Plant artificial chromosome (PAC) technology provides a carrier which allows us to assemble multiple and specific genes to produce a variety of products by minichromosome. However, PAC technology also have limitations that may hinder its further development and application. In this review, we will introduce the current state of PACs technology from PACs formation, factors on PACs formation, problems and potential solutions of PACs and exogenous gene(s) integration.
Collapse
Affiliation(s)
- Manman Kan
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Tengbo Huang
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| | - Panpan Zhao
- Guangdong Provincial Key Laboratory for Plant Epigenetics, College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, Guangdong, China
| |
Collapse
|
12
|
Venter JC, Glass JI, Hutchison CA, Vashee S. Synthetic chromosomes, genomes, viruses, and cells. Cell 2022; 185:2708-2724. [PMID: 35868275 PMCID: PMC9347161 DOI: 10.1016/j.cell.2022.06.046] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 10/17/2022]
Abstract
Synthetic genomics is the construction of viruses, bacteria, and eukaryotic cells with synthetic genomes. It involves two basic processes: synthesis of complete genomes or chromosomes and booting up of those synthetic nucleic acids to make viruses or living cells. The first synthetic genomics efforts resulted in the construction of viruses. This led to a revolution in viral reverse genetics and improvements in vaccine design and manufacture. The first bacterium with a synthetic genome led to construction of a minimal bacterial cell and recoded Escherichia coli strains able to incorporate multiple non-standard amino acids in proteins and resistant to phage infection. Further advances led to a yeast strain with a synthetic genome and new approaches for animal and plant artificial chromosomes. On the horizon there are dramatic advances in DNA synthesis that will enable extraordinary new opportunities in medicine, industry, agriculture, and research.
Collapse
Affiliation(s)
- J Craig Venter
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA.
| | - John I Glass
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| | | | - Sanjay Vashee
- The J. Craig Venter Institute, La Jolla, CA, and Rockville, MD, USA
| |
Collapse
|
13
|
Lee NCO, Petrov NS, Larionov V, Kouprina N. Assembly of Multiple Full-Size Genes or Genomic DNA Fragments on Human Artificial Chromosomes Using the Iterative Integration System. Curr Protoc 2021; 1:e316. [PMID: 34919348 PMCID: PMC8730363 DOI: 10.1002/cpz1.316] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Human artificial chromosomes (HACs) are gene delivery vectors that have been used for decades for gene functional studies. HACs have several advantages over viral‐based gene transfer systems, including stable episomal maintenance in a single copy in the cell and the ability to carry up to megabase‐sized genomic DNA segments. We have previously developed the alphoidtetO‐HAC, which has a single gene acceptor loxP site that allows insertion of an individual gene of interest using Chinese hamster ovary (CHO) hybrid cells. The HAC, along with a DNA segment of interest, can then be transferred from donor CHO cells to various recipient cells of interest via microcell‐mediated chromosome transfer (MMCT). Here, we detail a protocol for loading multiple genomic DNA segments or genes into the alphoidtetO‐HAC vector using an iterative integration system (IIS) that utilizes recombinases Cre, ΦC31, and ΦBT. This IIS‐alphoidtetO‐HAC can be used for either serially assembling genomic loci or fragments of a large gene, or for inserting multiple genes into the same artificial chromosome. The insertions are executed iteratively, whereby each round results in the insertion of a new DNA segment of interest. This is accompanied by changes of expression of marker fluorescent proteins, which simplifies screening of correct clones, and changes of selection and counterselection markers, which constitutes an error‐proofing mechanism that removes mis‐incorporated DNA segments. In addition, the IIS‐alphoidtetO‐HAC carrying the genes can be eliminated from the cells, offering the possibility to compare the phenotypes of human cells with and without functional copies of the genes of interest. The resulting HAC molecules may be used to investigate biomedically relevant pathways or the regulation of multiple genes, and to potentially engineer synthetic chromosomes with a specific set of genes of interest. The IIS‐alphoidtetO‐HAC system is expected to be beneficial in creating multiple‐gene humanized models with the purpose of understanding complex multi‐gene genetic disorders. Published 2021. This article is a U.S. Government work and is in the public domain in the USA. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Integration of the first DNA segment of interest into the IIS‐alphoidteto‐HAC Basic Protocol 2: Integration of a second DNA segment of interest into the IIS‐alphoidteto‐HAC Basic Protocol 3: Integration of a third DNA segment of interest into the IIS‐alphoidteto‐HAC Support Protocol: Fluorescence in situ hybridization analysis for the circular IIS‐alphoidtetO‐HAC
Collapse
Affiliation(s)
- Nicholas C O Lee
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nikolai S Petrov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
14
|
Liskovykh M, Larionov V, Kouprina N. Highly Efficient Microcell-Mediated Transfer of HACs Containing a Genomic Region of Interest into Mammalian Cells. Curr Protoc 2021; 1:e236. [PMID: 34491634 PMCID: PMC10758282 DOI: 10.1002/cpz1.236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Human artificial chromosomes (HACs) are considered promising tools for gene delivery, functional analyses, and gene therapy. HACs have the potential to overcome many of the problems caused by the use of viral-based gene transfer systems, such as limited cloning capacity, lack of copy number control, and insertional mutagenesis during integration into host chromosomes. The recently developed alphoidtetO -HAC has an advantage over other HAC vectors because it can be easily eliminated from dividing cells by inactivation of its conditional kinetochore. This provides a unique control mechanism to study phenotypes induced by a gene or genes carried on the HAC. The alphoidtetO -HAC has a single gene acceptor loxP site that allows insertion of an individual gene of interest or a cluster of genes of up to several Mb in size in Chinese hamster ovary (CHO) hybrid cells. The HACs carrying chromosomal copies of genes can then be transferred from these donor CHO cells to different recipient cells of interest via microcell-mediated chromosome transfer (MMCT). Here, we describe a detailed protocol for loading a gene of interest into the alphoidtetO -HAC vector and for the subsequent transfer of the HAC to recipient cells using an improved MMCT protocol. The original MMCT protocol includes treatment of donor cells with colcemid to induce micronucleation, wherein the HAC becomes surrounded with a nuclear membrane. That step is followed by disarrangement of the actin cytoskeleton using cytochalasin B to help induce microcell formation. The updated MMCT protocol, described here, features the replacement of colcemid and cytochalasin B with TN16 + griseofulvin and latrunculin B, respectively, and the use of collagen/laminin surface coating to promote attachment of metaphase cells to plates during micronuclei induction. These modifications increase the efficiency of HAC transfer to recipient cells ten fold. The improved MMCT protocol has been successfully tested on several recipient cell lines, including human mesenchymal stem cells and mouse embryonic stem cells. © 2021 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Insertion of a BAC containing a gene of interest into a single loxP loading site of alphoidtetO -HAC in hamster CHO cells Basic Protocol 2: Microcell-mediated chromosome transfer from donor hamster CHO cells to mammalian cells.
Collapse
Affiliation(s)
- Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
15
|
Mahboudi S, Moosavi-Nasab M, Kazemi B, Rahimpour A, Eskandari MH, Mohammadian O, Shams F. Utilization of the human gamma-satellite insulator for the enhancement of anti-PCSK9 monoclonal antibody expression in Chinese hamster ovary cells. Mol Biol Rep 2021; 48:4405-4412. [PMID: 34089466 DOI: 10.1007/s11033-021-06456-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/27/2021] [Indexed: 11/26/2022]
Abstract
Monoclonal antibodies (mAbs) are widely employed as invaluable therapeutics for a vast number of human disorders. Several approaches have been introduced for the improvement of mAb production in Chinese hamster ovary (CHO) cells due to the increasing demand for these products. In this regard, various chromatin-modifying elements such as insulators have been incorporated in the expression vectors to augment mAb expression. In this study, human gamma-satellite insulator containing vectors were utilized for the expression of an anti-proprotein convertase subtilisin/kexin type 9 (PCSK9) mAb in CHO-K1 cells. To this aim, dual expression vectors encoding the antibody light chain (LC) and heavy chain (HC) with or without the insulator element were constructed, and mAb expression was evaluated in transient and stable expression. Based on the results, mAb expression significantly increased in the stable cell pool, and clonal cells developed using the human gamma-satellite insulator. In contrast, transient antibody expression was not affected by the insulator element. Finally, the enhancement of LC and HC mRNA levels was found in the insulator containing stable cell pools using the quantitative real-time-polymerase chain reaction (qRT-PCR). Our findings showed the positive effect of the human gamma-satellite insulator on the stable expression of an anti-PCSK9 immunoglobulin G1 (IgG1) mAb in CHO-K1 cells using dual expression vectors.
Collapse
Affiliation(s)
- Somayeh Mahboudi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Marzieh Moosavi-Nasab
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| | - Bahram Kazemi
- Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azam Rahimpour
- Medical Nano-Technology & Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Mohammad Hadi Eskandari
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Omid Mohammadian
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Forough Shams
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
16
|
The genomic structure of a human chromosome 22 nucleolar organizer region determined by TAR cloning. Sci Rep 2021; 11:2997. [PMID: 33542373 PMCID: PMC7862453 DOI: 10.1038/s41598-021-82565-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 01/18/2021] [Indexed: 12/13/2022] Open
Abstract
The rDNA clusters and flanking sequences on human chromosomes 13, 14, 15, 21 and 22 represent large gaps in the current genomic assembly. The organization and the degree of divergence of the human rDNA units within an individual nucleolar organizer region (NOR) are only partially known. To address this lacuna, we previously applied transformation-associated recombination (TAR) cloning to isolate individual rDNA units from chromosome 21. That approach revealed an unexpectedly high level of heterogeneity in human rDNA, raising the possibility of corresponding variations in ribosome dynamics. We have now applied the same strategy to analyze an entire rDNA array end-to-end from a copy of chromosome 22. Sequencing of TAR isolates provided the entire NOR sequence, including proximal and distal junctions that may be involved in nucleolar function. Comparison of the newly sequenced rDNAs to reference sequence for chromosomes 22 and 21 revealed variants that are shared in human rDNA in individuals from different ethnic groups, many of them at high frequency. Analysis infers comparable intra- and inter-individual divergence of rDNA units on the same and different chromosomes, supporting the concerted evolution of rDNA units. The results provide a route to investigate further the role of rDNA variation in nucleolar formation and in the empirical associations of nucleoli with pathology.
Collapse
|
17
|
Di Blasi R, Zouein A, Ellis T, Ceroni F. Genetic Toolkits to Design and Build Mammalian Synthetic Systems. Trends Biotechnol 2021; 39:1004-1018. [PMID: 33526300 DOI: 10.1016/j.tibtech.2020.12.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/14/2020] [Accepted: 12/14/2020] [Indexed: 11/17/2022]
Abstract
Construction of DNA-encoded programs is central to synthetic biology and the chosen method often determines the time required to design and build constructs for testing. Here, we describe and summarise key features of the available toolkits for DNA construction for mammalian cells. We compare the different cloning strategies based on their complexity and the time needed to generate constructs of different sizes, and we reflect on why Golden Gate toolkits now dominate due to their modular design. We look forward to future advances, including accessory packs for cloning toolkits that can facilitate editing, orthogonality, advanced regulation, and integration into synthetic chromosome construction.
Collapse
Affiliation(s)
- Roberto Di Blasi
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK
| | - Annalise Zouein
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK; Department of Bioengineering, Imperial College London, South Kensington Campus, London, UK; Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Francesca Ceroni
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, UK; Imperial College Centre for Synthetic Biology, South Kensington Campus, London, UK.
| |
Collapse
|
18
|
Wong CYY, Ling YH, Mak JKH, Zhu J, Yuen KWY. "Lessons from the extremes: Epigenetic and genetic regulation in point monocentromere and holocentromere establishment on artificial chromosomes". Exp Cell Res 2020; 390:111974. [PMID: 32222413 DOI: 10.1016/j.yexcr.2020.111974] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/16/2020] [Accepted: 03/18/2020] [Indexed: 02/08/2023]
Abstract
The formation of de novo centromeres on artificial chromosomes in humans (HACs) and fission yeast (SpYACs) has provided much insights to the epigenetic and genetic control on regional centromere establishment and maintenance. Similarly, the use of artificial chromosomes in point centromeric budding yeast Saccharomyces cerevisiae (ScYACs) and holocentric Caenorhabditis elegans (WACs) has revealed epigenetic regulation in the originally thought purely genetically-determined point centromeres and some centromeric DNA sequence features in holocentromeres, respectively. These relatively extreme and less characterized centromere organizations, on the endogenous chromosomes and artificial chromosomes, will be discussed and compared to the more well-studied regional centromere systems. This review will highlight some of the common epigenetic and genetic features in different centromere architectures, including the presence of the centromeric histone H3 variant, CENP-A or CenH3, centromeric and pericentric transcription, AT-richness and repetitiveness of centromeric DNA sequences.
Collapse
Affiliation(s)
- Charmaine Yan Yu Wong
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yick Hin Ling
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jason Ka Ho Mak
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Jing Zhu
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Karen Wing Yee Yuen
- School of Biological Sciences, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
19
|
Ikeno M, Hasegawa Y. Applications of bottom-up human artificial chromosomes in cell research and cell engineering. Exp Cell Res 2020; 390:111793. [PMID: 31874174 DOI: 10.1016/j.yexcr.2019.111793] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 12/20/2019] [Indexed: 02/06/2023]
Abstract
Chromosome manipulation is a useful technique in biological science. We have constructed human artificial chromosomes (HACs) based on the transfection of centromeric alphoid DNA precursors into cultured human cells. Moreover, HAC-based technology has been developed into a novel gene expression vector tool for introducing large-size genomic DNA. This technique provides natural expression, as well as stable expression without the gene silencing that often occurs with conventional vectors in mammalian cells. Here we review the properties of HACs, and issues regarding the use of HAC technology for basic and applied research.
Collapse
Affiliation(s)
- Masashi Ikeno
- Department of Medical Biology, Aichi Medical University, Nagakute, Aichi, Japan.
| | - Yoshinori Hasegawa
- Laboratory of Clinical Omics Research, Department of Applied Genomics, Kazusa DNA Research Institute, Chiba, Japan
| |
Collapse
|
20
|
Ohzeki JI, Otake K, Masumoto H. Human artificial chromosome: Chromatin assembly mechanisms and CENP-B. Exp Cell Res 2020; 389:111900. [PMID: 32044309 DOI: 10.1016/j.yexcr.2020.111900] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2019] [Revised: 02/04/2020] [Accepted: 02/07/2020] [Indexed: 12/12/2022]
Abstract
The centromere is a specialized chromosomal locus required for accurate chromosome segregation. Heterochromatin also assembles around centromere chromatin and forms a base that supports sister chromatid cohesion until anaphase begins. Both centromere chromatin and heterochromatin assemble on a centromeric DNA sequence, a highly repetitive sequence called alphoid DNA (α-satellite DNA) in humans. Alphoid DNA can form a de novo centromere and subsequent human artificial chromosome (HAC) when introduced into the human culture cells HT1080. HAC is maintained stably as a single chromosome independent of other human chromosomes. For de novo centromere assembly and HAC formation, the centromere protein CENP-B and its binding sites, CENP-B boxes, are required in the repeating units of alphoid DNA. CENP-B has multiple roles in de novo centromere chromatin assembly and stabilization and in heterochromatin formation upon alphoid DNA introduction into the cells. Here we review recent progress in human artificial chromosome construction and centromere/heterochromatin assembly and maintenance, focusing on the involvement of human centromere DNA and CENP-B protein.
Collapse
Affiliation(s)
- Jun-Ichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan
| | - Koichiro Otake
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu, 292-0818, Japan.
| |
Collapse
|
21
|
Human Alphoid tetO Artificial Chromosome as a Gene Therapy Vector for the Developing Hemophilia A Model in Mice. Cells 2020; 9:cells9040879. [PMID: 32260189 PMCID: PMC7226776 DOI: 10.3390/cells9040879] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 01/17/2023] Open
Abstract
Human artificial chromosomes (HACs), including the de novo synthesized alphoidtetO-HAC, are a powerful tool for introducing genes of interest into eukaryotic cells. HACs are mitotically stable, non-integrative episomal units that have a large transgene insertion capacity and allow efficient and stable transgene expression. Previously, we have shown that the alphoidtetO-HAC vector does not interfere with the pluripotent state and provides stable transgene expression in human induced pluripotent cells (iPSCs) and mouse embryonic stem cells (ESCs). In this study, we have elaborated on a mouse model of ex vivo iPSC- and HAC-based treatment of hemophilia A monogenic disease. iPSCs were developed from FVIIIY/− mutant mice fibroblasts and FVIII cDNA, driven by a ubiquitous promoter, was introduced into the alphoidtetO-HAC in hamster CHO cells. Subsequently, the therapeutic alphoidtetO-HAC-FVIII was transferred into the FVIIIY/– iPSCs via the retro-microcell-mediated chromosome transfer method. The therapeutic HAC was maintained as an episomal non-integrative vector in the mouse iPSCs, showing a constitutive FVIII expression. This study is the first step towards treatment development for hemophilia A monogenic disease with the use of a new generation of the synthetic chromosome vector—the alphoidtetO-HAC.
Collapse
|
22
|
Brown DM, Glass JI. Technology used to build and transfer mammalian chromosomes. Exp Cell Res 2020; 388:111851. [PMID: 31952951 DOI: 10.1016/j.yexcr.2020.111851] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 01/09/2020] [Accepted: 01/14/2020] [Indexed: 01/05/2023]
Abstract
In the near twenty-year existence of the human and mammalian artificial chromosome field, the technologies for artificial chromosome construction and installation into desired cell types or organisms have evolved with the rest of modern molecular and synthetic biology. Medical, industrial, pharmaceutical, agricultural, and basic research scientists seek the as yet unrealized promise of human and mammalian artificial chromosomes. Existing technologies for both top-down and bottom-up approaches to construct these artificial chromosomes for use in higher eukaryotes are very different but aspire to achieve similar results. New capacity for production of chromosome sized synthetic DNA will likely shift the field towards more bottom-up approaches, but not completely. Similarly, new approaches to install human and mammalian artificial chromosomes in target cells will compete with the microcell mediated cell transfer methods that currently dominate the field.
Collapse
|
23
|
Kouprina N, Liskovykh M, Petrov N, Larionov V. Human artificial chromosome (HAC) for measuring chromosome instability (CIN) and identification of genes required for proper chromosome transmission. Exp Cell Res 2019; 387:111805. [PMID: 31877307 DOI: 10.1016/j.yexcr.2019.111805] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/20/2019] [Accepted: 12/22/2019] [Indexed: 01/24/2023]
Abstract
Chromosomal instability (CIN) is one of the characteristics of cancer inherent for tumor initiation and progression, which is defined as a persistent, high rate of gain/loss of whole chromosomes. In the vast majority of human tumors the molecular basis of CIN remains unknown. The development of a conceptually simple colony color sectoring assay that measures yeast artificial chromosome (YAC) loss provided a powerful genetic tool to assess the rate of chromosome mis-segregation and also identified 937 yeast genes involved in this process. Similarly, a human artificial chromosome (HAC)-based assay has been recently developed and applied to quantify chromosome mis-segregation events in human cells. This assay allowed identification of novel human CIN genes in the library of protein kinases. Among them are PINK1, TRIO, IRAK1, PNCK, and TAOK1. The HAC-based assay may be applied to screen siRNA, shRNA and CRISPR-based libraries to identify the complete spectrum of CIN genes. This will reveal new insights into mechanisms of chromosome segregation and may expedite the development of novel therapeutic strategies to target the CIN phenotype in cancer cells.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mikhail Liskovykh
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Nikolai Petrov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
24
|
Kouprina N, Larionov V. TAR Cloning: Perspectives for Functional Genomics, Biomedicine, and Biotechnology. Mol Ther Methods Clin Dev 2019; 14:16-26. [PMID: 31276008 PMCID: PMC6586605 DOI: 10.1016/j.omtm.2019.05.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Completion of the human genome sequence and recent advances in engineering technologies have enabled an unprecedented level of understanding of DNA variations and their contribution to human diseases and cellular functions. However, in some cases, long-read sequencing technologies do not allow determination of the genomic region carrying a specific mutation (e.g., a mutation located in large segmental duplications). Transformation-associated recombination (TAR) cloning allows selective, most accurate, efficient, and rapid isolation of a given genomic fragment or a full-length gene from simple and complex genomes. Moreover, this method is the only way to simultaneously isolate the same genomic region from multiple individuals. As such, TAR technology is currently in a leading position to create a library of the individual genes that comprise the human genome and physically characterize the sites of chromosomal alterations (copy number variations [CNVs], inversions, translocations) in the human population, associated with the predisposition to different diseases, including cancer. It is our belief that such a library and analysis of the human genome will be of great importance to the growing field of gene therapy, new drug design methods, and genomic research. In this review, we detail the motivation for TAR cloning for human genome studies, biotechnology, and biomedicine, discuss the recent progress of some TAR-based projects, and describe how TAR technology in combination with HAC (human artificial chromosome)-based and CRISPR-based technologies may contribute in the future.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch, National Cancer Institute, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Ohzeki J, Larionov V, Earnshaw WC, Masumoto H. De novo formation and epigenetic maintenance of centromere chromatin. Curr Opin Cell Biol 2019; 58:15-25. [PMID: 30654232 DOI: 10.1016/j.ceb.2018.12.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/30/2018] [Accepted: 12/07/2018] [Indexed: 12/12/2022]
Abstract
Accurate chromosome segregation is essential for cell proliferation. The centromere is a specialized chromosomal locus, on which the kinetochore structure is formed. The centromere/kinetochore is required for the equal separation of sister chromatids to daughter cells. Here, we review recent findings on centromere-specific chromatin, including its constitutive protein components, its de novo formation and maintenance mechanisms, and our progress in analyses with synthetic human artificial chromosomes (HACs).
Collapse
Affiliation(s)
- Junichirou Ohzeki
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan
| | - Vladimir Larionov
- Genome Structure and Function Group, Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - William C Earnshaw
- Wellcome Trust Centre for Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Hiroshi Masumoto
- Laboratory of Chromosome Engineering, Department of Frontier Research and Development, Kazusa DNA Research Institute, 2-6-7 Kazusa-Kamatari, Kisarazu 292-0818, Japan.
| |
Collapse
|
26
|
Kouprina N, Pommier Y, Larionov V. Novel screen for anti-cancer drugs that elevate chromosome instability (CIN) using human artificial chromosome (HAC). Oncotarget 2018; 9:36833-36835. [PMID: 30627324 PMCID: PMC6305142 DOI: 10.18632/oncotarget.26406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 11/16/2018] [Indexed: 11/25/2022] Open
Abstract
Human artificial chromosomes (HACs) bearing functional kinetochores have been exploited as promising systems for gene delivery and expression and in studies of different epigenetic modifications on kinetochore structure and function. The HAC-based technology has been also used to develop drug screening and assessment strategies to manipulate the CIN (chromosome instability) phenotype in cancer cells. More recently, we designed a new protocol for systematic analysis of compounds specifically targeting telomeres and telomerase. This approach used two isogenic cell lines containing a circular HAC (lacking telomeres) and a linear HAC (containing telomeres): compounds that target telomerase or telomeres should preferentially induce loss of the linear HAC but not the circular HAC. This platform enables identification and ranking of compounds that greatly increase chromosome mis-segregation rates as a result of telomere dysfunction and may expedite the development of new therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Natalay Kouprina
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| | - Vladimir Larionov
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20892, USA
| |
Collapse
|