1
|
Generation of Functional-RNA Arrays by In Vitro Transcription and In Situ RNA Capture for the Detection of RNA-RNA Interactions. Methods Mol Biol 2023; 2633:163-184. [PMID: 36853464 DOI: 10.1007/978-1-0716-3004-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
RNA performs a wide variety of vital cellular functions. These functions typically require interactions with other biological macromolecules, often as part of an intricate communication network. High-throughput techniques capable of analyzing RNA-based interactions are therefore essential. Functional-RNA arrays address this need, providing the capability of performing hundreds of miniature assays in parallel. Here we describe a method to generate functional-RNA arrays using in vitro transcription of a DNA template array and in situ RNA capture. We also suggest how functional-RNA arrays could be applied to investigating RNA-RNA interactions.
Collapse
|
2
|
Henderson CA, Vincent HA, Callaghan AJ. Reprogramming Gene Expression by Targeting RNA-Based Interactions: A Novel Pipeline Utilizing RNA Array Technology. ACS Synth Biol 2021; 10:1847-1858. [PMID: 34283568 DOI: 10.1021/acssynbio.0c00603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Regulatory RNA-based interactions are critical for coordinating gene expression and are increasingly being targeted in synthetic biology, antimicrobial, and therapeutic fields. Bacterial trans-encoded small RNAs (sRNAs) regulate the translation and/or stability of mRNA targets through base-pairing interactions. These interactions are often integral to complex gene circuits which coordinate critical bacterial processes. The ability to predictably modulate these gene circuits has potential for reprogramming gene expression for synthetic biology and antibacterial purposes. Here, we present a novel pipeline for targeting such RNA-based interactions with antisense oligonucleotides (ASOs) in order to reprogram gene expression. As proof-of-concept, we selected sRNA-mRNA interactions that are central to the Vibrio cholerae quorum sensing pathway, required for V. cholerae pathogenesis, as a regulatory RNA-based interaction input. We rationally designed anti-sRNA ASOs to target the sRNAs and synthesized them as peptide nucleic acids (PNAs). Next, we devised an RNA array-based interaction assay to allow screening of the anti-sRNA ASOs in vitro. Finally, an Escherichia coli-based gene expression reporter assay was developed and used to validate anti-sRNA ASO regulatory activity in a cellular environment. The output from the pipeline was an anti-sRNA ASO that targets sRNAs to inhibit sRNA-mRNA interactions and modulate gene expression. This anti-sRNA ASO has potential for reprogramming gene expression for synthetic biology and/or antibacterial purposes. We anticipate that this pipeline will find widespread use in fields targeting RNA-based interactions as modulators of gene expression.
Collapse
Affiliation(s)
- Charlotte A. Henderson
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Helen A. Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| | - Anastasia J. Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth, PO1 2DY, United Kingdom
| |
Collapse
|
3
|
Arias CAD, Matsudo MC, Ferreira-Camargo LS, Molino JVD, Mayfield SP, de Carvalho JCM. Semicontinuous system for the production of recombinant mCherry protein in Chlamydomonas reinhardtii. Biotechnol Prog 2021; 37:e3101. [PMID: 33169497 DOI: 10.1002/btpr.3101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 10/23/2020] [Accepted: 10/28/2020] [Indexed: 12/15/2022]
Abstract
Biotechnology advances have allowed bacteria, yeasts, plants, mammalian and insect cells to function as heterologous protein expression systems. Recently, microalgae have gained attention as an innovative platform for recombinant protein production, due to low culture media cost, compared to traditional systems, as well as the fact that microalgae such as Chlamydomonas reinhardtii are considered safe (GRAS) by the Food and Drug Administration (FDA). Previous studies showed that recombinant protein production in traditional platforms by semicontinuous process increased biomass and bio product productivity, when compared to batch process. As there is a lack of studies on semicontinuous process for recombinant protein production in microalgae, the production of recombinant mCherry fluorescent protein was evaluated by semicontinuous cultivation of Chlamydomonas reinhardtii in bubble column photobioreactor. This semicontinuous cultivation process was evaluated in the following conditions: 20%, 40%, and 60% culture portion withdrawal. The highest culture withdrawal percentage (60%) provided the best results, as an up to 161% increase in mCherry productivity (454.5 RFU h-1 - Relative Fluorescence Unit h-1 ), in comparison to batch cultivation (174.0 RFU h-1 ) of the same strain. All cultivations were carried out for 13 days, at pH 7, temperature 25°C and, by semicontinuous process, two culture withdrawals were taken during the cultivations. Throughout the production cycles, it was possible to obtain biomass concentration up to 1.36 g L-1 .
Collapse
Affiliation(s)
- Cesar Andres Diaz Arias
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | | | - João Vitor Dutra Molino
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Stephen Patrick Mayfield
- Department of Molecular Biology, and The California Center for Algae Biotechnology, University of California, San Diego, California, USA
| | - João Carlos Monteiro de Carvalho
- Department of Biochemical and Pharmaceutical Technology, School of Pharmaceutical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
4
|
Li BW, Zhang Y, Wang YC, Xue Y, Nie XY. Rapid Fabrication of Protein Microarrays via Autogeneration and on-Chip Purification of Biotinylated Probes. ACS Synth Biol 2020; 9:2267-2273. [PMID: 32810400 DOI: 10.1021/acssynbio.0c00343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A streamlined approach toward the rapid fabrication of streptavidin-biotin-based protein microarrays was investigated. First, using our engineered versatile plasmid (pBADcM-tBirA) and an optimal coexpression strategy for biotin ligase and biotin acceptor peptide (BAP) chimeric recombinant protein, an autogeneration system for biotinylated probes was developed. This system permitted an advantageous biotinylation of BAP chimeric recombinant proteins, providing a strategy for the high-throughput synthesis of biotinylated probes. Then, to bypass the conventional rate-limiting steps, we employed an on-chip purification process to immobilize the biotinylated probes with high-throughput recombinant lysates. The integration of the autogeneration of probes and on-chip purification not only contributed to the effective and reliable fabrication of the protein microarray, but also enabled simplification of the process and an automated throughput format. This labor- and cost-effective approach may facilitate the use of protein microarrays for diagnosis, pharmacology, proteomics, and other laboratory initiatives.
Collapse
Affiliation(s)
- Bo-Wen Li
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, P. R. China
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Yi Zhang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Yin-Chun Wang
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Yang Xue
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| | - Xin-Yi Nie
- Key Laboratory of Biopesticide and Chemical Biology of Education Ministry, Key Laboratory of Pathogenic Fungi and Mycotoxins of Fujian Province, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, P. R. China
| |
Collapse
|
5
|
Chau THT, Lee EY. Development of cell-free platform-based toehold switch system for detection of IP-10 mRNA, an indicator for acute kidney allograft rejection diagnosis. Clin Chim Acta 2020; 510:619-624. [PMID: 32860784 DOI: 10.1016/j.cca.2020.08.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Quantitative PCR and droplet digital PCR were elucidated as non-invasive methods for quantifying the level of signaling markers, such as CD3ɛ and IP-10 mRNAs from urine samples, for the diagnosis of acute rejection in the kidney allograft recipients. Although the sensitivity and accuracy make PCR as the gold standard for diagnosis, a point-of-care (POC) testing is required for the rapid and low-cost preliminary prognosis and diagnosis. In this study, the applicability of the cell-free platform-based toehold switch system was preliminary demonstrated for the detection of synthetic IP-10 mRNA, one of indicators of acute kidney allograft rejection. For POC applications, the colorimetric output was utilized for direct recognition by naked eyes. A total of 5 switches was screened from 289 putative toehold switches. Among these, the toehold switch 4 illustrated the highest fold change after a 45-min incubation with relatively high specificity. The sensitivity of the toehold switch 4 was also demonstrated with the cognate IP-10 mRNA. The results in this study showed the feasibility of the synthetic system of RNA toehold switches in combination with the cell-free platform as a preliminary prognostic and diagnostic method for acute kidney allograft rejection.
Collapse
Affiliation(s)
- Tin Hoang Trung Chau
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea
| | - Eun Yeol Lee
- Department of Chemical Engineering, Kyung Hee University, Yongin-si, Gyeonggi-do 17104, South Korea.
| |
Collapse
|
6
|
Krämer SD, Wöhrle J, Meyer PA, Urban GA, Roth G. How to copy and paste DNA microarrays. Sci Rep 2019; 9:13940. [PMID: 31558745 PMCID: PMC6763488 DOI: 10.1038/s41598-019-50371-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/11/2019] [Indexed: 12/31/2022] Open
Abstract
Analogous to a photocopier, we developed a DNA microarray copy technique and were able to copy patterned original DNA microarrays. With this process the appearance of the copied DNA microarray can also be altered compared to the original by producing copies of different resolutions. As a homage to the very first photocopy made by Chester Charlson and Otto Kornei, we performed a lookalike DNA microarray copy exactly 80 years later. Those copies were also used for label-free real-time kinetic binding assays of apo-dCas9 to double stranded DNA and of thrombin to single stranded DNA. Since each DNA microarray copy was made with only 5 µl of spPCR mix, the whole process is cost-efficient. Hence, our DNA microarray copier has a great potential for becoming a standard lab tool.
Collapse
Affiliation(s)
- Stefan D Krämer
- ZBSA - Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse. 49, D-79104, Freiburg, Germany. .,Faculty for Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, D-79104, Freiburg, Germany.
| | - Johannes Wöhrle
- ZBSA - Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse. 49, D-79104, Freiburg, Germany.,IMTEK - Dep. of Microsystems Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| | - Philipp A Meyer
- ZBSA - Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse. 49, D-79104, Freiburg, Germany.,IMTEK - Dep. of Microsystems Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany
| | - Gerald A Urban
- IMTEK - Dep. of Microsystems Engineering, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 103, D-79110, Freiburg, Germany.,BIOSS - Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 18, D-79104, Freiburg, Germany
| | - Günter Roth
- ZBSA - Center for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstrasse. 49, D-79104, Freiburg, Germany.,Faculty for Biology, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 1, D-79104, Freiburg, Germany.,BioCopy GmbH, Spechtweg 25, D-79110, Freiburg, Germany.,BIOSS - Center for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, Schaenzlestrasse 18, D-79104, Freiburg, Germany.,BioCopy Holding AG, Industriestrasse 15, 8355, Aadorf, Switzerland
| |
Collapse
|
7
|
Henderson CA, Rail CA, Butt LE, Vincent HA, Callaghan AJ. Generation of small molecule-binding RNA arrays and their application to fluorogen-binding RNA aptamers. Methods 2019; 167:39-53. [PMID: 31055072 PMCID: PMC7068705 DOI: 10.1016/j.ymeth.2019.04.021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 04/04/2019] [Accepted: 04/29/2019] [Indexed: 12/23/2022] Open
Abstract
The discovery and engineering of more and more functions of RNA has highlighted the utility of RNA-targeting small molecules. Recently, several fluorogen-binding RNA aptamers have been developed that have been applied to live cell imaging of RNA and metabolites as RNA tags or biosensors, respectively. Although the design and application of these fluorogen-binding RNA aptamer-based devices is straightforward in theory, in practice, careful optimisation is required. For this reason, high throughput in vitro screening techniques, capable of quantifying fluorogen-RNA aptamer interactions, would be beneficial. We recently developed a method for generating functional-RNA arrays and demonstrated that they could be used to detect fluorogen-RNA aptamer interactions. Specifically, we were able to visualise the interaction between malachite green and the malachite green-binding aptamer. Here we expand this study to demonstrate that functional-RNA arrays can be used to quantify fluorogen-aptamer interactions. As proof-of-concept, we provide detailed protocols for the production of malachite green-binding RNA aptamer and DFHBI-binding Spinach RNA aptamer arrays. Furthermore, we discuss the potential utility of the technology to fluorogen-binding RNA aptamers, including application as a molecular biosensor platform. We anticipate that functional-RNA array technology will be beneficial for a wide variety of biological disciplines.
Collapse
Affiliation(s)
- Charlotte A Henderson
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Callum A Rail
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Louise E Butt
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom
| | - Helen A Vincent
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom.
| | - Anastasia J Callaghan
- School of Biological Sciences and Institute of Biological and Biomedical Sciences, University of Portsmouth, Portsmouth PO1 2DY, United Kingdom.
| |
Collapse
|