1
|
Lino BR, Williams SJ, Castor ME, Van Deventer JA. Reaching New Heights in Genetic Code Manipulation with High Throughput Screening. Chem Rev 2024; 124:12145-12175. [PMID: 39418482 PMCID: PMC11879460 DOI: 10.1021/acs.chemrev.4c00329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The chemical and physical properties of proteins are limited by the 20 canonical amino acids. Genetic code manipulation allows for the incorporation of noncanonical amino acids (ncAAs) that enhance or alter protein functionality. This review explores advances in the three main strategies for introducing ncAAs into biosynthesized proteins, focusing on the role of high throughput screening in these advancements. The first section discusses engineering aminoacyl-tRNA synthetases (aaRSs) and tRNAs, emphasizing how novel selection methods improve characteristics including ncAA incorporation efficiency and selectivity. The second section examines high-throughput techniques for improving protein translation machinery, enabling accommodation of alternative genetic codes. This includes opportunities to enhance ncAA incorporation through engineering cellular components unrelated to translation. The final section highlights various discovery platforms for high-throughput screening of ncAA-containing proteins, showcasing innovative binding ligands and enzymes that are challenging to create with only canonical amino acids. These advances have led to promising drug leads and biocatalysts. Overall, the ability to discover unexpected functionalities through high-throughput methods significantly influences ncAA incorporation and its applications. Future innovations in experimental techniques, along with advancements in computational protein design and machine learning, are poised to further elevate this field.
Collapse
Affiliation(s)
- Briana R. Lino
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Sean J. Williams
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - Michelle E. Castor
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| | - James A. Van Deventer
- Chemical and Biological Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
- Biomedical Engineering Department, Tufts University, Medford, Massachusetts 02155, United States
| |
Collapse
|
2
|
Jann C, Giofré S, Bhattacharjee R, Lemke EA. Cracking the Code: Reprogramming the Genetic Script in Prokaryotes and Eukaryotes to Harness the Power of Noncanonical Amino Acids. Chem Rev 2024; 124:10281-10362. [PMID: 39120726 PMCID: PMC11441406 DOI: 10.1021/acs.chemrev.3c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 06/10/2024] [Accepted: 06/27/2024] [Indexed: 08/10/2024]
Abstract
Over 500 natural and synthetic amino acids have been genetically encoded in the last two decades. Incorporating these noncanonical amino acids into proteins enables many powerful applications, ranging from basic research to biotechnology, materials science, and medicine. However, major challenges remain to unleash the full potential of genetic code expansion across disciplines. Here, we provide an overview of diverse genetic code expansion methodologies and systems and their final applications in prokaryotes and eukaryotes, represented by Escherichia coli and mammalian cells as the main workhorse model systems. We highlight the power of how new technologies can be first established in simple and then transferred to more complex systems. For example, whole-genome engineering provides an excellent platform in bacteria for enabling transcript-specific genetic code expansion without off-targets in the transcriptome. In contrast, the complexity of a eukaryotic cell poses challenges that require entirely new approaches, such as striving toward establishing novel base pairs or generating orthogonally translating organelles within living cells. We connect the milestones in expanding the genetic code of living cells for encoding novel chemical functionalities to the most recent scientific discoveries, from optimizing the physicochemical properties of noncanonical amino acids to the technological advancements for their in vivo incorporation. This journey offers a glimpse into the promising developments in the years to come.
Collapse
Affiliation(s)
- Cosimo Jann
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Sabrina Giofré
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
Postdoc Programme (IPPro), 55128 Mainz, Germany
| | - Rajanya Bhattacharjee
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- IMB
International PhD Programme (IPP), 55128 Mainz, Germany
| | - Edward A. Lemke
- Biocenter, Johannes Gutenberg University Mainz, 55128 Mainz, Germany
- Institute
of Molecular Biology (IMB), 55128 Mainz, Germany
| |
Collapse
|
3
|
Ishida S, Ngo PHT, Gundlach A, Ellington A. Engineering Ribosomal Machinery for Noncanonical Amino Acid Incorporation. Chem Rev 2024; 124:7712-7730. [PMID: 38829723 DOI: 10.1021/acs.chemrev.3c00912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The introduction of noncanonical amino acids into proteins has enabled researchers to modify fundamental physicochemical and functional properties of proteins. While the alteration of the genetic code, via the introduction of orthogonal aminoacyl-tRNA synthetase:tRNA pairs, has driven many of these efforts, the various components involved in the process of translation are important for the development of new genetic codes. In this review, we will focus on recent advances in engineering ribosomal machinery for noncanonical amino acid incorporation and genetic code modification. The engineering of the ribosome itself will be considered, as well as the many factors that interact closely with the ribosome, including both tRNAs and accessory factors, such as the all-important EF-Tu. Given the success of genome re-engineering efforts, future paths for radical alterations of the genetic code will require more expansive alterations in the translation machinery.
Collapse
Affiliation(s)
- Satoshi Ishida
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Phuoc H T Ngo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Arno Gundlach
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| | - Andrew Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
4
|
Cruz-Navarrete FA, Griffin WC, Chan YC, Martin MI, Alejo JL, Brady RA, Natchiar SK, Knudson IJ, Altman RB, Schepartz A, Miller SJ, Blanchard SC. β-Amino Acids Reduce Ternary Complex Stability and Alter the Translation Elongation Mechanism. ACS CENTRAL SCIENCE 2024; 10:1262-1275. [PMID: 38947208 PMCID: PMC11212133 DOI: 10.1021/acscentsci.4c00314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/20/2024] [Accepted: 05/21/2024] [Indexed: 07/02/2024]
Abstract
Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to expand the chemical space available to biological therapeutics and materials, but existing technologies are still limiting. Addressing these limitations requires a deeper understanding of the mechanism of protein synthesis and how it is perturbed by nnAAs. Here we examine the impact of nnAAs on the formation and ribosome utilization of the central elongation substrate: the ternary complex of native, aminoacylated tRNA, thermally unstable elongation factor, and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer measurements, we reveal that both the (R)- and (S)-β2 isomers of phenylalanine (Phe) disrupt ternary complex formation to levels below in vitro detection limits, while (R)- and (S)-β3-Phe reduce ternary complex stability by 1 order of magnitude. Consistent with these findings, (R)- and (S)-β2-Phe-charged tRNAs were not utilized by the ribosome, while (R)- and (S)-β3-Phe stereoisomers were utilized inefficiently. (R)-β3-Phe but not (S)-β3-Phe also exhibited order of magnitude defects in the rate of translocation after mRNA decoding. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include the consideration of the efficiency and stability of ternary complex formation.
Collapse
Affiliation(s)
- F. Aaron Cruz-Navarrete
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Wezley C. Griffin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Yuk-Cheung Chan
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Maxwell I. Martin
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Jose L. Alejo
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Ryan A. Brady
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - S. Kundhavai Natchiar
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Isaac J. Knudson
- College
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
| | - Roger B. Altman
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| | - Alanna Schepartz
- College
of Chemistry, University of California,
Berkeley, Berkeley, California 94720, United States
- Molecular
and Cell Biology, University of California,
Berkeley, Berkeley, California 94720, United States
- California
Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California 94720, United States
- Chan
Zuckerberg Biohub, San Francisco, California 94158, United States
- Innovation
Investigator, ARC Institute, Palo Alto, California 94304, United States
| | - Scott J. Miller
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Scott C. Blanchard
- Department
of Structural Biology, St. Jude Children’s
Research Hospital, Memphis, Tennessee 38105, United States
- Department
of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, Tennessee 38105, United States
| |
Collapse
|
5
|
Cruz-Navarrete FA, Griffin WC, Chan YC, Martin MI, Alejo JL, Natchiar SK, Knudson IJ, Altman RB, Schepartz A, Miller SJ, Blanchard SC. β-amino acids reduce ternary complex stability and alter the translation elongation mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.24.581891. [PMID: 38464221 PMCID: PMC10925103 DOI: 10.1101/2024.02.24.581891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/12/2024]
Abstract
Templated synthesis of proteins containing non-natural amino acids (nnAAs) promises to vastly expand the chemical space available to biological therapeutics and materials. Existing technologies limit the identity and number of nnAAs than can be incorporated into a given protein. Addressing these bottlenecks requires deeper understanding of the mechanism of messenger RNA (mRNA) templated protein synthesis and how this mechanism is perturbed by nnAAs. Here we examine the impact of both monomer backbone and side chain on formation and ribosome-utilization of the central protein synthesis substate: the ternary complex of native, aminoacylated transfer RNA (aa-tRNA), thermally unstable elongation factor (EF-Tu), and GTP. By performing ensemble and single-molecule fluorescence resonance energy transfer (FRET) measurements, we reveal the dramatic effect of monomer backbone on ternary complex formation and protein synthesis. Both the (R) and (S)-β2 isomers of Phe disrupt ternary complex formation to levels below in vitro detection limits, while (R)- and (S)-β3-Phe reduce ternary complex stability by approximately one order of magnitude. Consistent with these findings, (R)- and (S)-β2-Phe-charged tRNAs were not utilized by the ribosome, while (R)- and (S)-β3-Phe stereoisomers were utilized inefficiently. The reduced affinities of both species for EF-Tu ostensibly bypassed the proofreading stage of mRNA decoding. (R)-β3-Phe but not (S)-β3-Phe also exhibited order of magnitude defects in the rate of substrate translocation after mRNA decoding, in line with defects in peptide bond formation that have been observed for D-α-Phe. We conclude from these findings that non-natural amino acids can negatively impact the translation mechanism on multiple fronts and that the bottlenecks for improvement must include consideration of the efficiency and stability of ternary complex formation.
Collapse
Affiliation(s)
- F. Aaron Cruz-Navarrete
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Wezley C. Griffin
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Yuk-Cheung Chan
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Maxwell I. Martin
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Jose L. Alejo
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - S. Kundhavai Natchiar
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Isaac J. Knudson
- College of Chemistry, University of California, Berkeley, California, USA
| | - Roger B. Altman
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| | - Alanna Schepartz
- College of Chemistry, University of California, Berkeley, California, USA
- Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA 94720, USA
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
- Innovation Investigator, ARC Institute, Palo Alto, CA 94304, USA
| | - Scott J. Miller
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
| | - Scott C. Blanchard
- Department of Structural Biology, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
- Department of Chemical Biology & Therapeutics, St Jude Children’s Research Hospital, Memphis, Tennessee, USA
| |
Collapse
|
6
|
Gueta O, Amiram M. Expanding the chemical repertoire of protein-based polymers for drug-delivery applications. Adv Drug Deliv Rev 2022; 190:114460. [PMID: 36030987 DOI: 10.1016/j.addr.2022.114460] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/12/2022] [Indexed: 01/24/2023]
Abstract
Expanding the chemical repertoire of natural and artificial protein-based polymers (PBPs) can enable the production of sequence-defined, yet chemically diverse, biopolymers with customized or new properties that cannot be accessed in PBPs composed of only natural amino acids. Various approaches can enable the expansion of the chemical repertoire of PBPs, including chemical and enzymatic treatments or the incorporation of unnatural amino acids. These techniques are employed to install a wide variety of chemical groups-such as bio-orthogonally reactive, cross-linkable, post-translation modifications, and environmentally responsive groups-which, in turn, can facilitate the design of customized PBP-based drug-delivery systems with modified, fine-tuned, or entirely new properties and functions. Here, we detail the existing and emerging technologies for expanding the chemical repertoire of PBPs and review several chemical groups that either demonstrate or are anticipated to show potential in the design of PBP-based drug delivery systems. Finally, we provide our perspective on the remaining challenges and future directions in this field.
Collapse
Affiliation(s)
- Osher Gueta
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel
| | - Miriam Amiram
- The Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, P.O. Box 653, Beer-Sheva 8410501, Israel.
| |
Collapse
|
7
|
Tang H, Zhang P, Luo X. Recent Technologies for Genetic Code Expansion and their Implications on Synthetic Biology Applications. J Mol Biol 2021; 434:167382. [PMID: 34863778 DOI: 10.1016/j.jmb.2021.167382] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/18/2021] [Accepted: 11/24/2021] [Indexed: 02/03/2023]
Abstract
Genetic code expansion (GCE) enables the site-specific incorporation of non-canonical amino acids as novel building blocks for the investigation and manipulation of proteins. The advancement of genetic code expansion has been benefited from the development of synthetic biology, while genetic code expansion also helps to create more synthetic biology tools. In this review, we summarize recent advances in genetic code expansion brought by synthetic biology progresses, including engineering of the translation machinery, genome-wide codon reassignment, and the biosynthesis of non-canonical amino acids. We highlight the emerging application of this technology in construction of new synthetic biology parts, circuits, chassis, and products.
Collapse
Affiliation(s)
- Hongting Tang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Pan Zhang
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xiaozhou Luo
- Center for Synthetic Biochemistry, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
8
|
Serrão VHB, Fernandes ADF, Basso LGM, Scortecci JF, Crusca Júnior E, Cornélio ML, de Souza BM, Palma MS, de Oliveira Neto M, Thiemann OH. The Specific Elongation Factor to Selenocysteine Incorporation in Escherichia coli: Unique tRNA Sec Recognition and its Interactions. J Mol Biol 2021; 433:167279. [PMID: 34624294 DOI: 10.1016/j.jmb.2021.167279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 10/20/2022]
Abstract
Several molecular mechanisms are involved in the genetic code interpretation during translation, as codon degeneration for the incorporation of rare amino acids. One mechanism that stands out is selenocysteine (Sec), which requires a specific biosynthesis and incorporation pathway. In Bacteria, the Sec biosynthesis pathway has unique features compared with the eukaryote pathway as Ser to Sec conversion mechanism is accomplished by a homodecameric enzyme (selenocysteine synthase, SelA) followed by the action of an elongation factor (SelB) responsible for delivering the mature Sec-tRNASec into the ribosome by the interaction with the Selenocysteine Insertion Sequence (SECIS). Besides this mechanism being already described, the sequential events for Sec-tRNASec and SECIS specific recognition remain unclear. In this study, we determined the order of events of the interactions between the proteins and RNAs involved in Sec incorporation. Dissociation constants between SelB and the native as well as unacylated-tRNASec variants demonstrated that the acceptor stem and variable arm are essential for SelB recognition. Moreover, our data support the sequence of molecular events where GTP-activated SelB strongly interacts with SelA.tRNASec. Subsequently, SelB.GTP.tRNASec recognizes the mRNA SECIS to deliver the tRNASec to the ribosome. SelB in complex with its specific RNAs were examined using Hydrogen/Deuterium exchange mapping that allowed the determination of the molecular envelopes and its secondary structural variations during the complex assembly. Our results demonstrate the ordering of events in Sec incorporation and contribute to the full comprehension of the tRNASec role in the Sec amino acid biosynthesis, as well as extending the knowledge of synthetic biology and the expansion of the genetic code.
Collapse
Affiliation(s)
- Vitor Hugo Balasco Serrão
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Chemistry and Biochemistry, University California - Santa Cruz, 1156 High St., Santa Cruz, CA 95060, United States
| | - Adriano de Freitas Fernandes
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil
| | - Luis Guilherme Mansor Basso
- Physical Sciences Laboratory, State University of Northern Rio de Janeiro Darcy Ribeiro - UENF, Av. Alberto Lamego, 2000, 28013-602 Campos dos Goytacazes, RJ, Brazil; Faculty of Science, Philosophy and Letters, University of Sao Paulo, CEP 14040-901 Ribeirão Preto, SP, Brazil
| | - Jéssica Fernandes Scortecci
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Biochemistry and Molecular Biology, University of British Columbia, 2350 Health Science Mall, Vancouver, British Columbia V6T 1Z3, Canada
| | - Edson Crusca Júnior
- Department of Physical Chemistry, Chemistry Institute of the São Paulo State University - UNESP, CEP 14800-900 Araraquara, SP, Brazil
| | - Marinônio Lopes Cornélio
- Physics Department, Institute of Biosciences, Letters and Exact Sciences (IBILCE), São Paulo State University - UNESP, São Jose do Rio Preto, SP, Brazil
| | - Bibiana Monson de Souza
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mário Sérgio Palma
- Department of General and Applied Biology, Institute of Biosciences of Rio Claro, São Paulo State University - UNESP, Rio Claro, SP, Brazil
| | - Mario de Oliveira Neto
- Bioscience Institute of Universidade Estadual Paulista, Rubião Jr., Botucatu, SP CEP 18618-000, Brazil
| | - Otavio Henrique Thiemann
- Physics Institute of Sao Carlos, University of Sao Paulo, Trabalhador Sao Carlense Av., 400, São Carlos, SP CEP 13566-590, Brazil; Department of Genetics and Evolution, Federal University of São Carlos - UFSCar, 13565-905 São Carlos, SP, Brazil.
| |
Collapse
|
9
|
TwinCons: Conservation score for uncovering deep sequence similarity and divergence. PLoS Comput Biol 2021; 17:e1009541. [PMID: 34714829 PMCID: PMC8580257 DOI: 10.1371/journal.pcbi.1009541] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 11/10/2021] [Accepted: 10/06/2021] [Indexed: 11/19/2022] Open
Abstract
We have developed the program TwinCons, to detect noisy signals of deep ancestry of proteins or nucleic acids. As input, the program uses a composite alignment containing pre-defined groups, and mathematically determines a 'cost' of transforming one group to the other at each position of the alignment. The output distinguishes conserved, variable and signature positions. A signature is conserved within groups but differs between groups. The method automatically detects continuous characteristic stretches (segments) within alignments. TwinCons provides a convenient representation of conserved, variable and signature positions as a single score, enabling the structural mapping and visualization of these characteristics. Structure is more conserved than sequence. TwinCons highlights alternative sequences of conserved structures. Using TwinCons, we detected highly similar segments between proteins from the translation and transcription systems. TwinCons detects conserved residues within regions of high functional importance for the ribosomal RNA (rRNA) and demonstrates that signatures are not confined to specific regions but are distributed across the rRNA structure. The ability to evaluate both nucleic acid and protein alignments allows TwinCons to be used in combined sequence and structural analysis of signatures and conservation in rRNA and in ribosomal proteins (rProteins). TwinCons detects a strong sequence conservation signal between bacterial and archaeal rProteins related by circular permutation. This conserved sequence is structurally colocalized with conserved rRNA, indicated by TwinCons scores of rRNA alignments of bacterial and archaeal groups. This combined analysis revealed deep co-evolution of rRNA and rProtein buried within the deepest branching points in the tree of life.
Collapse
|
10
|
DeBenedictis EA, Carver GD, Chung CZ, Söll D, Badran AH. Multiplex suppression of four quadruplet codons via tRNA directed evolution. Nat Commun 2021; 12:5706. [PMID: 34588441 PMCID: PMC8481270 DOI: 10.1038/s41467-021-25948-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 09/10/2021] [Indexed: 11/20/2022] Open
Abstract
Genetic code expansion technologies supplement the natural codon repertoire with assignable variants in vivo, but are often limited by heterologous translational components and low suppression efficiencies. Here, we explore engineered Escherichia coli tRNAs supporting quadruplet codon translation by first developing a library-cross-library selection to nominate quadruplet codon-anticodon pairs. We extend our findings using a phage-assisted continuous evolution strategy for quadruplet-decoding tRNA evolution (qtRNA-PACE) that improved quadruplet codon translation efficiencies up to 80-fold. Evolved qtRNAs appear to maintain codon-anticodon base pairing, are typically aminoacylated by their cognate tRNA synthetases, and enable processive translation of adjacent quadruplet codons. Using these components, we showcase the multiplexed decoding of up to four unique quadruplet codons by their corresponding qtRNAs in a single reporter. Cumulatively, our findings highlight how E. coli tRNAs can be engineered, evolved, and combined to decode quadruplet codons, portending future developments towards an exclusively quadruplet codon translation system.
Collapse
Affiliation(s)
- Erika A DeBenedictis
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Christina Z Chung
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Dieter Söll
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
| | - Ahmed H Badran
- The Broad Institute of MIT & Harvard, Cambridge, MA, USA.
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
11
|
Kofman C, Lee J, Jewett MC. Engineering molecular translation systems. Cell Syst 2021; 12:593-607. [PMID: 34139167 DOI: 10.1016/j.cels.2021.04.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/19/2021] [Accepted: 03/31/2021] [Indexed: 12/16/2022]
Abstract
Molecular translation systems provide a genetically encoded framework for protein synthesis, which is essential for all life. Engineering these systems to incorporate non-canonical amino acids (ncAAs) into peptides and proteins has opened many exciting opportunities in chemical and synthetic biology. Here, we review recent advances that are transforming our ability to engineer molecular translation systems. In cell-based systems, new processes to synthesize recoded genomes, tether ribosomal subunits, and engineer orthogonality with high-throughput workflows have emerged. In cell-free systems, adoption of flexizyme technology and cell-free ribosome synthesis and evolution platforms are expanding the limits of chemistry at the ribosome's RNA-based active site. Looking forward, innovations will deepen understanding of molecular translation and provide a path to polymers with previously unimaginable structures and functions.
Collapse
Affiliation(s)
- Camila Kofman
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Joongoo Lee
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Department of Chemical Engineering, Pohang University of Science and Technology, Pohang 37673, Republic of Korea
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA; Interdisplinary Biological Sciences Graduate Program, Northwestern University, Evanston, IL 60208, USA; Chemistry of Life Processes Institute, Northwestern University, Evanston, IL 60208, USA; Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL 60208, USA; Simpson Querrey Institute, Northwestern University, Evanston, IL 60208, USA; Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA.
| |
Collapse
|
12
|
Galindo Casas M, Stargardt P, Mairhofer J, Wiltschi B. Decoupling Protein Production from Cell Growth Enhances the Site-Specific Incorporation of Noncanonical Amino Acids in E. coli. ACS Synth Biol 2020; 9:3052-3066. [PMID: 33150786 DOI: 10.1021/acssynbio.0c00298] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The site-specific incorporation of noncanonical amino acids (ncAAs) into proteins by amber stop codon suppression has become a routine method in academic laboratories. This approach requires an amber suppressor tRNACUA to read the amber codon and an aminoacyl-tRNA synthetase to charge the tRNACUA with the ncAA. However, a major drawback is the low yield of the mutant protein in comparison to the wild type. This effect primarily results from the competition of release factor 1 with the charged suppressor tRNACUA for the amber codon at the A-site of the ribosome. A number of laboratories have attempted to improve the incorporation efficiency of ncAAs with moderate results. We aimed at increasing the efficiency to produce high yields of ncAA-functionalized proteins in a scalable setting for industrial application. To do this, we inserted an ncAA into the enhanced green fluorescent protein and an antibody mimetic molecule using an industrial E. coli strain, which produces recombinant proteins independent of cell growth. The controlled decoupling of recombinant protein production from cell growth considerably increased the incorporation of the ncAA, producing substantially higher protein yields versus the reference E. coli strain BL21(DE3). The target proteins were expressed at high levels, and the ncAA was efficiently incorporated with excellent fidelity while the protein function was preserved.
Collapse
Affiliation(s)
- Meritxell Galindo Casas
- acib − Austrian Center of Industrial Biotechnology, 8010 Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, 8010 Graz, Austria
| | | | | | - Birgit Wiltschi
- acib − Austrian Center of Industrial Biotechnology, 8010 Graz, Austria
| |
Collapse
|
13
|
Hammerling MJ, Krüger A, Jewett MC. Strategies for in vitro engineering of the translation machinery. Nucleic Acids Res 2020; 48:1068-1083. [PMID: 31777928 PMCID: PMC7026604 DOI: 10.1093/nar/gkz1011] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/07/2019] [Accepted: 10/17/2019] [Indexed: 01/06/2023] Open
Abstract
Engineering the process of molecular translation, or protein biosynthesis, has emerged as a major opportunity in synthetic and chemical biology to generate novel biological insights and enable new applications (e.g. designer protein therapeutics). Here, we review methods for engineering the process of translation in vitro. We discuss the advantages and drawbacks of the two major strategies-purified and extract-based systems-and how they may be used to manipulate and study translation. Techniques to engineer each component of the translation machinery are covered in turn, including transfer RNAs, translation factors, and the ribosome. Finally, future directions and enabling technological advances for the field are discussed.
Collapse
Affiliation(s)
- Michael J Hammerling
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Antje Krüger
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| | - Michael C Jewett
- Department of Chemical and Biological Engineering, Center for Synthetic Biology, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208, USA
| |
Collapse
|
14
|
Israeli B, Vaserman L, Amiram M. Multi‐Site Incorporation of Nonstandard Amino Acids into Protein‐Based Biomaterials. Isr J Chem 2019. [DOI: 10.1002/ijch.201900043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Bar Israeli
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Livne Vaserman
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| | - Miriam Amiram
- Avram and Stella Goldstein-Goren Department of Biotechnology Engineering Ben-Gurion University of the Negev Beer-Sheva Israel
| |
Collapse
|