1
|
Duan XY, Tian Y, Song ZQ, Song LP, Lin WB, Wang C, Yang H, Lu XY, Ji XJ, Liu HH. High-level de novo biosynthesis of cordycepin by systems metabolic engineering in Yarrowia lipolytica. BIORESOURCE TECHNOLOGY 2022; 363:127862. [PMID: 36041680 DOI: 10.1016/j.biortech.2022.127862] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Cordycepin is a nucleoside antibiotic with various biological activities, which has wide applications in the area of cosmetic and medicine industries. However, the current production of cordycepin is costly and time-consuming. To construct the promising cell factory for high-level cordycepin production, firstly, the design and construction of cordycepin biosynthetic pathway were performed in Yarrowia lipolytica. Secondly, the adaptivity between cordycepin biosynthetic pathway and Y. lipolytica was enhanced by enzyme fusion and integration site engineering. Then, the production of cordycepin was improved by the enhancement of adenosine supply. Furthermore, through modular engineering, the production of cordycepin was achieved at 3588.59 mg/L from glucose. Finally, 3249.58 mg/L cordycepin with a yield of 76.46 mg/g total sugar was produced by the engineered strain from the mixtures of glucose and molasses. This research is the first report on the de novo high-level production of cordycepin in the engineered Y. lipolytica.
Collapse
Affiliation(s)
- Xi-Yu Duan
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Yun Tian
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Ze-Qi Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Li-Ping Song
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Wen-Bo Lin
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Chong Wang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Hui Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiang-Yang Lu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Hu-Hu Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, No. 1 Nongda Road, Changsha 410128, People's Republic of China.
| |
Collapse
|
2
|
Drzymała-Kapinos K, Mirończuk AM, Dobrowolski A. Lipid production from lignocellulosic biomass using an engineered Yarrowia lipolytica strain. Microb Cell Fact 2022; 21:226. [PMID: 36307797 PMCID: PMC9617373 DOI: 10.1186/s12934-022-01951-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 10/13/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The utilization of industrial wastes as feedstock in microbial-based processes is a one of the high-potential approach for the development of sustainable, environmentally beneficial and valuable bioproduction, inter alia, lipids. Rye straw hydrolysate, a possible renewable carbon source for bioconversion, contains a large amount of xylose, inaccessible to the wild-type Yarrowia lipolytica strains. Although these oleaginous yeasts possesses all crucial genes for xylose utilization, it is necessary to induce their metabolic pathway for efficient growth on xylose and mixed sugars from agricultural wastes. Either way, biotechnological production of single cell oils (SCO) from lignocellulosic hydrolysate requires yeast genome modification or adaptation to a suboptimal environment. RESULTS The presented Y. lipolytica strain was developed using minimal genome modification-overexpression of endogenous xylitol dehydrogenase (XDH) and xylulose kinase (XK) genes was sufficient to allow yeast to grow on xylose as a sole carbon source. Diacylglycerol acyltransferase (DGA1) expression remained stable and provided lipid overproduction. Obtained an engineered Y. lipolytica strain produced 5.51 g/L biomass and 2.19 g/L lipids from nitrogen-supplemented rye straw hydrolysate, which represents an increase of 64% and an almost 10 times higher level, respectively, compared to the wild type (WT) strain. Glucose and xylose were depleted after 120 h of fermentation. No increase in byproducts such as xylitol was observed. CONCLUSIONS Xylose-rich rye straw hydrolysate was exploited efficiently for the benefit of production of lipids. This study indicates that it is possible to fine-tune a newly strain with as minimally genetic changes as possible by adjusting to an unfavorable environment, thus limiting multi-level genome modification. It is documented here the use of Y. lipolytica as a microbial cell factory for lipid synthesis from rye straw hydrolysate as a low-cost feedstock.
Collapse
Affiliation(s)
- Katarzyna Drzymała-Kapinos
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland
| | - Aleksandra M Mirończuk
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland.,Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland
| | - Adam Dobrowolski
- Department of Biotechnology and Food Microbiology, Wrocław University of Environmental and Life Sciences, 37 Chełmońskiego Street, 51-630, Wrocław, Poland. .,Laboratory for Biosustainability, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
3
|
Li W, Cui L, Mai J, Shi TQ, Lin L, Zhang ZG, Ledesma-Amaro R, Dong W, Ji XJ. Advances in Metabolic Engineering Paving the Way for the Efficient Biosynthesis of Terpenes in Yeasts. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:9246-9261. [PMID: 35854404 DOI: 10.1021/acs.jafc.2c03917] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Terpenes are a large class of secondary metabolites with diverse structures and functions that are commonly used as valuable raw materials in food, cosmetics, and medicine. With the development of metabolic engineering and emerging synthetic biology tools, these important terpene compounds can be sustainably produced using different microbial chassis. Currently, yeasts such as Saccharomyces cerevisiae and Yarrowia lipolytica have received extensive attention as potential hosts for the production of terpenes due to their clear genetic background and endogenous mevalonate pathway. In this review, we summarize the natural terpene biosynthesis pathways and various engineering strategies, including enzyme engineering, pathway engineering, and cellular engineering, to further improve the terpene productivity and strain stability in these two widely used yeasts. In addition, the future prospects of yeast-based terpene production are discussed in light of the current progress, challenges, and trends in this field. Finally, guidelines for future studies are also emphasized.
Collapse
Affiliation(s)
- Wenjuan Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Liuwei Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Jie Mai
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, No. 1 Wenyuan Road, Nanjing 210046, People's Republic of China
| | - Lu Lin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Zhi-Gang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London SW7 2AZ, United Kingdom
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| | - Xiao-Jun Ji
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing 211816, People's Republic of China
| |
Collapse
|
4
|
Fang L, Li Y, Li Y, Cao Y, Song H. Transcriptome Analysis to Identify Crucial Genes for Reinforcing Flavins-Mediated Extracellular Electron Transfer in Shewanella oneidensis. Front Microbiol 2022; 13:852527. [PMID: 35722328 PMCID: PMC9198578 DOI: 10.3389/fmicb.2022.852527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 05/10/2022] [Indexed: 11/13/2022] Open
Abstract
Flavins serve as the electron mediators in Shewanella oneidensis, determining the extracellular electron transfer (EET) rate. Currently, metabolic engineering of flavins biosynthetic pathway has been studied for improving EET. However, the cellular response triggered by flavins that contribute to EET remains to be elucidated. In this study, the riboflavin-overproducing strain C5 (expressing the flavins synthetic genes in plasmid PYYDT) and the PYYDT strain (harboring the empty plasmid PYYDT) in the microbial fuel cells are applied for comparative transcriptomic analyses to investigate beneficial gene targets that could improve EET. From the differentially expressed genes, we select the significantly upregulated and downregulated genes for inverse engineering in S. oneidensis. The results show that overexpression of ahpC and ccpA, and inactivation of pubA, putB, and tonB are able to improve the EET capability. Combinatorial modulation of these five genes results in the recombinant strain CM4, achieving the maximum power density of 651.78 ± 124.60 mW/m2, 1.97 folds of the parental strain. These genes modulation is speculated to reduce the ROS damage and to promote cytochrome synthesis and heme accumulation, which coherently enhance EET. Our findings facilitate in-depth understanding of the mechanism of flavins-mediated EET and provide new insights in promoting EET of S. oneidensis for electricity generation.
Collapse
Affiliation(s)
- Lixia Fang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yuanyuan Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yan Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Yingxiu Cao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| | - Hao Song
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, China
| |
Collapse
|
5
|
Li S, Rong L, Wang S, Liu S, Lu Z, Miao L, Zhao B, Zhang C, Xiao D, Pushpanathan K, Wong A, Yu A. Enhanced limonene production by metabolically engineered Yarrowia lipolytica from cheap carbon sources. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2021.117342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Genome-scale target identification in Escherichia coli for high-titer production of free fatty acids. Nat Commun 2021; 12:4976. [PMID: 34404790 PMCID: PMC8371096 DOI: 10.1038/s41467-021-25243-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 07/29/2021] [Indexed: 12/17/2022] Open
Abstract
To construct a superior microbial cell factory for chemical synthesis, a major challenge is to fully exploit cellular potential by identifying and engineering beneficial gene targets in sophisticated metabolic networks. Here, we take advantage of CRISPR interference (CRISPRi) and omics analyses to systematically identify beneficial genes that can be engineered to promote free fatty acids (FFAs) production in Escherichia coli. CRISPRi-mediated genetic perturbation enables the identification of 30 beneficial genes from 108 targets related to FFA metabolism. Then, omics analyses of the FFAs-overproducing strains and a control strain enable the identification of another 26 beneficial genes that are seemingly irrelevant to FFA metabolism. Combinatorial perturbation of four beneficial genes involving cellular stress responses results in a recombinant strain ihfAL−-aidB+-ryfAM−-gadAH−, producing 30.0 g L−1 FFAs in fed-batch fermentation, the maximum titer in E. coli reported to date. Our findings are of help in rewiring cellular metabolism and interwoven intracellular processes to facilitate high-titer production of biochemicals. Identification of gene targets is one of the major challenges to construct superior microbial cell factory for chemical synthesis. Here, the authors employ CRISPRi and omics analyses for genome-scale target genes identification for high-titer production of free fatty acids in E. coli.
Collapse
|
7
|
Zhang G, Wang H, Zhang Z, Verstrepen KJ, Wang Q, Dai Z. Metabolic engineering of Yarrowia lipolytica for terpenoids production: advances and perspectives. Crit Rev Biotechnol 2021; 42:618-633. [PMID: 34325575 DOI: 10.1080/07388551.2021.1947183] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Terpenoids are a large family of natural products with diversified structures and functions that are widely used in the food, pharmaceutical, cosmetic, and agricultural fields. However, the traditional methods of terpenoids production such as plant extraction and chemical synthesis are inefficient due to the complex processes, high energy consumption, and low yields. With progress in metabolic engineering and synthetic biology, microbial cell factories provide an interesting alternative for the sustainable production of terpenoids. The non-conventional yeast, Yarrowia lipolytica, is a promising host for terpenoid biosynthesis due to its inherent mevalonate pathway, high fluxes of acetyl-CoA and NADPH, and the naturally hydrophobic microenvironment. In this review, we highlight progress in the engineering of Y. lipolytica as terpenoid biomanufacturing factories, describing the different terpenoid biosynthetic pathways and summarizing various metabolic engineering strategies, including progress in genetic manipulation, dynamic regulation, organelle engineering, and terpene synthase variants.
Collapse
Affiliation(s)
- Ge Zhang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Huan Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing, China
| | - Kevin J Verstrepen
- TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China.,VIB-KU Leuven Center for Microbiology and KU Leuven Laboratory for Genetics and Genomics, Department M2S, Leuven, Belgium
| | - Qinhong Wang
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Zongjie Dai
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China.,TIB-VIB Joint Center of Synthetic Biology, National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| |
Collapse
|
8
|
Shi T, Li Y, Zhu L, Tong Y, Yang J, Fang Y, Wang M, Zhang J, Jiang Y, Yang S. Engineering the oleaginous yeast Yarrowia lipolytica for β-farnesene overproduction. Biotechnol J 2021; 16:e2100097. [PMID: 33938153 DOI: 10.1002/biot.202100097] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/25/2021] [Accepted: 04/28/2021] [Indexed: 11/10/2022]
Abstract
β-farnesene is a sesquiterpenoid with various industrial applications which is now commercially produced by a Saccharomyces cerevisiae strain obtained by random mutagenesis and genetic engineering. We rationally designed a genetically defined Yarrowia lipolytica through recovery of L-leucine biosynthetic route, gene dosage optimization of β-farnesene synthase and disruption of the competition pathway. The resulting β-farnesene titer was improved from 8 to 345 mg L-1 . Finally, the strategy for decreasing the lipid accumulation by individually and iteratively knocking out four acyltransferases encoding genes was adopted. The result displayed that β-farnesene titer in the engineered strain CIBT6304 in which acyltransferases (DGA1 and DGA2) were deleted increased by 45% and reached 539 mg L-1 (88 mg g-1 DCW). Using fed-batch fermentation, CIBT6304 could produce the highest β-farnesene titer (22.8 g L-1 ) among the genetically defined strains. This study will provide the foundation of engineering Y. lipolytica to produce other terpenoids more cost-efficiently.
Collapse
Affiliation(s)
- Tianqiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Yawen Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, People's Republic of China
| | - Li Zhu
- Shanghai Laiyi Center for Biopharmaceutical R&D, Shanghai, China
| | - Yangyang Tong
- Key Laboratory of Synthetic Biology, CAS Center for Excellence of Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Junjie Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence of Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yunming Fang
- The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Meng Wang
- The College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Jieze Zhang
- Department of Chemistry, University of Southern California, Los Angeles, California, USA
| | - Yu Jiang
- Shanghai Taoyusheng Biotechnology Co., Ltd, Shanghai, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, China
| | - Sheng Yang
- Key Laboratory of Synthetic Biology, CAS Center for Excellence of Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China.,Huzhou Center of Industrial Biotechnology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Huzhou, China
| |
Collapse
|
9
|
Li ZJ, Wang YZ, Wang LR, Shi TQ, Sun XM, Huang H. Advanced Strategies for the Synthesis of Terpenoids in Yarrowia lipolytica. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:2367-2381. [PMID: 33595318 DOI: 10.1021/acs.jafc.1c00350] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Terpenoids are an important class of secondary metabolites that play an important role in food, agriculture, and other fields. Microorganisms are rapidly emerging as a promising source for the production of terpenoids. As an oleaginous yeast, Yarrowia lipolytica contains a high lipid content which indicates that it must produce high amounts of acetyl-CoA, a necessary precursor for the biosynthesis of terpenoids. Y. lipolytica has a complete eukaryotic mevalonic acid (MVA) pathway but it has not yet seen commercial use due to its low productivity. Several metabolic engineering strategies have been developed to improve the terpenoids production of Y. lipolytica, including developing the orthogonal pathway for terpenoid synthesis, increasing the catalytic efficiency of terpenoids synthases, enhancing the supply of acetyl-CoA and NADPH, expressing rate-limiting genes, and modifying the branched pathway. Moreover, most of the acetyl-CoA is used to produce lipid, so it is an effective strategy to strike a balance of precursor distribution by rewiring the lipid biosynthesis pathway. Lastly, the latest developed non-homologous end-joining strategy for improving terpenoid production is introduced. This review summarizes the status and metabolic engineering strategies of terpenoids biosynthesis in Y. lipolytica and proposes new insights to move the field forward.
Collapse
Affiliation(s)
- Zi-Jia Li
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Yu-Zhou Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Ling-Ru Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Tian-Qiong Shi
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - Xiao-Man Sun
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
| | - He Huang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, 2 Xuelin Road, Qixia District, Nanjing, People's Republic of China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, No. 30 South Puzhu Road, Nanjing, People's Republic of China
| |
Collapse
|
10
|
Muhammad A, Feng X, Rasool A, Sun W, Li C. Production of plant natural products through engineered Yarrowia lipolytica. Biotechnol Adv 2020; 43:107555. [DOI: 10.1016/j.biotechadv.2020.107555] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/13/2020] [Accepted: 05/12/2020] [Indexed: 12/18/2022]
|
11
|
Li L, Liu Z, Jiang H, Mao X. Biotechnological production of lycopene by microorganisms. Appl Microbiol Biotechnol 2020; 104:10307-10324. [PMID: 33097966 DOI: 10.1007/s00253-020-10967-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 12/16/2022]
Abstract
Lycopene is a dark red carotenoid belonging to C40 terpenoids and is widely found in a variety of plants, especially ripe red fruits and vegetables. Lycopene has been shown to reduce the risk of prostate cancer, other cancers, and cardiovascular disease. It is one of the most widely used carotenoids in the healthcare product market. Currently, commercially available lycopene is mainly extracted from tomatoes. However, production of lycopene from plants is costly and environmentally unfriendly. To date, there have been many reports on the biosynthesis of lycopene by microorganisms, providing another route for lycopene production. This review discusses the lycopene biosynthetic pathway and natural and engineered lycopene-accumulating microorganisms, as well as their production of lycopene. The effects of different metabolic engineering strategies on lycopene accumulation are also considered. Furthermore, this work presents perspectives concerning the microbial production of lycopene, especially trends to construct microbial cell factories for lycopene production. KEY POINTS: • Recent achievements in the lycopene biosynthesis in microorganisms. • Review of lycopene biosynthetic metabolism engineering strategy. • Discuss the current challenges and prospects of using microorganisms to produce lycopene.
Collapse
Affiliation(s)
- Lei Li
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China.
| | - Hong Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, 266003, China. .,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
12
|
Qin L, Dong S, Yu J, Ning X, Xu K, Zhang SJ, Xu L, Li BZ, Li J, Yuan YJ, Li C. Stress-driven dynamic regulation of multiple tolerance genes improves robustness and productive capacity of Saccharomyces cerevisiae in industrial lignocellulose fermentation. Metab Eng 2020; 61:160-170. [DOI: 10.1016/j.ymben.2020.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/01/2020] [Accepted: 06/07/2020] [Indexed: 12/20/2022]
|
13
|
Lycopene in protection against obesity and diabetes: A mechanistic review. Pharmacol Res 2020; 159:104966. [PMID: 32535223 DOI: 10.1016/j.phrs.2020.104966] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/24/2020] [Accepted: 05/25/2020] [Indexed: 12/14/2022]
Abstract
Lycopene, a natural pigment that mainly exists in the mature fruit of tomatoes, has gained increasing attention due to its protective effects against obesity and diabetes. The aim of this review is to summarize the potential mechanisms in which lycopene exerts protection against obesity and diabetes, along with highlighting its bioavailability, synthesis and safety. Literature sources used in this review were from the PubMed Database, China Knowledge Resource Integrated Database, China Science and Technology Journal Database, National Science and Technology Library, Wanfang Data, and the Web of Science. For the inquiries, keywords such as lycopene, properties, synthesis, diabetes, obesity, and safety were used in various combinations. About 200 articles and reviews were evaluated. Lycopene exhibits anti-obesity and anti-diabetic activities in different organs and/or tissues, including adipose tissue, liver, kidney, pancreas, brain, ovaries, intestine, and eyes. The underlying mechanism may be attributed to its anti-oxidant and anti-inflammatory properties and through its ability to regulate of AGE/RAGE, JNK/MAPK, PI3K/Akt, SIRT1/FoxO1/PPARγ signaling pathways and AchE activity. The epidemiological investigations support that lycopene consumption may contribute to lowering the risk of obesity and diabetes. The cis-isomers of lycopene are more bioavailable and better absorbed than trans-lycopene, and mainly distribute in liver and adipose tissue. Lycopene exhibits a good margin of safety and can be obtained by plant extraction, chemical synthesis and microbial fermentation. In summary, lycopene consumption beneficially contributes to protecting against diabetes and obesity in animal studies and epidemiological investigations, which supports the potential of this compound as a preventive/therapeutic agent against these disorders. Well-designed, prospective clinical studies are warranted to evaluate the potential therapeutic effect of lycopene against common metabolic diseases.
Collapse
|
14
|
Liu R, Liu L, Li X, Liu D, Yuan Y. Engineering yeast artificial core promoter with designated base motifs. Microb Cell Fact 2020; 19:38. [PMID: 32070349 PMCID: PMC7026997 DOI: 10.1186/s12934-020-01305-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/09/2020] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Synthetic biology requires toolbox of promoters to finely tune gene expression levels for building up efficient cell factories. Yeast promoters owned variable core promoter regions between the TATA-box and transcriptional starting site (TSS) at the length mostly around 20-80 bases. This region allowed flexible design of artificial promoter but potentially demand special base motifs to maintain or enhance the promoter's strength. RESULTS Here, we designed and screened the base motifs and tested the activities of yeast artificial core promoters. Different 30 bases of artificial sequences led to variable expression levels of CrtY enzyme which determined the lycopene-carotene compositions, represented in the colony-color spectrum of red-orange-yellow. The upstream sequences of two strong promoter PEXP1 and PGPD and two starting strains with distinguishable lycopene production levels were utilized to characterize the promoter sequences. Different partition designs of T-rich or G/C-rich base motifs led to distinguishable colony-color distributions. Finally, we screened a champion promoter with a highest 5.5-fold enhancement of lycopene-carotene transformation. Another selected promoter generated a highest beta-carotene production as 7.4 mg/g DCW. CONCLUSIONS This work offered an approach to redesign promoter with artificial sequences. We concluded that the core promoter region could be designated as 30 bases and different base motifs would enhance or weaken the promoter's strength. Generally, more T-rich elements, higher %T and lower G/C percentage were beneficial to enhance the strength of artificial core promoter.
Collapse
Affiliation(s)
- Rui Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Lanqing Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Xia Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Duo Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| | - Yingjin Yuan
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| |
Collapse
|
15
|
Yarrowia lipolytica: more than an oleaginous workhorse. Appl Microbiol Biotechnol 2019; 103:9251-9262. [DOI: 10.1007/s00253-019-10200-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/07/2019] [Accepted: 10/15/2019] [Indexed: 02/07/2023]
|