1
|
Ribeiro LF, Furtado GP, Lourenzoni MR, Ward RJ. Design, construction and characterization of laccase-xylanase chimeras by insertional fusion. Methods Enzymol 2025; 716:217-238. [PMID: 40514177 DOI: 10.1016/bs.mie.2025.01.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2025]
Abstract
The broad substrate specificity of laccases makes these enzymes suitable for a wide range of applications. The use of protein engineering strategies to modulate the catalytic properties of these enzymes is a promising strategy to expand their use in the sustainable economy. Here we describe the construction of laccase-xylanase bifunctional enzyme by insertional fusion using a procedure based on the rational design starting with the analysis of the 3D-structure of laccase to select positions for the insertion of the xylanase domain, followed by the creation of the fusion construct by ligation of overlapping fragments generated by PCR. Finally, the heterologous expression and biochemical characterization of the laccase and xylanase activities of the fusion protein is described and demonstrate significant increase in the laccase activity. These protocols can be applied to the fusion of any pair of proteins.
Collapse
Affiliation(s)
- Lucas F Ribeiro
- Departamento de Biouímica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Gilvan P Furtado
- Grupo de Engenharia de Proteínas e Soluções para Saúde da Fundação Oswaldo Cruz, Eusébio, CE, Brazil
| | - Marcos R Lourenzoni
- Grupo de Engenharia de Proteínas e Soluções para Saúde da Fundação Oswaldo Cruz, Eusébio, CE, Brazil.
| | - Richard J Ward
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| |
Collapse
|
2
|
Beltran-Nogal A, Mateljak I, Gonzalez-Perez D, Alcalde M. Engineering unspecific peroxygenases by structure-guided in vivo recombination of homologous protein blocks. Methods Enzymol 2025; 714:407-423. [PMID: 40288849 DOI: 10.1016/bs.mie.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/29/2025]
Abstract
Fungal unspecific peroxygenases (UPOs) are highly versatile enzymes for C-H oxyfunctionalization reactions. Over the years, they have been subjected to directed evolution campaigns in order to improve heterologous functional expression, activity, stability and selectivity. While the number of UPO genes available for protein engineering is steadily increasing, their use in enzyme chimeragenesis experiments has been little explored. In this chapter we describe how to construct functionally diverse UPO chimeras from different orthologs by applying the SCHEMA-RASPP computational algorithm in combination with in vivo DNA shuffling.
Collapse
Affiliation(s)
| | | | | | - Miguel Alcalde
- Institute of Catalysis, CSIC, Marie Curie 2, Madrid, Spain.
| |
Collapse
|
3
|
Albayati SH, Nezhad NG, Taki AG, Rahman RNZRA. Efficient and easible biocatalysts: Strategies for enzyme improvement. A review. Int J Biol Macromol 2024; 276:133978. [PMID: 39038570 DOI: 10.1016/j.ijbiomac.2024.133978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 06/19/2024] [Accepted: 07/16/2024] [Indexed: 07/24/2024]
Abstract
Owing to the environmental friendliness and vast advantages that enzymes offer in the biotechnology and industry fields, biocatalysts are a prolific investigation field. However, the low catalytic activity, stability, and specific selectivity of the enzyme limit the range of the reaction enzymes involved in. A comprehensive understanding of the protein structure and dynamics in terms of molecular details enables us to tackle these limitations effectively and enhance the catalytic activity by enzyme engineering or modifying the supports and solvents. Along with different strategies including computational, enzyme engineering based on DNA recombination, enzyme immobilization, additives, chemical modification, and physicochemical modification approaches can be promising for the wide spread of industrial enzyme usage. This is attributed to the successful application of biocatalysts in industrial and synthetic processes requires a system that exhibits stability, activity, and reusability in a continuous flow process, thereby reducing the production cost. The main goal of this review is to display relevant approaches for improving enzyme characteristics to overcome their industrial application.
Collapse
Affiliation(s)
- Samah Hashim Albayati
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Nima Ghahremani Nezhad
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia
| | - Anmar Ghanim Taki
- Department of Radiology Techniques, Health and Medical Techniques College, Alnoor University, Mosul, Iraq
| | - Raja Noor Zaliha Raja Abd Rahman
- Enzyme and Microbial Technology Research Centre, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; Institute Bioscience, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
4
|
Martin E, Dubessay P, Record E, Audonnet F, Michaud P. Recent advances in laccase activity assays: A crucial challenge for applications on complex substrates. Enzyme Microb Technol 2024; 173:110373. [PMID: 38091836 DOI: 10.1016/j.enzmictec.2023.110373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
Despite being one of the first enzymes discovered in 1883, the determination of laccase activity remains a scientific challenge, and a barrier to the full use of laccase as a biocatalyst. Indeed, laccase, an oxidase of the blue multi-copper oxidases family, has a wide range of substrates including substituted phenols, aromatic amines and lignin-related compounds. Its one-electron mechanism requires only oxygen and releases water as a reaction product. These characteristics make laccase a biocatalyst of interest in many fields of applications including pulp and paper industry, biorefineries, food, textile, and pharmaceutical industries. But to fully envisage the use of laccase at an industrial scale, its activity must be reliably quantifiable on complex substrates and in complex matrices. This review aims to describe current and emerging methods for laccase activity assays and place them in the context of a potential industrial use of the enzyme.
Collapse
Affiliation(s)
- Elise Martin
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Pascal Dubessay
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Eric Record
- INRAE, Aix-Marseille Université, UMR1163, Biodiversité et Biotechnologie Fongiques, 13288 Marseille, France
| | - Fabrice Audonnet
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France
| | - Philippe Michaud
- Université Clermont Auvergne, Clermont Auvergne INP, CNRS, Institut Pascal, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
5
|
Jin J, Arciszewski J, Auclair K, Jia Z. Enzymatic polyethylene biorecycling: Confronting challenges and shaping the future. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132449. [PMID: 37690195 DOI: 10.1016/j.jhazmat.2023.132449] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/12/2023]
Abstract
Polyethylene (PE) is a widely used plastic known for its resistance to biodegradation, posing a significant environmental challenge. Recent advances have shed light on microorganisms and insects capable of breaking down PE and identified potential PE-degrading enzymes (PEases), hinting at the possibility of PE biorecycling. Research on enzymatic PE degradation is still in its early stages, especially compared to the progress made with polyethylene terephthalate (PET). While PET hydrolases have been extensively studied and engineered for improved performance, even the products of PEases remain mostly undefined. This Perspective analyzes the current state of enzymatic PE degradation research, highlighting obstacles in the search for bona fide PEases and suggesting areas for future exploration. A critical challenge impeding progress in this field stems from the inert nature of the C-C and C-H bonds of PE. Furthermore, breaking down PE into small molecules using only one monofunctional enzyme is theoretically impossible. Overcoming these obstacles requires identifying enzymatic pathways, which can be facilitated using emerging technologies like omics, structure-based design, and computer-assisted engineering of enzymes. Understanding the mechanisms underlying PE enzymatic biodegradation is crucial for research progress and for identifying potential solutions to the global plastic pollution crisis.
Collapse
Affiliation(s)
- Jin Jin
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada
| | - Jane Arciszewski
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Karine Auclair
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal QC H3A 0B8, Canada
| | - Zongchao Jia
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON KL7 3N6, Canada.
| |
Collapse
|
6
|
Dahiya M, Islam DT, Srivastava P, Sreekrishnan TR, Mishra S. Detoxification and decolorization of complex textile effluent in an enzyme membrane reactor: batch and continuous studies. Front Microbiol 2023; 14:1193875. [PMID: 37485538 PMCID: PMC10361525 DOI: 10.3389/fmicb.2023.1193875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 06/19/2023] [Indexed: 07/25/2023] Open
Abstract
There is an urgent need to look for bio-based technologies to address the pollution related to textile dyes in waterbodies. The aim of this study was to evaluate an engineered laccase variant, LCC1-62 of Cyathus bulleri, expressed in recombinant Pichia pastoris, for the decolorization and detoxification of real textile effluent. The partially purified laccase effectively (~60-100%) decolorized combined effluent from different dyeing units at a laccase concentration of 500 U/L at a 50-mL level. Decolorization and detoxification of the combined effluents, from a local textile mill, were evaluated at 0.3 L volumetric level in a ray-flow membrane reactor in batch and continuous modes of operation. In batch studies, maximum decolorization of 97% and detoxification of 96% occurred at a hydraulic retention time (HRT) of 6 h without any additional laccase requirement. In continuous studies, the reactor was operated at an HRT of 6 h with a lower enzyme dosage (~120 U/L of the effluent). Decolorization was accompanied by a loss in laccase activity which was restored to ~120 U/L by the addition of laccase in two regimes. The addition of laccase, when the residual laccase activity decreased to 40% (~50 U/L), resulted in high decolorization (~5 ppm residual dye concentration) and low variance (σ2) of 2.77, while laccase addition, when the residual dye concentration decreased to ~8% (~10 U/L), resulted in an average dye concentration of 13 ppm with a high variance of 62.08. The first regime was implemented, and the continuous reactor was operated for over 80 h at an HRT of 3 and 6 h, with the latter resulting in ~95% decolorization and 96% reduction in the mutagenicity of the effluent. Less than 10% membrane fouling was observed over long operations of the reactor. The findings strongly suggest the feasibility of using LCC1-62 in an enzyme membrane reactor for large-scale treatment of textile effluents.
Collapse
|
7
|
Tournier V, Duquesne S, Guillamot F, Cramail H, Taton D, Marty A, André I. Enzymes' Power for Plastics Degradation. Chem Rev 2023; 123:5612-5701. [PMID: 36916764 DOI: 10.1021/acs.chemrev.2c00644] [Citation(s) in RCA: 137] [Impact Index Per Article: 68.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Plastics are everywhere in our modern way of living, and their production keeps increasing every year, causing major environmental concerns. Nowadays, the end-of-life management involves accumulation in landfills, incineration, and recycling to a lower extent. This ecological threat to the environment is inspiring alternative bio-based solutions for plastic waste treatment and recycling toward a circular economy. Over the past decade, considerable efforts have been made to degrade commodity plastics using biocatalytic approaches. Here, we provide a comprehensive review on the recent advances in enzyme-based biocatalysis and in the design of related biocatalytic processes to recycle or upcycle commodity plastics, including polyesters, polyamides, polyurethanes, and polyolefins. We also discuss scope and limitations, challenges, and opportunities of this field of research. An important message from this review is that polymer-assimilating enzymes are very likely part of the solution to reaching a circular plastic economy.
Collapse
Affiliation(s)
- Vincent Tournier
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Sophie Duquesne
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| | - Frédérique Guillamot
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Henri Cramail
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Daniel Taton
- Université Bordeaux, CNRS, Bordeaux INP, LCPO, 16 Avenue Pey-Berland, 33600 Pessac, France
| | - Alain Marty
- Carbios, Parc Cataroux-Bâtiment B80, 8 rue de la Grolière, 63100 Clermont-Ferrand, France
| | - Isabelle André
- Toulouse Biotechnology Institute, TBI, Université de Toulouse, CNRS, INRAE, INSA, Toulouse, France, 135, avenue de Rangueil, F-31077 Toulouse Cedex 04, France
| |
Collapse
|
8
|
Barber-Zucker S, Mateljak I, Goldsmith M, Kupervaser M, Alcalde M, Fleishman SJ. Designed High-Redox Potential Laccases Exhibit High Functional Diversity. ACS Catal 2022; 12:13164-13173. [PMID: 36366766 PMCID: PMC9638991 DOI: 10.1021/acscatal.2c03006] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 09/29/2022] [Indexed: 11/29/2022]
Abstract
White-rot fungi secrete an impressive repertoire of high-redox potential laccases (HRPLs) and peroxidases for efficient oxidation and utilization of lignin. Laccases are attractive enzymes for the chemical industry due to their broad substrate range and low environmental impact. Since expression of functional recombinant HRPLs is challenging, however, iterative-directed evolution protocols have been applied to improve their expression, activity, and stability. We implement a rational, stabilize-and-diversify strategy to two HRPLs that we could not functionally express. First, we use the PROSS stability-design algorithm to allow functional expression in yeast. Second, we use the stabilized enzymes as starting points for FuncLib active-site design to improve their activity and substrate diversity. Four of the FuncLib-designed HRPLs and their PROSS progenitor exhibit substantial diversity in reactivity profiles against high-redox potential substrates, including lignin monomers. Combinations of 3-4 subtle mutations that change the polarity, solvation, and sterics of the substrate-oxidation site result in orders of magnitude changes in reactivity profiles. These stable and versatile HRPLs are a step toward generating an effective lignin-degrading consortium of enzymes that can be secreted from yeast. The stabilize-and-diversify strategy can be applied to other challenging enzyme families to study and expand the utility of natural enzymes.
Collapse
Affiliation(s)
- Shiran Barber-Zucker
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Ivan Mateljak
- Department
of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, Madrid 28049, Spain
- EvoEnzyme
S.L., Parque Científico de Madrid, C/Faraday, 7, Campus de Cantoblanco, Madrid 28049, Spain
| | - Moshe Goldsmith
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| | - Meital Kupervaser
- Nancy
and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot 7600001, Israel
| | - Miguel Alcalde
- Department
of Biocatalysis, Institute of Catalysis, CSIC, Cantoblanco, Madrid 28049, Spain
| | - Sarel J. Fleishman
- Department
of Biomolecular Sciences, Weizmann Institute
of Science, Rehovot 7600001, Israel
| |
Collapse
|
9
|
Varriale S, Delorme AE, Andanson JM, Devemy J, Malfreyt P, Verney V, Pezzella C. Enhancing the Thermostability of Engineered Laccases in Aqueous Betaine-Based Natural Deep Eutectic Solvents. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:572-581. [PMID: 35036179 PMCID: PMC8753991 DOI: 10.1021/acssuschemeng.1c07104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/16/2021] [Indexed: 06/02/2023]
Abstract
In recent years, natural deep eutectic solvents (NADESs) have gained increasing attention as promising nontoxic solvents for biotechnological applications, due to their compatibility with enzymes and ability to enhance their activity. Betaine-based NADESs at a concentration of 25 wt % in a buffered aqueous solution were used as media to inhibit thermal inactivation of POXA1b laccase and its five variants when incubated at 70 and 90 °C. All the tested laccases showed higher residual activity when incubated in NADES solutions, with a further enhancement achieved also for the most thermostable variant. Furthermore, the residual activity of laccases in the presence of NADESs showed a clear advantage over the use of NADESs' individual components. Molecular docking simulations were performed to understand the role of NADESs in the stabilization of laccases toward thermal inactivation, evaluating the interaction between each enzyme and NADESs' individual components. A correlation within the binding energies between laccases and NADES components and the stabilization of the enzymes was demonstrated. These findings establish the possibility of preincubating enzymes in NADESs as a facile and cost-effective solution to inhibit thermal inactivation of enzymes when exposed to high temperatures. This computer-aided approach can assist the tailoring of NADES composition for every enzyme of interest.
Collapse
Affiliation(s)
| | - Astrid E. Delorme
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Jean-Michel Andanson
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Julien Devemy
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Patrice Malfreyt
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Vincent Verney
- CNRS,
SIGMA Clermont, ICCF, Université
Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cinzia Pezzella
- Biopox
srl, Viale Maria Bakunin
12, Naples 80125, Italy
- Department
of Agricultural Sciences, University of
Naples “Federico II”, Via Università, 100 Portici 80055, Italy
| |
Collapse
|
10
|
Recombination of Single Beneficial Substitutions Obtained from Protein Engineering by Computer-Assisted Recombination (CompassR). Methods Mol Biol 2022; 2461:9-18. [PMID: 35727441 DOI: 10.1007/978-1-0716-2152-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
A large number of beneficial substitutions can be obtained from a successful directed enzyme evolution campaign and/or (semi)rational design. It is expected that the recombination of some beneficial substitutions leads to a much higher degree of performance through synergistic effect. However, systematic recombination studies show that poorly performing variants are often obtained after recombination of three to four individual beneficial substitutions and this limits protein engineers to exploit nature's potential in generating better performing enzymes. Computer-assisted Recombination (CompassR) strategy allows the recombination of identified beneficial substitutions in an effective and efficient manner in order to generate active enzymes with improved performance. Here, we describe in detail the CompassR procedure with an example of recombining four substitutions and discuss some important practical issues that should be considered (such as the selection of protein structures, number of FoldX runs, evaluation of calculations) for application of the CompassR rule. The core part of this protocol (system setup, ΔΔGfold calculation, and CompassR application) is transferable to other enzymes and any recombination of single beneficial substitutions.
Collapse
|
11
|
Yaguchi AL, Lee SJ, Blenner MA. Synthetic Biology towards Engineering Microbial Lignin Biotransformation. Trends Biotechnol 2021; 39:1037-1064. [PMID: 33712323 DOI: 10.1016/j.tibtech.2021.02.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 02/03/2021] [Accepted: 02/03/2021] [Indexed: 01/19/2023]
Abstract
Lignin is the second most abundant biopolymer on earth and is a major source of aromatic compounds; however, it is vastly underutilized owing to its heterogeneous and recalcitrant nature. Microorganisms have evolved efficient mechanisms that overcome these challenges to depolymerize lignin and funnel complex mixtures of lignin-derived monomers to central metabolites. This review summarizes recent synthetic biology efforts to enhance lignin depolymerization and aromatic catabolism in bacterial and fungal hosts for the production of both natural and novel bioproducts. We also highlight difficulties in engineering complex phenotypes and discuss the outlook for the future of lignin biological valorization.
Collapse
Affiliation(s)
- Allison L Yaguchi
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Stephen J Lee
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA
| | - Mark A Blenner
- Department of Chemical and Biomolecular Engineering, Clemson University, 206 South Palmetto Boulevard, Clemson, SC 29634, USA; Current address: Department of Chemical and Biomolecular Engineering, University of Delaware, 590 Avenue 1743, Newark, DE 19713, USA.
| |
Collapse
|
12
|
A Hybrid Microbial–Enzymatic Fuel Cell Cathode Overcomes Enzyme Inactivation Limits in Biological Fuel Cells. Catalysts 2021. [DOI: 10.3390/catal11020242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The construction of optimized biological fuel cells requires a cathode which combines the longevity of a microbial catalyst with the current density of an enzymatic catalyst. Laccase-secreting fungi were grown directly on the cathode of a biological fuel cell to facilitate the exchange of inactive enzymes with active enzymes, with the goal of extending the lifetime of laccase cathodes. Directly incorporating the laccase-producing fungus at the cathode extends the operational lifetime of laccase cathodes while eliminating the need for frequent replenishment of the electrolyte. The hybrid microbial–enzymatic cathode addresses the issue of enzyme inactivation by using the natural ability of fungi to exchange inactive laccases at the cathode with active laccases. Finally, enzyme adsorption was increased through the use of a functionally graded coating containing an optimized ratio of titanium dioxide nanoparticles and single-walled carbon nanotubes. The hybrid microbial–enzymatic fuel cell combines the higher current density of enzymatic fuel cells with the longevity of microbial fuel cells, and demonstrates the feasibility of a self-regenerating fuel cell in which inactive laccases are continuously exchanged with active laccases.
Collapse
|
13
|
Campbell IJ, Kahanda D, Atkinson JT, Sparks ON, Kim J, Tseng CP, Verduzco R, Bennett GN, Silberg JJ. Recombination of 2Fe-2S Ferredoxins Reveals Differences in the Inheritance of Thermostability and Midpoint Potential. ACS Synth Biol 2020; 9:3245-3253. [PMID: 33226772 DOI: 10.1021/acssynbio.0c00303] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Recombination can be used in the laboratory to overcome component limitations in synthetic biology by creating enzymes that exhibit distinct activities and stabilities from native proteins. To investigate how recombination affects the properties of an oxidoreductase that transfers electrons in cells, we created ferredoxin (Fd) chimeras by recombining distantly related cyanobacterial and cyanomyophage Fds (53% identity) that present similar midpoint potentials but distinct thermostabilities. Fd chimeras having a wide range of amino acid substitutions retained the ability to coordinate an iron-sulfur cluster, although their thermostabilities varied with the fraction of residues inherited from each parent. The midpoint potentials of chimeric Fds also varied. However, all of the synthetic Fds exhibited midpoint potentials outside of the parental protein range. Each of the chimeric Fds could also support electron transfer between Fd-NADP reductase and sulfite reductase in Escherichia coli, although the chimeric Fds varied in the expression required for similar levels of cellular electron transfer. These results show how Fds can be diversified through recombination and reveal differences in the inheritance of thermostability and electrochemical properties. Furthermore, they illustrate how electron transfer efficiencies of chimeric Fds can be rapidly evaluated using a synthetic metabolic pathway.
Collapse
Affiliation(s)
- Ian J. Campbell
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Dimithree Kahanda
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Joshua T. Atkinson
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Othneil Noble Sparks
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Jinyoung Kim
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
| | - Chia-Ping Tseng
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Rafael Verduzco
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - George N. Bennett
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, 6100 Main Street, MS-140, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, 6100 Main Street, MS-362, Houston, Texas 77005, United States
- Department of Bioengineering, Rice University, 6100 Main Street, MS-142, Houston, Texas 77005, United States
| |
Collapse
|
14
|
Viña-Gonzalez J, Alcalde M. In vivo site-directed recombination (SDR): An efficient tool to reveal beneficial epistasis. Methods Enzymol 2020; 643:1-13. [PMID: 32896276 DOI: 10.1016/bs.mie.2020.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Employing the homologous DNA recombination apparatus of Saccharomyces cerevisiae as a dynamic engineering tool allows mutant libraries to be constructed in a rapid and efficient manner. Among the plethora of methods based on the yeast's splicing apparatus, site-directed recombination (SDR) is often useful to gather information from mutations discovered in directed evolution experiments. When using SDR, the target gene is divided in segments carrying the selected mutation positions so that the resulting PCR fragments show 50% mutated and 50% wild type residues at the codons of interest. The PCR products are then assembled and cloned into yeast through one-pot transformations with the help of homologous overlapping flanking regions. By screening SDR libraries, the effect of the mutations/reversions at the different positions can be rapidly sorted out in a combinatorial manner. As such, SDR can serve as the `final polishing step´ in a laboratory evolution campaign, revealing beneficial synergies among mutations and/or overriding deleterious mutations. In practice, using SDR it is possible to discern between beneficial and negative epistasis, that is, it should be possible to collect positive synergistic mutations while discarding detrimental substitutions that affect the enzyme's fitness.
Collapse
Affiliation(s)
- Javier Viña-Gonzalez
- Department of Biocatalysis, Institute of Catalysis, Madrid, Spain; EvoEnzyme S.L, C/Marie Curie nº2, Madrid, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, Madrid, Spain; EvoEnzyme S.L, C/Marie Curie nº2, Madrid, Spain.
| |
Collapse
|
15
|
Gomez-Fernandez BJ, Risso VA, Rueda A, Sanchez-Ruiz JM, Alcalde M. Ancestral Resurrection and Directed Evolution of Fungal Mesozoic Laccases. Appl Environ Microbiol 2020; 86:e00778-20. [PMID: 32414792 PMCID: PMC7357490 DOI: 10.1128/aem.00778-20] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 05/07/2020] [Indexed: 12/22/2022] Open
Abstract
Ancestral sequence reconstruction and resurrection provides useful information for protein engineering, yet its alliance with directed evolution has been little explored. In this study, we have resurrected several ancestral nodes of fungal laccases dating back ∼500 to 250 million years. Unlike modern laccases, the resurrected Mesozoic laccases were readily secreted by yeast, with similar kinetic parameters, a broader stability, and distinct pH activity profiles. The resurrected Agaricomycetes laccase carried 136 ancestral mutations, a molecular testimony to its origin, and it was subjected to directed evolution in order to improve the rate of 1,3-cyclopentanedione oxidation, a β-diketone initiator commonly used in vinyl polymerization reactions.IMPORTANCE The broad variety of biotechnological uses of fungal laccases is beyond doubt (food, textiles, pulp and paper, pharma, biofuels, cosmetics, and bioremediation), and protein engineering (in particular, directed evolution) has become the key driver for adaptation of these enzymes to harsh industrial conditions. Usually, the first requirement for directed laccase evolution is heterologous expression, which presents an important hurdle and often a time-consuming process. In this work, we resurrected a fungal Mesozoic laccase node which showed strikingly high heterologous expression and pH stability. As a proof of concept that the ancestral laccase is a suitable blueprint for engineering, we performed a quick directed evolution campaign geared to the oxidation of the β-diketone 1,3-cyclopentanedione, a poor laccase substrate that is used in the polymerization of vinyl monomers.
Collapse
Affiliation(s)
- Bernardo J Gomez-Fernandez
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| | - Valeria A Risso
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Andres Rueda
- INRS-Institut Armand-Frappier, Université du Québec, Laval, Quebec, Canada
| | - Jose M Sanchez-Ruiz
- Departamento de Química Física, Facultad de Ciencias, Universidad de Granada, Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis and Petrochemistry, CSIC, Madrid, Spain
- EvoEnzyme, S.L., Madrid, Spain
| |
Collapse
|
16
|
Non-Hydrolyzable Plastics - An Interdisciplinary Look at Plastic Bio-Oxidation. Trends Biotechnol 2020; 39:12-23. [PMID: 32487438 DOI: 10.1016/j.tibtech.2020.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 05/01/2020] [Accepted: 05/04/2020] [Indexed: 12/15/2022]
Abstract
Enzymatic plastic conversion has emerged recently as a potential adjunct and alternative to conventional plastic waste management technology. Publicity over progress in the enzymatic degradation of polyesters largely neglects that the majority of commercial plastics, including polyethylene, polypropylene, polystyrene and polyvinyl chloride, are still not biodegradable. Details about the mechanisms used by enzymes and an understanding of macromolecular factors influencing these have proved to be vital in developing biodegradation methods for polyesters. To expand the application of enzymatic degradation to other more recalcitrant plastics, extensive knowledge gaps need to be addressed. By drawing on interdisciplinary knowledge, we suggest that physicochemical influences also have a crucial impact on reactions in less well-studied types of plastic, and these need to be investigated in detail.
Collapse
|
17
|
Gomez-Fernandez BJ, Risso VA, Sanchez-Ruiz JM, Alcalde M. Consensus Design of an Evolved High-Redox Potential Laccase. Front Bioeng Biotechnol 2020; 8:354. [PMID: 32435637 PMCID: PMC7218104 DOI: 10.3389/fbioe.2020.00354] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2019] [Accepted: 03/30/2020] [Indexed: 12/23/2022] Open
Abstract
Among the broad repertory of protein engineering methods that set out to improve stability, consensus design has proved to be a powerful strategy to stabilize enzymes without compromising their catalytic activity. Here, we have applied an in-house consensus method to stabilize a laboratory evolved high-redox potential laccase. Multiple sequence alignments were carried out and computationally refined by applying relative entropy and mutual information thresholds. Through this approach, an ensemble of 20 consensus mutations were identified, 18 of which were consensus/ancestral mutations. The set of consensus variants was produced in Saccharomyces cerevisiae and analyzed individually, while site directed recombination of the best mutations did not produce positive epistasis. The best single variant carried the consensus-ancestral A240G mutation in the neighborhood of the T2/T3 copper cluster, which dramatically improved thermostability, kinetic parameters and secretion.
Collapse
Affiliation(s)
| | - Valeria A Risso
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, Granada, Spain
| | - Jose M Sanchez-Ruiz
- Facultad de Ciencias, Departamento de Química Física, Universidad de Granada, Granada, Spain
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis, CSIC, Madrid, Spain
| |
Collapse
|
18
|
Liu Y, Luo G, Ngo HH, Guo W, Zhang S. Advances in thermostable laccase and its current application in lignin-first biorefinery: A review. BIORESOURCE TECHNOLOGY 2020; 298:122511. [PMID: 31839492 DOI: 10.1016/j.biortech.2019.122511] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
As the most abundant aromatic polymers on the Earth, lignin has great potential to produce biofuels and aromatic chemicals due to their high carbon content and low oxygen content. Lignin-first biorefinery methods have attracted increasing attention recently for their high-value of aromatic chemicals, and high biofuels productivity from lignocellulosic wastes. Thermostable laccase has proven to be an excellent alternative catalyst in degrading lignin for its versatile catalytic abilities under industrial conditions and pollution-free by-products. Thermostable laccases can be found in native extreme environments or modified by biologically based technologies such as gene recombination expression and enzyme direct evolution. This review demonstrated thermostable laccases and their application in lignin degradation. Future research should focus more on the investigation of the reaction of thermostable laccases with lignin substrates.
Collapse
Affiliation(s)
- Yi Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, New South Wales 2007, Australia
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
19
|
Cui H, Cao H, Cai H, Jaeger K, Davari MD, Schwaneberg U. Computer-Assisted Recombination (CompassR) Teaches us How to Recombine Beneficial Substitutions from Directed Evolution Campaigns. Chemistry 2020; 26:643-649. [PMID: 31553080 PMCID: PMC7003928 DOI: 10.1002/chem.201903994] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Indexed: 01/09/2023]
Abstract
A main remaining challenge in protein engineering is how to recombine beneficial substitutions. Systematic recombination studies show that poorly performing variants are usually obtained after recombination of 3 to 4 beneficial substitutions. This limits researchers in exploiting nature's potential in generating better enzymes. The Computer-assisted Recombination (CompassR) strategy provides a selection guide for beneficial substitutions that can be recombined to gradually improve enzyme performance by analysis of the relative free energy of folding (ΔΔGfold ). The performance of CompassR was evaluated by analysis of 84 recombinants located on 13 positions of Bacillus subtilis lipase A. The finally obtained variant F17S/V54K/D64N/D91E had a 2.7-fold improved specific activity in 18.3 % (v/v) 1-butyl-3-methylimidazolium chloride ([BMIM][Cl]). In essence, the deducted CompassR rule allows recombination of beneficial substitutions in an iterative manner and empowers researchers to generate better enzymes in a time-efficient manner.
Collapse
Affiliation(s)
- Haiyang Cui
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Hao Cao
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Beijing Bioprocess Key Laboratory and College of Life Science and TechnologyBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Haiying Cai
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Karl‐Erich Jaeger
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- Institute of Molecular Enzyme TechnologyHeinrich Heine University Düsseldorf and Research Center Jülich, Wilhelm Johnen Strasse52426JülichGermany
| | - Mehdi D. Davari
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
| | - Ulrich Schwaneberg
- Institute of BiotechnologyRWTH Aachen UniversityWorringer Weg 352074AachenGermany
- DWI Leibniz-Institute for Interactive MaterialsForckenbeckstrasse 5052074AachenGermany
| |
Collapse
|
20
|
Stanzione I, Pezzella C, Giardina P, Sannia G, Piscitelli A. Beyond natural laccases: extension of their potential applications by protein engineering. Appl Microbiol Biotechnol 2019; 104:915-924. [DOI: 10.1007/s00253-019-10147-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/06/2019] [Accepted: 09/17/2019] [Indexed: 11/28/2022]
|
21
|
Arregui L, Ayala M, Gómez-Gil X, Gutiérrez-Soto G, Hernández-Luna CE, Herrera de los Santos M, Levin L, Rojo-Domínguez A, Romero-Martínez D, Saparrat MCN, Trujillo-Roldán MA, Valdez-Cruz NA. Laccases: structure, function, and potential application in water bioremediation. Microb Cell Fact 2019; 18:200. [PMID: 31727078 PMCID: PMC6854816 DOI: 10.1186/s12934-019-1248-0] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Accepted: 10/31/2019] [Indexed: 11/11/2022] Open
Abstract
The global rise in urbanization and industrial activity has led to the production and incorporation of foreign contaminant molecules into ecosystems, distorting them and impacting human and animal health. Physical, chemical, and biological strategies have been adopted to eliminate these contaminants from water bodies under anthropogenic stress. Biotechnological processes involving microorganisms and enzymes have been used for this purpose; specifically, laccases, which are broad spectrum biocatalysts, have been used to degrade several compounds, such as those that can be found in the effluents from industries and hospitals. Laccases have shown high potential in the biotransformation of diverse pollutants using crude enzyme extracts or free enzymes. However, their application in bioremediation and water treatment at a large scale is limited by the complex composition and high salt concentration and pH values of contaminated media that affect protein stability, recovery and recycling. These issues are also associated with operational problems and the necessity of large-scale production of laccase. Hence, more knowledge on the molecular characteristics of water bodies is required to identify and develop new laccases that can be used under complex conditions and to develop novel strategies and processes to achieve their efficient application in treating contaminated water. Recently, stability, efficiency, separation and reuse issues have been overcome by the immobilization of enzymes and development of novel biocatalytic materials. This review provides recent information on laccases from different sources, their structures and biochemical properties, mechanisms of action, and application in the bioremediation and biotransformation of contaminant molecules in water. Moreover, we discuss a series of improvements that have been attempted for better organic solvent tolerance, thermo-tolerance, and operational stability of laccases, as per process requirements.
Collapse
Affiliation(s)
- Leticia Arregui
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Marcela Ayala
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001 Chamilpa, 62210 Cuernavaca, Morelos Mexico
| | - Ximena Gómez-Gil
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Guadalupe Gutiérrez-Soto
- Facultad de Agronomía, Universidad Autónoma de Nuevo León, Francisco Villa, 66059 Colonia Ex hacienda El Canadá, General Escobedo, Nuevo León Mexico
| | - Carlos Eduardo Hernández-Luna
- Laboratorio de Enzimología, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, Pedro de Alba y Manuel L. Barragán, Cd. Universitaria, 66451 San Nicolás de los Garza, Nuevo León Mexico
| | - Mayra Herrera de los Santos
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Laura Levin
- Laboratorio de Micología Experimental, DBBE, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, INMIBO-CONICET, Ciudad Universitaria, Pabellón 2, Piso 4, C1428BGA Ciudad Autónoma de Buenos Aires, Argentina
| | - Arturo Rojo-Domínguez
- Departamento de Ciencias Naturales, Universidad Autónoma Metropolitana, Unidad Cuajimalpa, Av. Vasco de Quiroga 4871, Col. Santa Fe Cuajimalpa, C.P. 05348 Mexico City, Mexico
| | - Daniel Romero-Martínez
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Mario C. N. Saparrat
- Instituto de Fisiología Vegetal (INFIVE), Universidad Nacional de La Plata (UNLP)-CCT-La Plata-Consejo Nacional de Investigaciones Científicas y técnicas (CONICET), Diag. 113 y 61, 327CC, 1900, La Plata, Argentina
- Instituto de Botánica Spegazzini, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, 53 # 477, 1900, La Plata, Argentina
| | - Mauricio A. Trujillo-Roldán
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| | - Norma A. Valdez-Cruz
- Programa de Investigación de Producción de Biomoléculas, Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, AP. 70228, Mexico City, CP. 04510 Mexico
| |
Collapse
|
22
|
Li C, Chen C, Wu X, Tsang CW, Mou J, Yan J, Liu Y, Lin CSK. Recent advancement in lignin biorefinery: With special focus on enzymatic degradation and valorization. BIORESOURCE TECHNOLOGY 2019; 291:121898. [PMID: 31395402 DOI: 10.1016/j.biortech.2019.121898] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/22/2019] [Accepted: 07/23/2019] [Indexed: 05/07/2023]
Abstract
With the intensive development of lignocellulosic biorefineries to produce fuels and chemicals from biomass-derived carbohydrates, lignin was generated at a large quantity every year. Therefore, lignin has received increasing attention as an abundant aromatics resource in terms of research and development efforts for value-added chemicals production. In this review, studies about lignin degradation especially the crucial enzymes involved and the reaction mechanism were substantially discussed, which provided the molecular basis of lignin biodegradation. Then, the latest improvements in lignin valorization by biological methods were summarized and case studies about value-added compounds from lignin were introduced. Afterwards, challenges, opportunities and prospects regarding biorefinery of lignin were presented.
Collapse
Affiliation(s)
- Chong Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Chao Chen
- BioZone, Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON M5S 3E5, Canada
| | - Xiaofen Wu
- Hunan Institute of Nuclear Agricultural Science and Space Breeding, Hunan Academy of Agricultural Sciences, Changsha, Hunan 410125, People's Republic of China
| | - Chi-Wing Tsang
- Faculty of Science and Technology, Technological and Higher Education Institute of Hong Kong, Hong Kong, China
| | - Jinhua Mou
- School of Energy and Environment, City University of Hong Kong, Hong Kong
| | - Jianbin Yan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, People's Republic of China
| | - Yun Liu
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong.
| |
Collapse
|
23
|
Enhancing thermostability by modifying flexible surface loops in an evolved high‐redox potential laccase. AIChE J 2019. [DOI: 10.1002/aic.16747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|