1
|
Ma Q, Yi J, Tang Y, Geng Z, Zhang C, Sun W, Liu Z, Xiong W, Wu H, Xie X. Co-utilization of carbon sources in microorganisms for the bioproduction of chemicals. Biotechnol Adv 2024; 73:108380. [PMID: 38759845 DOI: 10.1016/j.biotechadv.2024.108380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/14/2024] [Accepted: 05/14/2024] [Indexed: 05/19/2024]
Abstract
Carbon source is crucial for the cell growth and metabolism in microorganisms, and its utilization significantly affects the synthesis efficiency of target products in microbial cell factories. Compared with a single carbon source, co-utilizing carbon sources provide an alternative approach to optimize the utilization of different carbon sources for efficient biosynthesis of many chemicals with higher titer/yield/productivity. However, the efficiency of bioproduction is significantly limited by the sequential utilization of a preferred carbon source and secondary carbon sources, attributed to carbon catabolite repression (CCR). This review aimed to introduce the mechanisms of CCR and further focus on the summary of the strategies for co-utilization of carbon sources, including alleviation of CCR, engineering of the transport and metabolism of secondary carbon sources, compulsive co-utilization in single culture, co-utilization of carbon sources via co-culture, and evolutionary approaches. The findings of representative studies with a significant improvement in the bioproduction of chemicals via the co-utilization of carbon sources were discussed in this review. It suggested that by combining rational metabolic engineering and irrational evolutionary approaches, co-utilizing carbon sources can significantly contribute to the bioproduction of chemicals.
Collapse
Affiliation(s)
- Qian Ma
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinhang Yi
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Yulin Tang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zihao Geng
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Chunyue Zhang
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenchao Sun
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhengkai Liu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Wenwen Xiong
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Heyun Wu
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Xixian Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, Tianjin 300457, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; National and Local United Engineering Lab of Metabolic Control Fermentation Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
2
|
Liu Y, Xue B, Liu H, Wang S, Su H. Rational construction of synthetic consortia: Key considerations and model-based methods for guiding the development of a novel biosynthesis platform. Biotechnol Adv 2024; 72:108348. [PMID: 38531490 DOI: 10.1016/j.biotechadv.2024.108348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/07/2024] [Accepted: 03/13/2024] [Indexed: 03/28/2024]
Abstract
The rapid development of synthetic biology has significantly improved the capabilities of mono-culture systems in converting different substrates into various value-added bio-chemicals through metabolic engineering. However, overexpression of biosynthetic pathways in recombinant strains can impose a heavy metabolic burden on the host, resulting in imbalanced energy distribution and negatively affecting both cell growth and biosynthesis capacity. Synthetic consortia, consisting of two or more microbial species or strains with complementary functions, have emerged as a promising and efficient platform to alleviate the metabolic burden and increase product yield. However, research on synthetic consortia is still in its infancy, with numerous challenges regarding the design and construction of stable synthetic consortia. This review provides a comprehensive comparison of the advantages and disadvantages of mono-culture systems and synthetic consortia. Key considerations for engineering synthetic consortia based on recent advances are summarized, and simulation and computational tools for guiding the advancement of synthetic consortia are discussed. Moreover, further development of more efficient and cost-effective synthetic consortia with emerging technologies such as artificial intelligence and machine learning is highlighted.
Collapse
Affiliation(s)
- Yu Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Boyuan Xue
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Hao Liu
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Haijia Su
- Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
3
|
Xue B, Liu Y, Yang C, Liu H, Yuan Q, Wang S, Su H. Co-Cultivated Enzyme Constraint Metabolic Network Model for Rational Guidance in Constructing Synthetic Consortia to Achieve Optimal Pathway Allocation Prediction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306662. [PMID: 38093511 PMCID: PMC10916542 DOI: 10.1002/advs.202306662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 10/23/2023] [Indexed: 03/07/2024]
Abstract
Synthetic consortia have emerged as a promising biosynthetic platform that offers new opportunities for biosynthesis. Genome-scale metabolic network models (GEMs) with complex constraints are extensively utilized to guide the synthesis in monocultures. However, few methods are currently available to guide the rational construction of synthetic consortia for predicting the optimal allocation strategy of synthetic pathways aimed at enhancing product synthesis. A standardized method to construct the co-cultivated Enzyme Constraint metabolic network model (CulECpy) is proposed, which integrates enzyme constraints and modular interaction scale constraints based on the research concept of "independent + global". This method is applied to construct several synthetic consortia models, which encompassed different target products, strains, synthetic pathways, and compositional structures. Analyzing the model, the optimal pathway allocation and initial inoculum ratio that enhance the synthesis of target products by synthetic consortia are predicted and verified. When comparing with the constructed co-culture synthesis system, the normalized root mean square error of all optimal theoretical yield simulations is found to be less than or equal to 0.25. The analyses and verifications demonstrate that the method CulECpy can guide the rational construction of synthetic consortia systems to facilitate biochemical synthesis.
Collapse
Affiliation(s)
- Boyuan Xue
- Beijing Key Laboratory of Bioprocessand Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Yu Liu
- Beijing Key Laboratory of Bioprocessand Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Chen Yang
- Beijing Key Laboratory of Bioprocessand Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Hao Liu
- Beijing Key Laboratory of Bioprocessand Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Qianqian Yuan
- Biodesign CenterKey Laboratory of Engineering Biology for Low‐carbon ManufacturingTianjin Institute of Industrial BiotechnologyChinese Academy of SciencesTianjin300308P. R. China
| | - Shaojie Wang
- Beijing Key Laboratory of Bioprocessand Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| | - Haijia Su
- Beijing Key Laboratory of Bioprocessand Beijing Advanced Innovation Center for Soft Matter Science and EngineeringBeijing University of Chemical TechnologyBeijing100029P. R. China
| |
Collapse
|
4
|
Liu A, Machas M, Mhatre A, Hajinajaf N, Sarnaik A, Nichols N, Frazer S, Wang X, Varman AM, Nielsen DR. Synergistic co-utilization of biomass-derived sugars enhances aromatic amino acid production by engineered Escherichia coli. Biotechnol Bioeng 2024; 121:784-794. [PMID: 37926950 DOI: 10.1002/bit.28585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/30/2023] [Accepted: 10/18/2023] [Indexed: 11/07/2023]
Abstract
Efficient co-utilization of mixed sugar feedstocks remains a biomanufacturing challenge, thus motivating ongoing efforts to engineer microbes for improved conversion of glucose-xylose mixtures. This study focuses on enhancing phenylalanine production by engineering Escherichia coli to efficiently co-utilize glucose and xylose. Flux balance analysis identified E4P flux as a bottleneck which could be alleviated by increasing the xylose-to-glucose flux ratio. A mutant copy of the xylose-specific activator (XylR) was then introduced into the phenylalanine-overproducing E. coli NST74, which relieved carbon catabolite repression and enabled efficient glucose-xylose co-utilization. Carbon contribution analysis through 13 C-fingerprinting showed a higher preference for xylose in the engineered strain (NST74X), suggesting superior catabolism of xylose relative to glucose. As a result, NST74X produced 1.76 g/L phenylalanine from a model glucose-xylose mixture; a threefold increase over NST74. Then, using biomass-derived sugars, NST74X produced 1.2 g/L phenylalanine, representing a 1.9-fold increase over NST74. Notably, and consistent with the carbon contribution analysis, the xylR* mutation resulted in a fourfold greater maximum rate of xylose consumption without significantly impeding the maximum rate of total sugar consumption (0.87 vs. 0.70 g/L-h). This study presents a novel strategy for enhancing phenylalanine production through the co-utilization of glucose and xylose in aerobic E. coli cultures, and highlights the potential synergistic benefits associated with using substrate mixtures over single substrates when targeting specific products.
Collapse
Affiliation(s)
- Arren Liu
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Michael Machas
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Apurv Mhatre
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Nima Hajinajaf
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Aditya Sarnaik
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - Nancy Nichols
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, Illinois, USA
| | - Sarah Frazer
- US Department of Agriculture, Agricultural Research Service, National Center for Agricultural Utilization Research, Peoria, Illinois, USA
| | - Xuan Wang
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Arul M Varman
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| | - David R Nielsen
- Biological Design Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
- Chemical Engineering Program, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
5
|
Qiu Y, Lei P, Wang R, Sun L, Luo Z, Li S, Xu H. Kluyveromyces as promising yeast cell factories for industrial bioproduction: From bio-functional design to applications. Biotechnol Adv 2023; 64:108125. [PMID: 36870581 DOI: 10.1016/j.biotechadv.2023.108125] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/26/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
As the two most widely used Kluyveromyces yeast, Kluyveromyces marxianus and K. lactis have gained increasing attention as microbial chassis in biocatalysts, biomanufacturing and the utilization of low-cost raw materials owing to their high suitability to these applications. However, due to slow progress in the development of molecular genetic manipulation tools and synthetic biology strategies, Kluyveromyces yeast cell factories as biological manufacturing platforms have not been fully developed. In this review, we provide a comprehensive overview of the attractive characteristics and applications of Kluyveromyces cell factories, with special emphasis on the development of molecular genetic manipulation tools and systems engineering strategies for synthetic biology. In addition, future avenues in the development of Kluyveromyces cell factories for the utilization of simple carbon compounds as substrates, the dynamic regulation of metabolic pathways, and for rapid directed evolution of robust strains are proposed. We expect that more synthetic systems, synthetic biology tools and metabolic engineering strategies will adapt to and optimize for Kluyveromyces cell factories to achieve green biofabrication of multiple products with higher efficiency.
Collapse
Affiliation(s)
- Yibin Qiu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Rui Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Liang Sun
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Zhengshan Luo
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Sha Li
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| | - Hong Xu
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, PR China; State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China.
| |
Collapse
|
6
|
Akdemir H, Liu Y, Zhuang L, Zhang H, Koffas MAG. Utilization of microbial cocultures for converting mixed substrates to valuable bioproducts. Curr Opin Microbiol 2022; 68:102157. [DOI: 10.1016/j.mib.2022.102157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/26/2022] [Accepted: 04/21/2022] [Indexed: 11/03/2022]
|
7
|
VanArsdale E, Pitzer J, Wang S, Stephens K, Chen CY, Payne GF, Bentley WE. Electrogenetic Signal Transmission and Propagation in Coculture to Guide Production of a Small Molecule, Tyrosine. ACS Synth Biol 2022; 11:877-887. [PMID: 35113532 DOI: 10.1021/acssynbio.1c00522] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
There are many strategies to actuate and control genetic circuits, including providing stimuli like exogenous chemical inducers, light, magnetic fields, and even applied voltage, that are orthogonal to metabolic activity. Their use enables actuation of gene expression for the production of small molecules and proteins in many contexts. Additionally, there are a growing number of reports wherein cocultures, consortia, or even complex microbiomes are employed for the production of biologics, taking advantage of an expanded array of biological function. Combining stimuli-responsive engineered cell populations enhances design space but increases complexity. In this work, we co-opt nature's redox networks and electrogenetically route control signals into a consortium of microbial cells engineered to produce a model small molecule, tyrosine. In particular, we show how electronically programmed short-lived signals (i.e., hydrogen peroxide) can be transformed by one population and propagated into sustained longer-distance signals that, in turn, guide tyrosine production in a second population building on bacterial quorum sensing that coordinates their collective behavior. Two design methodologies are demonstrated. First, we use electrogenetics to transform redox signals into the quorum sensing autoinducer, AI-1, that, in turn, induces a tyrosine biosynthesis pathway transformed into a second population. Second, we use the electrogenetically stimulated AI-1 to actuate expression of ptsH, boosting the growth rate of tyrosine-producing cells, augmenting both their number and metabolic activity. In both cases, we show how signal propagation within the coculture helps to ensure tyrosine production. We suggest that this work lays a foundation for employing electrochemical stimuli and engineered cocultures for production of molecular products in biomanufacturing environments.
Collapse
Affiliation(s)
- Eric VanArsdale
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Juliana Pitzer
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Sally Wang
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Kristina Stephens
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Chen-yu Chen
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Gregory F. Payne
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - William E. Bentley
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Maryland 20742, United States
- Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
8
|
Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HMN. Bioengineered microbial platforms for biomass-derived biofuel production - A review. CHEMOSPHERE 2022; 288:132528. [PMID: 34637864 DOI: 10.1016/j.chemosphere.2021.132528] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
Abstract
Global warming issues, rapid fossil fuel diminution, and increasing worldwide energy demands have diverted accelerated attention in finding alternate sources of biofuels and energy to combat the energy crisis. Bioconversion of lignocellulosic biomass has emerged as a prodigious way to produce various renewable biofuels such as biodiesel, bioethanol, biogas, and biohydrogen. Ideal microbial hosts for biofuel synthesis should be capable of using high substrate quantity, tolerance to inhibiting substances and end-products, fast sugar transportation, and amplified metabolic fluxes to yielding enhanced fermentative bioproduct. Genetic manipulation and microbes' metabolic engineering are fascinating strategies for the economical production of next-generation biofuel from lignocellulosic feedstocks. Metabolic engineering is a rapidly developing approach to construct robust biofuel-producing microbial hosts and an important component for future bioeconomy. This approach has been widely adopted in the last decade for redirecting and revamping the biosynthetic pathways to obtain a high titer of target products. Biotechnologists and metabolic scientists have produced a wide variety of new products with industrial relevance through metabolic pathway engineering or optimizing native metabolic pathways. This review focuses on exploiting metabolically engineered microbes as promising cell factories for the enhanced production of advanced biofuels.
Collapse
Affiliation(s)
- Hedong Lu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China; School of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | - Vivek Yadav
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, 712100, China
| | - Mengyuan Zhong
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an, Jiangsu, 223003, China.
| | | | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico.
| |
Collapse
|
9
|
Cheng HH, Whang LM. Resource recovery from lignocellulosic wastes via biological technologies: Advancements and prospects. BIORESOURCE TECHNOLOGY 2022; 343:126097. [PMID: 34626758 DOI: 10.1016/j.biortech.2021.126097] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/13/2023]
Abstract
Lignocellulosic wastes were recently considered as biomass resources, however, its conversion to valuable products is still immature although researchers have put lots of effort into this issue. This article reviews the key challenges of the biorefinery utilizing lignocellulosic materials and recent developments to conquer those obstacles. Available biological techniques and processes, from the pretreatments of cellulosic materials to the valorization processes, were emphasized. Biological pretreatments, including hydrolysis using microbial consortia, fungi, enzymes, engineered bacterial/fungal strains, and co-culture systems, could enhance the release of reducing sugar. Resources recovery, including biogases, ethanol, butanol, PHA, etc., from lignocellulosic materials were also discussed, while the influences of composition of lignocellulosic materials and pretreatment options, applications of co-culture system, and integrated treatments with other wastes, were described. In the review, co-culture system and metabolic engineering are emphasized as the promising biological technologies, while perspectives are provided for their future developments.
Collapse
Affiliation(s)
- Hai-Hsuan Cheng
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University, No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
10
|
Liao YL, Niu FX, Liu JZ. Recent Progress in Microbial Biosynthesis by Coculture Engineering. APPL BIOCHEM MICRO+ 2021. [DOI: 10.1134/s0003683821100033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
11
|
Kim J, Hwang S, Lee SM. Metabolic engineering for the utilization of carbohydrate portions of lignocellulosic biomass. Metab Eng 2021; 71:2-12. [PMID: 34626808 DOI: 10.1016/j.ymben.2021.10.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 09/16/2021] [Accepted: 10/03/2021] [Indexed: 01/01/2023]
Abstract
The petrochemical industry has grown to meet the need for massive production of energy and commodities along with an explosive population growth; however, serious side effects such as greenhouse gas emissions and global warming have negatively impacted the environment. Lignocellulosic biomass with myriad quantities on Earth is an attractive resource for the production of carbon-neutral fuels and chemicals through environmentally friendly processes of microbial fermentation. This review discusses metabolic engineering efforts to achieve economically feasible industrial production of fuels and chemicals from microbial cell factories using the carbohydrate portion of lignocellulosic biomass as substrates. The combined knowledge of systems biology and metabolic engineering has been applied to construct robust platform microorganisms with maximum conversion of monomeric sugars, such as glucose and xylose, derived from lignocellulosic biomass. By comprehensively revisiting carbon conversion pathways, we provide a rationale for engineering strategies, as well as their features, feasibility, and recent representative studies. In addition, we briefly discuss how tools in systems biology can be applied in the field of metabolic engineering to accelerate the development of microbial cell factories that convert lignocellulosic biomass into carbon-neutral fuels and chemicals with economic feasibility.
Collapse
Affiliation(s)
- Jiwon Kim
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Department of Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Sungmin Hwang
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun-Mi Lee
- Clean Energy Research Center, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea; Clean Energy and Chemical Engineering, University of Science and Technology, Daejeon, 34113, Republic of Korea; Green School (Graduate School of Energy and Environment), Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
12
|
Kurgan G, Onyeabor M, Holland SC, Taylor E, Schneider A, Kurgan L, Billings T, Wang X. Directed evolution of Zymomonas mobilis sugar facilitator Glf to overcome glucose inhibition. J Ind Microbiol Biotechnol 2021; 49:6371102. [PMID: 34529081 PMCID: PMC9118996 DOI: 10.1093/jimb/kuab066] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/04/2021] [Indexed: 12/01/2022]
Abstract
Cellular import of D-xylose, the second most abundant sugar in typical lignocellulosic biomass, has been evidenced to be an energy-depriving process in bacterial biocatalysts. The sugar facilitator of Zymomonas mobilis, Glf, is capable of importing xylose at high rates without extra energy input, but is inhibited by D-glucose (the primary biomass sugar), potentially limiting the utility of this transporter for fermentation of sugar mixtures derived from lignocellulose. In this work we developed an Escherichia coli platform strain deficient in glucose and xylose transport to facilitate directed evolution of Glf to overcome glucose inhibition. Using this platform, we isolated nine Glf variants created by both random and site-saturation mutagenesis with increased xylose utilization rates ranging from 4.8-fold to 13-fold relative to wild-type Glf when fermenting 100 g l–1 glucose–xylose mixtures. Diverse point mutations such as A165M and L445I were discovered leading to released glucose inhibition. Most of these mutations likely alter sugar coordinating pocket for the 6-hydroxymethyl group of D-glucose. These discovered glucose-resistant Glf variants can be potentially used as energy-conservative alternatives to the native sugar transport systems of bacterial biocatalysts for fermentation of lignocellulose-derived sugars.
Collapse
Affiliation(s)
- Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Steven C Holland
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Eric Taylor
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Aidan Schneider
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Logan Kurgan
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Tommy Billings
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| |
Collapse
|
13
|
Flores AD, Holland SC, Mhatre A, Sarnaik AP, Godar A, Onyeabor M, Varman AM, Wang X, Nielsen DR. A coculture-coproduction system designed for enhanced carbon conservation through inter-strain CO 2 recycling. Metab Eng 2021; 67:387-395. [PMID: 34365009 DOI: 10.1016/j.ymben.2021.08.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 07/08/2021] [Accepted: 08/04/2021] [Indexed: 11/30/2022]
Abstract
Carbon loss in the form of CO2 is an intrinsic and persistent challenge faced during conventional and advanced biofuel production from biomass feedstocks. Current mechanisms for increasing carbon conservation typically require the provision of reduced co-substrates as additional reducing equivalents. This need can be circumvented, however, by exploiting the natural heterogeneity of lignocellulosic sugars mixtures and strategically using specific fractions to drive complementary CO2 emitting vs. CO2 fixing pathways. As a demonstration of concept, a coculture-coproduction system was developed by pairing two catabolically orthogonal Escherichia coli strains; one converting glucose to ethanol (G2E) and the other xylose to succinate (X2S). 13C-labeling studies reveled that G2E + X2S cocultures were capable of recycling 24% of all evolved CO2 and achieved a carbon conservation efficiency of 77%; significantly higher than the 64% achieved when all sugars are instead converted to just ethanol. In addition to CO2 exchange, the latent exchange of pyruvate between strains was discovered, along with significant carbon rearrangement within X2S.
Collapse
Affiliation(s)
- Andrew D Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Steven C Holland
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Apurv Mhatre
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Aditya P Sarnaik
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Amanda Godar
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States
| | - Arul M Varman
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, 427 E. Tyler Mall, Tempe, AZ, 85287, United States.
| | - David R Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, AZ 85287, ECG 301, 501 E. Tyler Mall, Arizona, 85287, United States.
| |
Collapse
|
14
|
Liu Z, Zhang X, Lei D, Qiao B, Zhao GR. Metabolic engineering of Escherichia coli for de novo production of 3-phenylpropanol via retrobiosynthesis approach. Microb Cell Fact 2021; 20:121. [PMID: 34176467 PMCID: PMC8237410 DOI: 10.1186/s12934-021-01615-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 06/18/2021] [Indexed: 02/07/2023] Open
Abstract
Background 3-Phenylpropanol with a pleasant odor is widely used in foods, beverages and cosmetics as a fragrance ingredient. It also acts as the precursor and reactant in pharmaceutical and chemical industries. Currently, petroleum-based manufacturing processes of 3-phenypropanol is environmentally unfriendly and unsustainable. In this study, we aim to engineer Escherichia coli as microbial cell factory for de novo production of 3-phenypropanol via retrobiosynthesis approach. Results Aided by in silico retrobiosynthesis analysis, we designed a novel 3-phenylpropanol biosynthetic pathway extending from l-phenylalanine and comprising the phenylalanine ammonia lyase (PAL), enoate reductase (ER), aryl carboxylic acid reductase (CAR) and phosphopantetheinyl transferase (PPTase). We screened the enzymes from plants and microorganisms and reconstructed the artificial pathway for conversion of 3-phenylpropanol from l-phenylalanine. Then we conducted chromosome engineering to increase the supply of precursor l-phenylalanine and combined the upstream l-phenylalanine pathway and downstream 3-phenylpropanol pathway. Finally, we regulated the metabolic pathway strength and optimized fermentation conditions. As a consequence, metabolically engineered E. coli strain produced 847.97 mg/L of 3-phenypropanol at 24 h using glucose-glycerol mixture as co-carbon source. Conclusions We successfully developed an artificial 3-phenylpropanol pathway based on retrobiosynthesis approach, and highest titer of 3-phenylpropanol was achieved in E. coli via systems metabolic engineering strategies including enzyme sources variety, chromosome engineering, metabolic strength balancing and fermentation optimization. This work provides an engineered strain with industrial potential for production of 3-phenylpropanol, and the strategies applied here could be practical for bioengineers to design and reconstruct the microbial cell factory for high valuable chemicals. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-021-01615-1.
Collapse
Affiliation(s)
- Zhenning Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Xue Zhang
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Dengwei Lei
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Bin Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, China. .,Georgia Tech Shenzhen Institute, Tianjin University, Tangxing Road 133, Nanshan District, Shenzhen, 518071, China.
| |
Collapse
|
15
|
Liu H, Qi Y, Zhou P, Ye C, Gao C, Chen X, Liu L. Microbial physiological engineering increases the efficiency of microbial cell factories. Crit Rev Biotechnol 2021; 41:339-354. [PMID: 33541146 DOI: 10.1080/07388551.2020.1856770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Microbial cell factories provide vital platforms for the production of chemicals. Advanced biotechnological toolboxes have been developed to enhance their efficiency. However, these tools have limitations in improving physiological functions, and therefore boosting the efficiency (e.g. titer, rate, and yield) of microbial cell factories remains a challenge. In this review, we propose a strategy of microbial physiological engineering (MPE) to improve the efficiency of microbial cell factories. This strategy integrates tools from synthetic and systems biology to characterize and regulate physiological functions during chemical synthesis. MPE strategies mainly focus on the efficiency of substrate utilization, growth performance, stress tolerance, and the product export capacity of cell factories. In short, this review provides a new framework for resolving the bottlenecks that currently exist in low-efficiency cell factories.
Collapse
Affiliation(s)
- Hui Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Yanli Qi
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Pei Zhou
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, China
| | - Cong Gao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Xiulai Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, China
| |
Collapse
|
16
|
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
Abstract
The issues of global warming, coupled with fossil fuel depletion, have undoubtedly led to renewed interest in other sources of commercial fuels. The search for renewable fuels has motivated research into the biological degradation of lignocellulosic biomass feedstock to produce biofuels such as bioethanol, biodiesel, and biohydrogen. The model strain for biofuel production needs the capability to utilize a high amount of substrate, transportation of sugar through fast and deregulated pathways, ability to tolerate inhibitory compounds and end products, and increased metabolic fluxes to produce an improved fermentation product. Engineering microbes might be a great approach to produce biofuel from lignocellulosic biomass by exploiting metabolic pathways economically. Metabolic engineering is an advanced technology for the construction of highly effective microbial cell factories and a key component for the next-generation bioeconomy. It has been extensively used to redirect the biosynthetic pathway to produce desired products in several native or engineered hosts. A wide range of novel compounds has been manufactured through engineering metabolic pathways or endogenous metabolism optimizations by metabolic engineers. This review is focused on the potential utilization of engineered strains to produce biofuel and gives prospects for improvement in metabolic engineering for new strain development using advanced technologies.
Collapse
Affiliation(s)
- Mobolaji Felicia Adegboye
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
| | - Omena Bernard Ojuederie
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa
- Department of Biological Sciences, Faculty of Science, Kings University, Ode-Omu, PMB 555, Osun State, Nigeria
| | - Paola M Talia
- Instituto de Agrobiotecnología y Biología Molecular (IABIMO), Instituto Nacional de Tecnología Agropecuaria (INTA CICVyA, CNIA, INTA Castelar, Dr. N. Repetto y Los Reseros s/n, (1686) Hurlingham, 1686) Hurlingham, Provincia de Buenos Aires, Argentina
- Consejo Nacional de Investigaciones Científicas Y Tecnológicas (CONICET), Buenos Aires, Provincia de Buenos Aires, Argentina
| | - Olubukola Oluranti Babalola
- Food Security and Safety Niche Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, Private Bag X2046, 2735, South Africa.
| |
Collapse
|
17
|
Lindemann SR. A piece of the pie: engineering microbiomes by exploiting division of labor in complex polysaccharide consumption. Curr Opin Chem Eng 2020; 30:96-102. [PMID: 32968619 PMCID: PMC7505235 DOI: 10.1016/j.coche.2020.08.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Although microbes competing for simple substrates are well-known to obey the ecological competitive exclusion principle, little is known regarding how complex substrates influence the ecology of microbial communities. The vast structural diversity of polysaccharides makes them ideal substrates for cooperative microbial degradation. Potential mechanisms for division of metabolic labor in microbial communities consuming polysaccharides are 1) complementary differences in gene content, 2) alternate regulation of polysaccharide degradation genes, 3) subtle differences in hydrolytic enzyme functionality, and 4) specialization in transport and consumption of hydrolysis products. Engineering division of labor in polysaccharide degradation using these mechanisms as control points may improve our ability to engineer microbiomes for improved productivity and stability in diverse environments.
Collapse
Affiliation(s)
- Stephen R. Lindemann
- Whistler Center for Carbohydrate Research, Department of Food Science, Purdue University, West Lafayette, IN 47907 USA
- Department of Nutrition Science, Purdue University, West Lafayette, IN 47907 USA
| |
Collapse
|
18
|
Liang L, Liu R, Freed EF, Eckert CA. Synthetic Biology and Metabolic Engineering Employing Escherichia coli for C2-C6 Bioalcohol Production. Front Bioeng Biotechnol 2020; 8:710. [PMID: 32719784 PMCID: PMC7347752 DOI: 10.3389/fbioe.2020.00710] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Biofuel production from renewable and sustainable resources is playing an increasingly important role within the fuel industry. Among biofuels, bioethanol has been most widely used as an additive for gasoline. Higher alcohols can be blended at a higher volume compared to ethanol and generate lower greenhouse gas (GHG) emissions without a need to change current fuel infrastructures. Thus, these fuels have the potential to replace fossil fuels in support of more environmentally friendly processes. This review summarizes the efforts to enhance bioalcohol production in engineered Escherichia coli over the last 5 years and analyzes the current challenges for increasing productivities for industrial applications.
Collapse
Affiliation(s)
- Liya Liang
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Rongming Liu
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Emily F. Freed
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
| | - Carrie A. Eckert
- Renewable and Sustainable Energy Institute, University of Colorado Boulder, Boulder, CO, United States
- National Renewable Energy Laboratory, Golden, CO, United States
| |
Collapse
|
19
|
Flores AD, Choi HG, Martinez R, Onyeabor M, Ayla EZ, Godar A, Machas M, Nielsen DR, Wang X. Catabolic Division of Labor Enhances Production of D-Lactate and Succinate From Glucose-Xylose Mixtures in Engineered Escherichia coli Co-culture Systems. Front Bioeng Biotechnol 2020; 8:329. [PMID: 32432089 PMCID: PMC7214542 DOI: 10.3389/fbioe.2020.00329] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 03/25/2020] [Indexed: 01/01/2023] Open
Abstract
Although biological upgrading of lignocellulosic sugars represents a promising and sustainable route to bioplastics, diverse and variable feedstock compositions (e.g., glucose from the cellulose fraction and xylose from the hemicellulose fraction) present several complex challenges. Specifically, sugar mixtures are often incompletely metabolized due to carbon catabolite repression while composition variability further complicates the optimization of co-utilization rates. Benefiting from several unique features including division of labor, increased metabolic diversity, and modularity, synthetic microbial communities represent a promising platform with the potential to address persistent bioconversion challenges. In this work, two unique and catabolically orthogonal Escherichia coli co-cultures systems were developed and used to enhance the production of D-lactate and succinate (two bioplastic monomers) from glucose-xylose mixtures (100 g L-1 total sugars, 2:1 by mass). In both cases, glucose specialist strains were engineered by deleting xylR (encoding the xylose-specific transcriptional activator, XylR) to disable xylose catabolism, whereas xylose specialist strains were engineered by deleting several key components involved with glucose transport and phosphorylation systems (i.e., ptsI, ptsG, galP, glk) while also increasing xylose utilization by introducing specific xylR mutations. Optimization of initial population ratios between complementary sugar specialists proved a key design variable for each pair of strains. In both cases, ∼91% utilization of total sugars was achieved in mineral salt media by simple batch fermentation. High product titer (88 g L-1 D-lactate, 84 g L-1 succinate) and maximum productivity (2.5 g L-1 h-1 D-lactate, 1.3 g L-1 h-1 succinate) and product yield (0.97 g g-total sugar-1 for D-lactate, 0.95 g g-total sugar-1 for succinate) were also achieved.
Collapse
Affiliation(s)
- Andrew D. Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Hyun G. Choi
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rodrigo Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - E. Zeynep Ayla
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Amanda Godar
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Michael Machas
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - David R. Nielsen
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy, Arizona State University, Tempe, AZ, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| |
Collapse
|
20
|
Shahab RL, Brethauer S, Luterbacher JS, Studer MH. Engineering of ecological niches to create stable artificial consortia for complex biotransformations. Curr Opin Biotechnol 2020; 62:129-136. [DOI: 10.1016/j.copbio.2019.09.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/13/2022]
|
21
|
Chen S, Sun S, Zhong C, Wang T, Zhang Y, Zhou J. Bioconversion of lignocellulose and simultaneous production of cellulase, ligninase and bioflocculants by Alcaligenes faecalis-X3. Process Biochem 2020. [DOI: 10.1016/j.procbio.2019.11.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
22
|
Onyeabor M, Martinez R, Kurgan G, Wang X. Engineering transport systems for microbial production. ADVANCES IN APPLIED MICROBIOLOGY 2020; 111:33-87. [PMID: 32446412 DOI: 10.1016/bs.aambs.2020.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The rapid development in the field of metabolic engineering has enabled complex modifications of metabolic pathways to generate a diverse product portfolio. Manipulating substrate uptake and product export is an important research area in metabolic engineering. Optimization of transport systems has the potential to enhance microbial production of renewable fuels and chemicals. This chapter comprehensively reviews the transport systems critical for microbial production as well as current genetic engineering strategies to improve transport functions and thus production metrics. In addition, this chapter highlights recent advancements in engineering microbial efflux systems to enhance cellular tolerance to industrially relevant chemical stress. Lastly, future directions to address current technological gaps are discussed.
Collapse
Affiliation(s)
- Moses Onyeabor
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Rodrigo Martinez
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Gavin Kurgan
- School of Life Sciences, Arizona State University, Tempe, AZ, United States
| | - Xuan Wang
- School of Life Sciences, Arizona State University, Tempe, AZ, United States.
| |
Collapse
|
23
|
Mixed carbon substrates: a necessary nuisance or a missed opportunity? Curr Opin Biotechnol 2019; 62:15-21. [PMID: 31513988 DOI: 10.1016/j.copbio.2019.07.003] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 06/24/2019] [Accepted: 07/03/2019] [Indexed: 11/20/2022]
Abstract
Although fermentation with single carbon sources is the preferred mode of operation in current industrial biotechnology, the use of multiple substrates has been continuously investigated throughout the years. Generally, microbial metabolism varies significantly when cells are presented with mixed carbon substrates compared to a single carbon-energy source, as different nutrients interact in complex ways within the metabolic network. By exploiting these distinct modes of interaction, researchers have identified unique opportunities to optimize metabolism using mixed carbon sources. Here we review situations where process yield and productivity are markedly improved through the judicious introduction of substrate mixtures. Our goal is to illustrate that with proper design of the choice of substrates and the way they are introduced to cultures, metabolic optimization with mixed substrates can be a unique strategy that complements genetic engineering techniques to enhance cell performance beyond what is accomplished in single substrate fermentations.
Collapse
|
24
|
Martinez R, Flores AD, Dufault ME, Wang X. The XylR variant (R121C and P363S) releases arabinose‐induced catabolite repression on xylose fermentation and enhances coutilization of lignocellulosic sugar mixtures. Biotechnol Bioeng 2019; 116:3476-3481. [DOI: 10.1002/bit.27144] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 08/07/2019] [Accepted: 08/12/2019] [Indexed: 11/09/2022]
Affiliation(s)
| | - Andrew D. Flores
- Chemical Engineering, School for Engineering of Matter, Transport, and Energy Arizona State University Arizona
| | | | - Xuan Wang
- School of Life Sciences Arizona State University Tempe Arizona
| |
Collapse
|
25
|
Liu X, Li L, Liu J, Qiao J, Zhao GR. Metabolic engineering Escherichia coli for efficient production of icariside D2. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:261. [PMID: 31709010 PMCID: PMC6833136 DOI: 10.1186/s13068-019-1601-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 10/24/2019] [Indexed: 05/08/2023]
Abstract
BACKGROUND Icariside D2 is a plant-derived natural glycoside with pharmacological activities of inhibiting angiotensin-converting enzyme and killing leukemia cancer cells. Production of icariside D2 by plant extraction and chemical synthesis is inefficient and environmentally unfriendly. Microbial cell factory offers an attractive route for economical production of icariside D2 from renewable and sustainable bioresources. RESULTS We metabolically constructed the biosynthetic pathway of icariside D2 in engineered Escherichia coli. We screened the uridine diphosphate glycosyltransferases (UGTs) and obtained an active RrUGT3 that regio-specifically glycosylated tyrosol at phenolic position to exclusively synthesize icariside D2. We put heterologous genes in E. coli cell for the de novo biosynthesis of icariside D2. By fine-tuning promoter and copy number as well as balancing gene expression pattern to decrease metabolic burden, the BMD10 monoculture was constructed. Parallelly, for balancing pathway strength, we established the BMT23-BMD12 coculture by distributing the icariside D2 biosynthetic genes to two E. coli strains BMT23 and BMD12, responsible for biosynthesis of tyrosol from preferential xylose and icariside D2 from glucose, respectively. Under the optimal conditions in fed-batch shake-flask fermentation, the BMD10 monoculture produced 3.80 g/L of icariside D2 using glucose as sole carbon source, and the BMT23-BMD12 coculture produced 2.92 g/L of icariside D2 using glucose-xylose mixture. CONCLUSIONS We for the first time reported the engineered E. coli for the de novo efficient production of icariside D2 with gram titer. It would be potent and sustainable approach for microbial production of icariside D2 from renewable carbon sources. E. coli-E. coli coculture approach is not limited to glycoside production, but could also be applied to other bioproducts.
Collapse
Affiliation(s)
- Xue Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Lingling Li
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Jincong Liu
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Jianjun Qiao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| | - Guang-Rong Zhao
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350 China
| |
Collapse
|