1
|
Li S, Zhou X, Chen Y, Li G, Deng Y. Precision Quantification and Rational Regulation of Protein Expression with Bicistronic Cassette for Efficient Biotin Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:6854-6866. [PMID: 40042090 DOI: 10.1021/acs.jafc.4c12882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Identifying optimal enzyme expression levels is critical for microbial cell factories, as metabolic imbalances can impede the synthesis of target products. However, current screening strategies often rely on trial-and-error approaches, which are labor-intensive and have limited applicability. Here we developed a quantitative strategy utilizing a bicistronic design (BCD) library for enzyme expression screening, requiring no more than 17 tests in two steps: expression profiling and focused selection. The BCD library encoded a 992-fold expression range, and protein abundances were quantified based on fluorescence intensities due to a strong correlation (r = 0.96). This strategy was employed to fine-tune the expression of the rate-limiting enzyme BioB in biotin synthesis, whose overexpression inhibits cell growth and biotin production. Consequently, BCD6 was identified the optimal expression strength for the overexpressed bio operon, while BCD7 was optimal for the overexpressed bio + isc operons, resulting in 1.47-fold and 3.03-fold increases in biotin titer compared to original strain. Western Blot analysis confirmed a 2.38-fold and 2.71-fold increase in BioB abundance, respectively. The pioneering application of BCD establishes it as a versatile tool for the rational tuning of enzyme expression in the construction of any microbial cell factory.
Collapse
Affiliation(s)
- Shun Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xuan Zhou
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Ye Chen
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Guohui Li
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yu Deng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| |
Collapse
|
2
|
Olivi L, Bagchus C, Pool V, Bekkering E, Speckner K, Offerhaus H, Wu W, Depken M, Martens KA, Staals RJ, Hohlbein J. Live-cell imaging reveals the trade-off between target search flexibility and efficiency for Cas9 and Cas12a. Nucleic Acids Res 2024; 52:5241-5256. [PMID: 38647045 PMCID: PMC11109954 DOI: 10.1093/nar/gkae283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024] Open
Abstract
CRISPR-Cas systems have widely been adopted as genome editing tools, with two frequently employed Cas nucleases being SpyCas9 and LbCas12a. Although both nucleases use RNA guides to find and cleave target DNA sites, the two enzymes differ in terms of protospacer-adjacent motif (PAM) requirements, guide architecture and cleavage mechanism. In the last years, rational engineering led to the creation of PAM-relaxed variants SpRYCas9 and impLbCas12a to broaden the targetable DNA space. By employing their catalytically inactive variants (dCas9/dCas12a), we quantified how the protein-specific characteristics impact the target search process. To allow quantification, we fused these nucleases to the photoactivatable fluorescent protein PAmCherry2.1 and performed single-particle tracking in cells of Escherichia coli. From our tracking analysis, we derived kinetic parameters for each nuclease with a non-targeting RNA guide, strongly suggesting that interrogation of DNA by LbdCas12a variants proceeds faster than that of SpydCas9. In the presence of a targeting RNA guide, both simulations and imaging of cells confirmed that LbdCas12a variants are faster and more efficient in finding a specific target site. Our work demonstrates the trade-off of relaxing PAM requirements in SpydCas9 and LbdCas12a using a powerful framework, which can be applied to other nucleases to quantify their DNA target search.
Collapse
Affiliation(s)
- Lorenzo Olivi
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Cleo Bagchus
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Victor Pool
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Ezra Bekkering
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Konstantin Speckner
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Hidde Offerhaus
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Wen Y Wu
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Martin Depken
- Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, The Netherlands
| | - Koen J A Martens
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
| | - Raymond H J Staals
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Johannes Hohlbein
- Laboratory of Biophysics, Wageningen University & Research, Wageningen, The Netherlands
- Microspectroscopy Research Facility, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
3
|
Sun M, Gao AX, Li A, Ledesma-Amaro R, Wang P, Chen W, Bai Z, Liu X. Hyper-production of porcine contagious pleuropneumonia subunit vaccine proteins in Escherichia coli by developing a bicistronic T7 expression system. Biotechnol J 2024; 19:e2300187. [PMID: 38178735 DOI: 10.1002/biot.202300187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 12/15/2023] [Accepted: 12/20/2023] [Indexed: 01/06/2024]
Abstract
The ApxII toxin and the outer membrane lipoprotein (Oml) of Actinobacillus pleuropneumoniae are important vaccine antigens against porcine contagious pleuropneumonia (PCP), a prevalent infectious disease affecting the swine industry worldwide. Previous studies have reported the recombinant expression of ApxII and Oml in Escherichia coli; however, their yields were not satisfactory. Here, we aimed to enhance the production of ApxII and Oml by constructing a bicistronic expression system based on the widely used T7 promoter. To create efficient T7 bicistronic expression cassettes, 16 different fore-cistron sequences were introduced downstream of the T7 promoter. The expression of three vaccine antigens Oml1, Oml7, and ApxII in the four strongest bicistronic vectors were enhanced compared to the monocistronic control. Further optimization of the fermentation conditions in micro-well plates (MWP) led to improved production. Finally, the production yields reached unprecedented levels of 2.43 g L-1 of Oml1, 2.59 g L-1 of Oml7, and 1.21 g L-1 of ApxII, in a 5 L bioreactor. These three antigens also demonstrated well-protective immunity against A. pleuropneumoniae infection. In conclusion, this study establishes an efficient bicistronic T7 expression system that can be used to express recombinant proteins in E. coli and achieves the hyper-production of PCP vaccine proteins.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - An Li
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Peng Wang
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Wenchao Chen
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences, Wuhan, Hubei, China
| | - Zhonghu Bai
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Xiuxia Liu
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Jansen Z, Reilly SR, Lieber-Kotz M, Li AZ, Wei Q, Kulhanek DL, Gilmour AR, Thyer R. Interrogating the Function of Bicistronic Translational Control Elements to Improve Consistency of Gene Expression. ACS Synth Biol 2023; 12:1608-1615. [PMID: 37253269 DOI: 10.1021/acssynbio.3c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Context independent gene expression is required for genetic circuits to maintain consistent and predicable behavior. Previous efforts to develop context independent translation have leveraged the helicase activity of translating ribosomes via bicistronic design translational control elements (BCDs) located within an efficiently translated leader peptide. We have developed a series of bicistronic translational control elements with strengths that span several orders of magnitude, maintain consistent expression levels across diverse sequence contexts, and are agnostic to common ligation sequences used in modular cloning systems. We have used this series of BCDs to investigate several features of this design, including the spacing of the start and stop codons, the nucleotide identity upstream of the start codon, and factors affecting translation of the leader peptide. To demonstrate the flexibility of this architecture and their value as a generic modular expression control cassette for synthetic biology, we have developed a set of robust BCDs for use in several Rhodococcus species.
Collapse
Affiliation(s)
- Zachary Jansen
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77030, United States
| | - Sophia R Reilly
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| | - Matan Lieber-Kotz
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| | - Andrew Z Li
- Department of Statistics, Rice University, Houston, Texas 77030, United States
| | - Qiyao Wei
- Department of Bioengineering, Rice University, Houston, Texas 77030, United States
| | - Devon L Kulhanek
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| | - Andrew R Gilmour
- Systems, Synthetic, and Physical Biology, Rice University, Houston, Texas 77030, United States
| | - Ross Thyer
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77030, United States
| |
Collapse
|
5
|
Höllerer S, Jeschek M. Ultradeep characterisation of translational sequence determinants refutes rare-codon hypothesis and unveils quadruplet base pairing of initiator tRNA and transcript. Nucleic Acids Res 2023; 51:2377-2396. [PMID: 36727459 PMCID: PMC10018350 DOI: 10.1093/nar/gkad040] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 12/05/2022] [Accepted: 01/13/2023] [Indexed: 02/03/2023] Open
Abstract
Translation is a key determinant of gene expression and an important biotechnological engineering target. In bacteria, 5'-untranslated region (5'-UTR) and coding sequence (CDS) are well-known mRNA parts controlling translation and thus cellular protein levels. However, the complex interaction of 5'-UTR and CDS has so far only been studied for few sequences leading to non-generalisable and partly contradictory conclusions. Herein, we systematically assess the dynamic translation from over 1.2 million 5'-UTR-CDS pairs in Escherichia coli to investigate their collective effect using a new method for ultradeep sequence-function mapping. This allows us to disentangle and precisely quantify effects of various sequence determinants of translation. We find that 5'-UTR and CDS individually account for 53% and 20% of variance in translation, respectively, and show conclusively that, contrary to a common hypothesis, tRNA abundance does not explain expression changes between CDSs with different synonymous codons. Moreover, the obtained large-scale data provide clear experimental evidence for a base-pairing interaction between initiator tRNA and mRNA beyond the anticodon-codon interaction, an effect that is often masked for individual sequences and therefore inaccessible to low-throughput approaches. Our study highlights the indispensability of ultradeep sequence-function mapping to accurately determine the contribution of parts and phenomena involved in gene regulation.
Collapse
Affiliation(s)
- Simon Höllerer
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology – ETH Zurich, Basel CH-4058, Switzerland
| | - Markus Jeschek
- Department of Biosystems Science and Engineering, Swiss Federal Institute of Technology – ETH Zurich, Basel CH-4058, Switzerland
- Institute of Microbiology, Synthetic Microbiology Group, University of Regensburg, Regensburg D-93053, Germany
| |
Collapse
|
6
|
Wang X, Feng X, Xue R, Xu H, Wang R, Zhang L, Li S. Promoting soluble expression of hybrid mussel foot proteins by SUMO-TrxA tags for production of mussel glue. Int J Biol Macromol 2023; 225:840-847. [PMID: 36402391 DOI: 10.1016/j.ijbiomac.2022.11.147] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Mussel foot proteins (Mfps) display application potential with strong adhesion, enabling mussels to adhere firmly to various surfaces. Mytilus galloprovincialis foot protein 3B (Mgfp-3B) exhibits this characteristic remarkably. However, it remains a challenge for further research due to the low soluble expression of heterologous production. In this study, a small ubiquitin-related modifier (SUMO) and thioredoxin A (TrxA), which catalyzed the proper folding of disulfide bridges, were selected to increase the soluble expression of mfps. An additional ribosome binding site was introduced between the molecular chaperones and Mgfp-3B (fp-3) to form a bicistronic translation-coupled expression vector for co-expression. The results revealed that the combination of SUMO-TrxA increased the soluble expression of fp-3 by 18.07 %. Furthermore, the SUMO-TrxA also boosted the soluble expression of hybrid mfps Mgfp-3B-Mfp-1 (fp-3-1) by 11.29 %, Mgfp-3B-Mgfp-3B (fp-3-3) by 19.91 %, and Mgfp-3B-Mgfp-5 (fp-3-5) by 14.03 %. Ultimately, by high cell density cultivation in a 5 L bioreactor, the yields of fp-3, fp-3-3, and fp-3-5 co-expressed with SUMO-TrxA reached 217.75 mg/L, 127.2 mg/L, and 97.28 mg/L, respectively. Consequently, soluble production of mfps holds great potential for the sustainable supply of protein adhesive materials.
Collapse
Affiliation(s)
- Xinyi Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Xinxin Feng
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Xue
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Rui Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China
| | - Lujia Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, China; College of Food Science and Light Industry, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
7
|
Kruth S, Schibajew L, Nett M. Biocatalytic production of the antibiotic aurachin D in Escherichia coli. AMB Express 2022; 12:138. [DOI: 10.1186/s13568-022-01478-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 10/15/2022] [Indexed: 11/06/2022] Open
Abstract
Abstract
Aurachin D is a potent inhibitor of cytochrome bd oxidases, which are potential targets in the treatment of infectious diseases. In this study, our aim was to improve the biocatalytic production of aurachin D from a quinolone precursor molecule with recombinant Escherichia coli cells expressing the biosynthesis enzyme AuaA. In order to achieve a high-level production of this membrane-bound farnesyltransferase in E. coli, the expression of the auaA gene was translationally coupled to an upstream cistron in accordance with a bicistronic design (BCD) strategy. Screening of various BCD elements led to the identification of optimized auaA expression cassettes, which increased the aurachin D titer in E. coli up to 29-fold in comparison to T7-mediated expression. This titer could be further raised by codon optimization of auaA and by introducing the mevalonate pathway into the production strain. The latter measure was intended to improve the availability of farnesyl pyrophosphate, which is needed as a cosubstrate for the AuaA-catalyzed reaction. In sum, the described efforts resulted in a strain producing aurachin D with a titer that is 424 times higher than that obtained with the original, non-optimized expression host.
Graphical Abstract
Collapse
|
8
|
Gupta M, Wong M, Jawed K, Gedeon K, Barrett H, Bassalo M, Morrison C, Eqbal D, Yazdani SS, Gill RT, Huang J, Douaisi M, Dordick J, Belfort G, Koffas MA. Isobutanol production by combined in vivo and in vitro metabolic engineering. Metab Eng Commun 2022; 15:e00210. [PMID: 36325486 PMCID: PMC9619177 DOI: 10.1016/j.mec.2022.e00210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/03/2022] [Accepted: 10/16/2022] [Indexed: 12/12/2022] Open
Abstract
The production of the biofuel, isobutanol, in E. coli faces limitations due to alcohol toxicity, product inhibition, product recovery, and long-term industrial feasibility. Here we demonstrate an approach of combining both in vivo with in vitro metabolic engineering to produce isobutanol. The in vivo production of α-ketoisovalerate (KIV) was conducted through CRISPR mediated integration of the KIV pathway in bicistronic design (BCD) in E. coli and inhibition of competitive valine pathway using CRISPRi technology. The subsequent in vitro conversion to isobutanol was carried out with engineered enzymes for 2-ketoacid decarboxylase (KIVD) and alcohol dehydrogenase (ADH). For the in vivo production of KIV and subsequent in vitro production of isobutanol, this two-step serial approach resulted in yields of 56% and 93%, productivities of 0.62 and 0.074 g L-1 h-1, and titers of 5.6 and 1.78 g L-1, respectively. Thus, this combined biosynthetic system can be used as a modular approach for producing important metabolites, like isobutanol, without the limitations associated with in vivo production using a consolidated bioprocess.
Collapse
Affiliation(s)
- Mamta Gupta
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Department of Botany and Environmental Studies, DAV University, Jalandhar, 144 001, Punjab, India
| | - Matthew Wong
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Kamran Jawed
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,DBT-ICGEB Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Kamil Gedeon
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Hannah Barrett
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Marcelo Bassalo
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Clifford Morrison
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Danish Eqbal
- DBT-ICGEB Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Syed Shams Yazdani
- DBT-ICGEB Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi, 110067, India
| | - Ryan T. Gill
- Department of Chemical and Biological Engineering, University of Colorado, Boulder, CO, 80309, USA
| | - Jiaqi Huang
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Marc Douaisi
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Jonathan Dordick
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Georges Belfort
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA
| | - Mattheos A.G. Koffas
- Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA,Corresponding author. Howard P. Isermann Department of Chemical and Biological Engineering, Rensselaer Polytechnic Institute, Troy, NY, 12180, USA.
| |
Collapse
|
9
|
Durairaj P, Li S. Functional expression and regulation of eukaryotic cytochrome P450 enzymes in surrogate microbial cell factories. ENGINEERING MICROBIOLOGY 2022; 2:100011. [PMID: 39628612 PMCID: PMC11610987 DOI: 10.1016/j.engmic.2022.100011] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 12/27/2021] [Accepted: 01/11/2022] [Indexed: 12/06/2024]
Abstract
Cytochrome P450 (CYP) enzymes play crucial roles during the evolution and diversification of ancestral monocellular eukaryotes into multicellular eukaryotic organisms due to their essential functionalities including catalysis of housekeeping biochemical reactions, synthesis of diverse metabolites, detoxification of xenobiotics, and contribution to environmental adaptation. Eukaryotic CYPs with versatile functionalities are undeniably regarded as promising biocatalysts with great potential for biotechnological, pharmaceutical and chemical industry applications. Nevertheless, the modes of action and the challenges associated with these membrane-bound proteins have hampered the effective utilization of eukaryotic CYPs in a broader range. This review is focused on comprehensive and consolidated approaches to address the core challenges in heterologous expression of membrane-bound eukaryotic CYPs in different surrogate microbial cell factories, aiming to provide key insights for better studies and applications of diverse eukaryotic CYPs in the future. We also highlight the functional significance of the previously underrated cytochrome P450 reductases (CPRs) and provide a rational justification on the progression of CPR from auxiliary redox partner to function modulator in CYP catalysis.
Collapse
Affiliation(s)
- Pradeepraj Durairaj
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
| | - Shengying Li
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao 266237, Shandong, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, Shandong, China
| |
Collapse
|
10
|
Abstract
Modern genome-scale methods that identify new genes, such as proteogenomics and ribosome profiling, have revealed, to the surprise of many, that overlap in genes, open reading frames and even coding sequences is widespread and functionally integrated into prokaryotic, eukaryotic and viral genomes. In parallel, the constraints that overlapping regions place on genome sequences and their evolution can be harnessed in bioengineering to build more robust synthetic strains and constructs. With a focus on overlapping protein-coding and RNA-coding genes, this Review examines their discovery, topology and biogenesis in the context of their genome biology. We highlight exciting new uses for sequence overlap to control translation, compress synthetic genetic constructs, and protect against mutation.
Collapse
|
11
|
Zhang P, Gong JS, Qin J, Li H, Hou HJ, Zhang XM, Xu ZH, Shi JS. Phospholipids (PLs) know-how: exploring and exploiting phospholipase D for its industrial dissemination. Crit Rev Biotechnol 2021; 41:1257-1278. [PMID: 33985392 DOI: 10.1080/07388551.2021.1921690] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 12/26/2020] [Accepted: 02/24/2021] [Indexed: 10/21/2022]
Abstract
Owing to their numerous nutritional and bioactive functions, phospholipids (PLs), which are major components of biological membranes in all living organisms, have been widely applied as nutraceuticals, food supplements, and cosmetic ingredients. To date, PLs are extracted solely from soybean or egg yolk, despite the diverse market demands and high cost, owing to a tedious and inefficient manufacturing process. A microbial-based manufacturing process, specifically phospholipase D (PLD)-based biocatalysis and biotransformation process for PLs, has the potential to address several challenges associated with the soybean- or egg yolk-based supply chain. However, poor enzyme properties and inefficient microbial expression systems for PLD limit their wide industrial dissemination. Therefore, sourcing new enzyme variants with improved properties and developing advanced PLD expression systems are important. In the present review, we systematically summarize recent achievements and trends in the discovery, their structural properties, catalytic mechanisms, expression strategies for enhancing PLD production, and its multiple applications in the context of PLs. This review is expected to assist researchers to understand current advances in this field and provide insights for further molecular engineering efforts toward PLD-mediated bioprocessing.
Collapse
Affiliation(s)
- Peng Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Jiufu Qin
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark
| | - Hui Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Hai-Juan Hou
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Xiao-Mei Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
| | - Zheng-Hong Xu
- National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi, P. R. China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, P. R. China
| |
Collapse
|
12
|
Tietze L, Lale R. Importance of the 5' regulatory region to bacterial synthetic biology applications. Microb Biotechnol 2021; 14:2291-2315. [PMID: 34171170 PMCID: PMC8601185 DOI: 10.1111/1751-7915.13868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/03/2021] [Accepted: 06/04/2021] [Indexed: 01/02/2023] Open
Abstract
The field of synthetic biology is evolving at a fast pace. It is advancing beyond single-gene alterations in single hosts to the logical design of complex circuits and the development of integrated synthetic genomes. Recent breakthroughs in deep learning, which is increasingly used in de novo assembly of DNA components with predictable effects, are also aiding the discipline. Despite advances in computing, the field is still reliant on the availability of pre-characterized DNA parts, whether natural or synthetic, to regulate gene expression in bacteria and make valuable compounds. In this review, we discuss the different bacterial synthetic biology methodologies employed in the creation of 5' regulatory regions - promoters, untranslated regions and 5'-end of coding sequences. We summarize methodologies and discuss their significance for each of the functional DNA components, and highlight the key advances made in bacterial engineering by concentrating on their flaws and strengths. We end the review by outlining the issues that the discipline may face in the near future.
Collapse
Affiliation(s)
- Lisa Tietze
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| | - Rahmi Lale
- PhotoSynLabDepartment of BiotechnologyFaculty of Natural SciencesNorwegian University of Science and TechnologyTrondheimN‐7491Norway
| |
Collapse
|
13
|
Sun M, Gao AX, Li A, Liu X, Wang R, Yang Y, Li Y, Liu C, Bai Z. Bicistronic design as recombinant expression enhancer: characteristics, applications, and structural optimization. Appl Microbiol Biotechnol 2021; 105:7709-7720. [PMID: 34596722 DOI: 10.1007/s00253-021-11611-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
The bicistronic design (BCD) is characterized by a short fore-cistron sequence and a second Shine-Dalgarno (SD2) sequence upstream of the target gene. The outstanding performance of this expression cassette in promoting recombinant protein production has attracted attention. Recently, the application of the BCD has been further extended to gene expression control, protein translation monitoring, and membrane protein production. In this review, we summarize the characteristics, molecular mechanisms, applications, and structural optimization of the BCD expression cassette. We also specifically discuss the challenges that the BCD system still faces. This is the first review of the BCD expression strategy, and it is believed that an in-depth understanding of the BCD will help researchers to better utilize and develop it. KEY POINTS: • Summary of the characteristics and molecular mechanisms of the BCD system. • Review of the actual applications of the BCD expression cassette. • Summary of the structural optimization of the BCD system.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Alex Xiong Gao
- Division of Life Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - An Li
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Rongbing Wang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Ye Li
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Chunli Liu
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhonghu Bai
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China. .,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China. .,Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
14
|
Podolsky IA, Schauer EE, Seppälä S, O'Malley MA. Identification of novel membrane proteins for improved lignocellulose conversion. Curr Opin Biotechnol 2021; 73:198-204. [PMID: 34482155 DOI: 10.1016/j.copbio.2021.08.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 11/28/2022]
Abstract
Lignocellulose processing yields a heterogeneous mixture of substances, which are poorly utilized by current industrial strains. For efficient valorization of recalcitrant biomass, it is critical to identify and engineer new membrane proteins that enable the broad uptake of hydrolyzed substrates. Whereas glucose consumption rarely presents a bottleneck for cell factories, there is also a lack of transporters that allow co-consumption of glucose with other abundant biomass sugars such as xylose. This review discusses recent efforts to bioinformatically identify membrane proteins of high biotech potential for lignocellulose conversion and metabolic engineering in both model and nonconventional organisms. Of particular interest are transporters sourced from anaerobic gut fungi resident to large herbivores, which produce Sugars Will Eventually be Exported Transporters (SWEETs) that enhance xylose transport in the yeast Saccharomyces cerevisiae and enable glucose and xylose co-utilization. Additionally, recently identified fungal cellodextrin transporters are valuable alternatives to mitigate glucose repression and transporter inhibition.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Elizabeth E Schauer
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California Santa Barbara, Santa Barbara, CA 93106, USA; Joint BioEnergy Institute (JBEI), Emeryville, CA 94608, USA.
| |
Collapse
|
15
|
Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories. Biotechnol Adv 2021; 50:107767. [PMID: 33974979 DOI: 10.1016/j.biotechadv.2021.107767] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/14/2022]
Abstract
To overcome environmental problems caused by the use of fossil resources, microbial cell factories have become a promising technique for the sustainable and eco-friendly development of valuable products from renewable resources. Constructing microbial cell factories with high titers, yields, and productivity requires a balance between growth and production; to this end, tuning gene expression and regulation is necessary to optimise and precisely control complicated metabolic fluxes. In this article, we review the current trends and advances in tuning gene expression and regulation and consider their engineering at each of the three stages of gene regulation: genomic, mRNA, and protein. In particular, the technological approaches utilised in a diverse range of genetic-engineering-based tools for the construction of microbial cell factories are reviewed and representative applications of these strategies are presented. Finally, the prospects for strategies and systems for tuning gene expression and regulation are discussed.
Collapse
|
16
|
Nieuwkoop T, Finger-Bou M, van der Oost J, Claassens NJ. The Ongoing Quest to Crack the Genetic Code for Protein Production. Mol Cell 2020; 80:193-209. [PMID: 33010203 DOI: 10.1016/j.molcel.2020.09.014] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 08/10/2020] [Accepted: 09/10/2020] [Indexed: 01/05/2023]
Abstract
Understanding the genetic design principles that determine protein production remains a major challenge. Although the key principles of gene expression were discovered 50 years ago, additional factors are still being uncovered. Both protein-coding and non-coding sequences harbor elements that collectively influence the efficiency of protein production by modulating transcription, mRNA decay, and translation. The influences of many contributing elements are intertwined, which complicates a full understanding of the individual factors. In natural genes, a functional balance between these factors has been obtained in the course of evolution, whereas for genetic-engineering projects, our incomplete understanding still limits optimal design of synthetic genes. However, notable advances have recently been made, supported by high-throughput analysis of synthetic gene libraries as well as by state-of-the-art biomolecular techniques. We discuss here how these advances further strengthen understanding of the gene expression process and how they can be harnessed to optimize protein production.
Collapse
Affiliation(s)
- Thijs Nieuwkoop
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Max Finger-Bou
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands
| | - Nico J Claassens
- Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
17
|
Microbial Chassis Development for Natural Product Biosynthesis. Trends Biotechnol 2020; 38:779-796. [DOI: 10.1016/j.tibtech.2020.01.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/18/2019] [Accepted: 01/03/2020] [Indexed: 02/07/2023]
|
18
|
Sun M, Gao X, Zhao Z, Li A, Wang Y, Yang Y, Liu X, Bai Z. Enhanced production of recombinant proteins in Corynebacterium glutamicum by constructing a bicistronic gene expression system. Microb Cell Fact 2020; 19:113. [PMID: 32456643 PMCID: PMC7251831 DOI: 10.1186/s12934-020-01370-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/16/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Corynebacterium glutamicum is a traditional food-grade industrial microorganism, in which an efficient endotoxin-free recombinant protein expression factory is under developing in recent years. However, the intrinsic disadvantage of low recombinant protein expression level is still difficult to be solved. Here, according to the bacteria-specific polycistronic feature that multiple proteins can be translated in one mRNA, efforts have been made to insert a leading peptide gene upstream of target genes as an expression enhancer, and it is found that this can remarkably improve the expression level of proteins under the control of inducible tac promoter in C. glutamicum. RESULTS In this research, the Escherichia coli (E. coli) tac promoter combined with 24 different fore-cistron sequences were constructed in a bicistronic manner in C. glutamicum. Three strong bicistronic expression vectors were isolated and exhibited high efficiency under different culture conditions. The compatibility of these bicistronic vectors was further validated using six model proteins- aldehyde dehydrogenase (ALDH), alcohol dehydrogenase (ADH), RamA (regulator of acetate metabolism), Bovine interferon-α (BoIFN-α), glycoprotein D protein (gD) of infectious bovine rhinotracheitis virus (IBRV) and procollagen type Ι N-terminal peptide (PΙNP). All examined proteins were highly expressed compared with the original vector with tac promoter. Large-scale production of PΙNP was also performed in fed-batch cultivation, and the highest PΙNP production level was 1.2 g/L. CONCLUSION In this study, the strength of the inducible tac promoter for C. glutamicum was improved by screening and inserting fore-cistron sequences in front of the target genes. Those vectors with bicistronic expression patterns have strong compatibility for expressing various heterogeneous proteins in high yield. This new strategy could be used to further improve the performance of inducible promoters, achieving double competence of inducible control and high yield.
Collapse
Affiliation(s)
- Manman Sun
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiong Gao
- Division of Life Science and Center for Chinese Medicine, Hong Kong University of Science and Technology, Hong Kong, China
| | - Zihao Zhao
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - An Li
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yali Wang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Yankun Yang
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China
| | - Xiuxia Liu
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| | - Zhonghu Bai
- National Engineering Laboratory of Cereal Fermentation Technology, Jiangnan University, Wuxi, 214112, China.
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|