1
|
Khamissi N, Korfmann C, Chaudhry A, Hili R. Ligase-catalyzed transcription and reverse-transcription of XNA-containing nucleic acid polymers using T3 DNA ligase. Chem Sci 2025:d5sc00834d. [PMID: 40160368 PMCID: PMC11951296 DOI: 10.1039/d5sc00834d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/20/2025] [Indexed: 04/02/2025] Open
Abstract
A method to enable the transliteration between various XNA-containing nucleic acids and canonical DNA is described. Using ligase-catalysed oligonucleotide polymerisation (LOOPER), we show that DNA can be used as a template to generate nucleic acids polymers comprising various levels of 2'-fluoro (2'-F), 2'-fluoro-arabinonucleic acid (FANA), 2'-O-methyl (2'-OMe), and Locked Nucleic Acids (LNA) in moderate yields. The fidelity and biases of the LOOPER process were studied in detail for the 2'-F system by developing a hairpin-based sequencing method, which showed fidelities exceeding 95% along with positional and sequence dependencies within the polymerised XNA-containing anticodons. Lastly, we show the ability of LOOPER to regenerate DNA from 2'-F, FANA, 2'-OMe, and LNA in moderate yield and in fidelities over 95%. Taken together, this study demonstrates the potential of LOOPER to serve as a platform for applications where the transliteration between XNA and DNA is needed, such as the in vitro evolution of XNA-containing nucleic acid polymers.
Collapse
Affiliation(s)
- Natalie Khamissi
- Department of Chemistry, Centre for Research on Biomolecular Interactions, York University 4700 Keele Street Toronto ON M3J 1P3 Canada www.yorku.ca/rhili
| | - Christopher Korfmann
- Department of Chemistry, Centre for Research on Biomolecular Interactions, York University 4700 Keele Street Toronto ON M3J 1P3 Canada www.yorku.ca/rhili
| | - Areeba Chaudhry
- Department of Chemistry, Centre for Research on Biomolecular Interactions, York University 4700 Keele Street Toronto ON M3J 1P3 Canada www.yorku.ca/rhili
| | - Ryan Hili
- Department of Chemistry, Centre for Research on Biomolecular Interactions, York University 4700 Keele Street Toronto ON M3J 1P3 Canada www.yorku.ca/rhili
| |
Collapse
|
2
|
Kupihár Z, Ferenc G, Petrovicz VL, Fáy VR, Kovács L, Martinek TA, Hegedüs Z. Improved Metal-Free Approach for the Synthesis of Protected Thiol Containing Thymidine Nucleoside Phosphoramidite and Its Application for the Synthesis of Ligatable Oligonucleotide Conjugates. Pharmaceutics 2023; 15:pharmaceutics15010248. [PMID: 36678876 PMCID: PMC9865093 DOI: 10.3390/pharmaceutics15010248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/04/2023] [Accepted: 01/07/2023] [Indexed: 01/13/2023] Open
Abstract
Oligonucleotide conjugates are versatile scaffolds that can be applied in DNA-based screening platforms and ligand display or as therapeutics. Several different chemical approaches are available for functionalizing oligonucleotides, which are often carried out on the 5' or 3' end. Modifying oligonucleotides in the middle of the sequence opens the possibility to ligate the conjugates and create DNA strands bearing multiple different ligands. Our goal was to establish a complete workflow that can be applied for such purposes from monomer synthesis to templated ligation. To achieve this, a monomer is required with an orthogonal functional group that can be incorporated internally into the oligonucleotide sequence. This is followed by conjugation with different molecules and ligation with the help of a complementary template. Here, we show the synthesis and the application of a thiol-modified thymidine nucleoside phosphoramidite to prepare ligatable oligonucleotide conjugates. The conjugations were performed both in solution and on solid phase, resulting in conjugates that can be assembled into multivalent oligonucleotides decorated with tissue-targeting peptides using templated ligation.
Collapse
Affiliation(s)
- Zoltán Kupihár
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
| | - Györgyi Ferenc
- Institute of Plant Biology, Biological Research Centre, Eötvös Lóránd Research Network, H-6726 Szeged, Hungary
| | - Vencel L. Petrovicz
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
| | - Viktória R. Fáy
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
| | - Lajos Kovács
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
| | - Tamás A. Martinek
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
- ELKH-SZTE Biomimetic Systems Research Group, Eötvös Loránd Research Network, H-6720 Szeged, Hungary
- Correspondence: (T.A.M.); (Z.H.)
| | - Zsófia Hegedüs
- Department of Medical Chemistry, University of Szeged, Dom ter 8., H-6720 Szeged, Hungary
- Correspondence: (T.A.M.); (Z.H.)
| |
Collapse
|
3
|
Shin WR, Park DY, Kim JH, Lee JP, Thai NQ, Oh IH, Sekhon SS, Choi W, Kim SY, Cho BK, Kim SC, Min J, Ahn JY, Kim YH. Structure based innovative approach to analyze aptaprobe-GPC3 complexes in hepatocellular carcinoma. J Nanobiotechnology 2022; 20:204. [PMID: 35477501 PMCID: PMC9044640 DOI: 10.1186/s12951-022-01391-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 03/21/2022] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3), a membrane-bound heparan sulfate proteoglycan, is a biomarker of hepatocellular carcinoma (HCC) progression. Aptamers specifically binding to target biomolecules have recently emerged as clinical disease diagnosis targets. Here, we describe 3D structure-based aptaprobe platforms for detecting GPC3, such as aptablotting, aptaprobe-based sandwich assay (ALISA), and aptaprobe-based imaging analysis. RESULTS For preparing the aptaprobe-GPC3 platforms, we obtained 12 high affinity aptamer candidates (GPC3_1 to GPC3_12) that specifically bind to target GPC3 molecules. Structure-based molecular interactions identified distinct aptatopic residues responsible for binding to the paratopic nucleotide sequences (nt-paratope) of GPC3 aptaprobes. Sandwichable and overlapped aptaprobes were selected through structural analysis. The aptaprobe specificity for using in HCC diagnostics were verified through Aptablotting and ALISA. Moreover, aptaprobe-based imaging showed that the binding property of GPC3_3 and their GPC3 specificity were maintained in HCC xenograft models, which may indicate a new HCC imaging diagnosis. CONCLUSION Aptaprobe has the potential to be used as an affinity reagent to detect the target in vivo and in vitro diagnosing system.
Collapse
Affiliation(s)
- Woo-Ri Shin
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Dae-Young Park
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Ji Hun Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jin-Pyo Lee
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Nguyen Quang Thai
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - In-Hwan Oh
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Simranjeet Singh Sekhon
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea
| | - Wooil Choi
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Sung Yeon Kim
- College of Pharmacy, Wonkwang University, Shinyoung-dong 344-2, Iksan, Jeonbuk, 570-749, Republic of Korea
| | - Byung-Kwan Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, Republic of Korea
| | - Jiho Min
- Graduate School of Semiconductor and Chemical Engineering, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Ji-Young Ahn
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| | - Yang-Hoon Kim
- School of Biological Sciences, Chungbuk National University, 1 Chungdae-Ro, Seowon-Gu, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
4
|
Tapp M, Dennis P, Naik RR, Milam VT. Competition-Enhanced Ligand Selection to Screen for DNA Aptamers for Spherical Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9043-9052. [PMID: 34279112 DOI: 10.1021/acs.langmuir.1c01053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The Competition-Enhanced Ligand Selection (CompELS) approach was used to identify aptamer candidates for spherical gold nanoparticles (AuNPs). This approach differs from conventional Systematic Evolution of Ligands by EXponential enrichment (SELEX)-based aptamer screening by eliminating repeated elution and polymerase chain reaction (PCR) amplification steps of bound candidate sequences between each selection round to continually enrich the candidate aptamer pool with oligonucleotides remaining from an earlier SELEX selection round. Instead, a new pool of unenriched oligonucleotides is added during each CompELS selection round to compete with existing target-bound oligonucleotides species for target binding sites. In this study, 24 aptamer candidates for AuNPs were identified using the CompELS approach and then compared to reveal similarities in their primary structures and their predicted secondary structures. No strong patterns in individual base identities (position-dependent) nor in segments of consecutive bases (independent of position) prevailed among the identified sequences. Motifs in predicted secondary structures, on the other hand, were shared among otherwise unrelated aptamer sequences. These motifs were revealed using a systematic classification and enumeration of distinct secondary structure elements, namely, hairpins, duplexes, single-stranded segments, interior loops, bulges, and multibranched loops.
Collapse
Affiliation(s)
| | - Patrick Dennis
- Materials & Manufacturing Directorate, Soft Matter Materials Branch, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | - Rajesh R Naik
- 711th Human Performance Wing, Air Force Research Laboratory, Wright-Patterson AFB, Ohio 45433, United States
| | | |
Collapse
|
5
|
Structural and functional analysis of the simultaneous binding of two duplex/quadruplex aptamers to human α-thrombin. Int J Biol Macromol 2021; 181:858-867. [PMID: 33864869 DOI: 10.1016/j.ijbiomac.2021.04.076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/12/2021] [Accepted: 04/13/2021] [Indexed: 11/23/2022]
Abstract
The long-range communication between the two exosites of human α-thrombin (thrombin) tightly modulates the protein-effector interactions. Duplex/quadruplex aptamers represent an emerging class of very effective binders of thrombin. Among them, NU172 and HD22 aptamers are at the forefront of exosite I and II recognition, respectively. The present study investigates the simultaneous binding of these two aptamers by combining a structural and dynamics approach. The crystal structure of the ternary complex formed by the thrombin with NU172 and HD22_27mer provides a detailed view of the simultaneous binding of these aptamers to the protein, inspiring the design of novel bivalent thrombin inhibitors. The crystal structure represents the starting model for molecular dynamics studies, which point out the cooperation between the binding at the two exosites. In particular, the binding of an aptamer to its exosite reduces the intrinsic flexibility of the other exosite, that preferentially assumes conformations similar to those observed in the bound state, suggesting a predisposition to interact with the other aptamer. This behaviour is reflected in a significant increase of the anticoagulant activity of NU172 when the inactive HD22_27mer is bound to exosite II, providing a clear evidence of the synergic action of the two aptamers.
Collapse
|
6
|
Ochoa S, Milam VT. Modified Nucleic Acids: Expanding the Capabilities of Functional Oligonucleotides. Molecules 2020; 25:E4659. [PMID: 33066073 PMCID: PMC7587394 DOI: 10.3390/molecules25204659] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 12/20/2022] Open
Abstract
In the last three decades, oligonucleotides have been extensively investigated as probes, molecular ligands and even catalysts within therapeutic and diagnostic applications. The narrow chemical repertoire of natural nucleic acids, however, imposes restrictions on the functional scope of oligonucleotides. Initial efforts to overcome this deficiency in chemical diversity included conservative modifications to the sugar-phosphate backbone or the pendant base groups and resulted in enhanced in vivo performance. More importantly, later work involving other modifications led to the realization of new functional characteristics beyond initial intended therapeutic and diagnostic prospects. These results have inspired the exploration of increasingly exotic chemistries highly divergent from the canonical nucleic acid chemical structure that possess unnatural physiochemical properties. In this review, the authors highlight recent developments in modified oligonucleotides and the thrust towards designing novel nucleic acid-based ligands and catalysts with specifically engineered functions inaccessible to natural oligonucleotides.
Collapse
Affiliation(s)
- Steven Ochoa
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
| | - Valeria T. Milam
- School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|