1
|
Föller S, Regett N, Lataster L, Radziwill G, Takors R. Optimum blue light exposure: a means to increase cell-specific productivity in Chinese hamster ovary cells. Appl Microbiol Biotechnol 2024; 108:530. [PMID: 39636393 PMCID: PMC11621146 DOI: 10.1007/s00253-024-13363-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/11/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024]
Abstract
Research for biopharmaceutical production processes with mammalian cells steadily aims to enhance the cell-specific productivity as a means for optimizing total productivities of bioreactors. Whereas current technologies such as pH, temperature, and osmolality shift require modifications of the cultivation medium, the use of optogenetic switches in recombinant producer cells might be a promising contact-free alternative. However, the proper application of optogenetically engineered cells requires a detailed understanding of basic cellular responses of cells that do not yet contain the optogenetic switches. The knowhow of ideal light exposure to enable the optimum use of related approaches is missing so far. Consequently, the current study set out to find optimum conditions for IgG1 producing Chinese hamster ovary (CHO) cells which were exposed to blue LED light. Growth characteristics, cell-specific productivity using enzyme-linked immunosorbent assay, as well as cell cycle distribution using flow cytometry were analyzed. Whereas too harsh light exposure causes detrimental growth effects that could be compensated with antioxidants, a surprising boost of cell-specific productivity by 57% occurred at optimum high light doses. The increase coincided with an increased number of cells in the G1 phase of the cell cycle after 72 h of illumination. The results present a promising new approach to boost biopharmaceutical productivity of mammalian cells simply by proper light exposure without any further optogenetic engineering. KEY POINTS: • Blue LED light hinders growth in CHO DP-12 cells • Antioxidants protect to a certain degree from blue light effects • Illumination with blue LED light raises cell-specific productivity.
Collapse
Affiliation(s)
- Stefanie Föller
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| | - Niklas Regett
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Levin Lataster
- Institute of Biology II, University of Freiburg, 79098, Freiburg, Germany
| | - Gerald Radziwill
- Institute of Biology II, University of Freiburg, 79098, Freiburg, Germany
| | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
2
|
Urban N, Hörner M, Weber W, Dincer C. OptoAssay-Light-controlled dynamic bioassay using optogenetic switches. SCIENCE ADVANCES 2024; 10:eadp0911. [PMID: 39321291 PMCID: PMC11423887 DOI: 10.1126/sciadv.adp0911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024]
Abstract
Circumventing the limitations of current bioassays, we introduce a light-controlled assay, OptoAssay, toward wash- and pump-free point-of-care diagnostics. Extending the capabilities of standard bioassays with light-dependent and reversible interaction of optogenetic switches, OptoAssays enable a bidirectional movement of assay components, only by changing the wavelength of light. Demonstrating exceptional versatility, the OptoAssay showcases its efficacy on various substrates, delivering a dynamic bioassay format. The applicability of the OptoAssay is successfully demonstrated by the calibration of a competitive model assay, resulting in a superior limit of detection of 8 pg ml-1, which is beyond those of conventional ELISA tests. In the future, combined with smartphones, OptoAssays could obviate the need for external flow control systems such as pumps or valves and signal readout devices, enabling on-site analysis in resource-limited settings.
Collapse
Affiliation(s)
- Nadine Urban
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110 Freiburg, Germany
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg, Germany
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
| | - Maximillian Hörner
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
| | - Wilfried Weber
- University of Freiburg, Faculty of Biology and Signalling Research Centres BIOSS and CIBSS, 79104 Freiburg, Germany
- INM–Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
- Saarland University, Department of Materials Science and Engineering, Campus D2 2, 66123 Saarbrücken, Germany
| | - Can Dincer
- University of Freiburg, FIT Freiburg Center for Interactive Materials and Bioinspired Technologies, 79110 Freiburg, Germany
- University of Freiburg, Department of Microsystems Engineering (IMTEK), 79110 Freiburg, Germany
| |
Collapse
|
3
|
Xu M, Wang YY, Wu Y, Zhou X, Shan Z, Tao K, Qian K, Wang X, Li J, Wu Q, Deng XW, Ling JJ. Green light mediates atypical photomorphogenesis by dual modulation of Arabidopsis phytochromes B and A. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1915-1933. [PMID: 39023402 DOI: 10.1111/jipb.13742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/20/2024]
Abstract
Although green light (GL) is located in the middle of the visible light spectrum and regulates a series of plant developmental processes, the mechanism by which it regulates seedling development is largely unknown. In this study, we demonstrated that GL promotes atypical photomorphogenesis in Arabidopsis thaliana via the dual regulations of phytochrome B (phyB) and phyA. Although the Pr-to-Pfr conversion rates of phyB and phyA under GL were lower than those under red light (RL) in a fluence rate-dependent and time-dependent manner, long-term treatment with GL induced high Pfr/Pr ratios of phyB and phyA. Moreover, GL induced the formation of numerous small phyB photobodies in the nucleus, resulting in atypical photomorphogenesis, with smaller cotyledon opening angles and longer hypocotyls in seedlings compared to RL. The abundance of phyA significantly decreased after short- and long-term GL treatments. We determined that four major PHYTOCHROME-INTERACTING FACTORs (PIFs: PIF1, PIF3, PIF4, and PIF5) act downstream of phyB in GL-mediated cotyledon opening. In addition, GL plays opposite roles in regulating different PIFs. For example, under continuous GL, the protein levels of all PIFs decreased, whereas the transcript levels of PIF4 and PIF5 strongly increased compared with dark treatment. Taken together, our work provides a detailed molecular framework for understanding the role of the antagonistic regulations of phyB and phyA in GL-mediated atypical photomorphogenesis.
Collapse
Affiliation(s)
- Miqi Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yi-Yuan Wang
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Yujie Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- Biotechnology Center, State Key Laboratory of Tea Plant Biology and Utilization, School of Tea and Food Sciences and Technology, Anhui Agricultural University, Hefei, 230036, China
| | - Ziyan Shan
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kunying Tao
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Kaiqiang Qian
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xuncheng Wang
- Beijing Key Laboratory of Environment Friendly Management on Fruit Diseases and Pests in North China, Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, 100097, China
| | - Jian Li
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Qingqing Wu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| | - Xing Wang Deng
- State Key Laboratory of Protein and Plant Gene Research, Peking-Tsinghua Center for Life Sciences, School of Advanced Agriculture Sciences, and School of Life Sciences, Peking University, Beijing, 100871, China
- State Key Laboratory of Wheat Improvement, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Peking University Institute of Advanced Agricultural Sciences, Weifang, 261000, China
| | - Jun-Jie Ling
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
- Province Key Laboratory of Resource Insect Biology and Innovative Utilization, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China
| |
Collapse
|
4
|
Janis MK, Zou W, Zastrow ML. A Single-Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. Chembiochem 2023; 24:e202300358. [PMID: 37423892 PMCID: PMC10653908 DOI: 10.1002/cbic.202300358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/06/2023] [Accepted: 07/07/2023] [Indexed: 07/11/2023]
Abstract
Cyanobacteriochrome (CBCR) cGMP-specific phosphodiesterase, adenylyl cyclase, and FhlA (GAF) domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, including the third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803, which binds phycoerythrobilin (PEB) to yield a bright orange fluorescent protein. Compared to green fluorescent proteins, the smaller size and lack of an oxygen requirement for fluorescence make Slr1393g3 a promising platform for new genetically encoded fluorescent tools. Slr1393g3, however, shows low PEB binding efficiency (chromophorylation) at ~3 % compared to total Slr1393g3 expressed in E. coli. Here we used site-directed mutagenesis and plasmid redesign methods to improve Slr1393g3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. Mutation at a single site, Trp496, tuned the emission over ~30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications for tuning relative expression of Slr1393g3 and PEB synthesis enzymes also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised up to a total of 23 % with combined sequence truncation and W496H mutation.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204, USA
| |
Collapse
|
5
|
Janis MK, Zou W, Zastrow ML. A Single Site Mutation Tunes Fluorescence and Chromophorylation of an Orange Fluorescent Cyanobacteriochrome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.11.540396. [PMID: 37214816 PMCID: PMC10197653 DOI: 10.1101/2023.05.11.540396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cyanobacteriochrome (CBCR) GAF domains bind bilin cofactors to confer sensory wavelengths important for various cyanobacterial photosensory processes. Many isolated GAF domains autocatalytically bind bilins, becoming fluorescent. The third GAF domain of CBCR Slr1393 from Synechocystis sp. PCC6803 binds phycocyanobilin (PCB) natively, yielding red/green photoswitching properties but also binds phycoerythrobilin (PEB). GAF3-PCB has low quantum yields but non-photoswitching GAF3-PEB is brighter, making it a promising platform for new genetically encoded fluorescent tools. GAF3, however, shows low PEB binding efficiency (chromophorylation) at ∼3% compared to total protein expressed in E. coli . Here we explored site-directed mutagenesis and plasmid-based methods to improve GAF3-PEB binding and demonstrate its utility as a fluorescent marker in live cells. We found that a single mutation improved chromophorylation while tuning the emission over ∼30 nm, likely by shifting autoisomerization of PEB to phycourobilin (PUB). Plasmid modifications also improved chromophorylation and moving from a dual to single plasmid system facilitated exploration of a range of mutants via site saturation mutagenesis and sequence truncation. Collectively, the PEB/PUB chromophorylation was raised by ∼7-fold. Moreover, we show that protein-chromophore interactions can tune autoisomerization of PEB to PUB in a GAF domain, which will facilitate future engineering of similar GAF domain-derived fluorescent proteins.
Collapse
Affiliation(s)
- Makena K Janis
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Wenping Zou
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| | - Melissa L Zastrow
- Department of Chemistry, University of Houston, 3585 Cullen Blvd, Houston, TX, 77204 (USA)
| |
Collapse
|
6
|
Harmer ZP, McClean MN. Lustro: High-throughput optogenetic experiments enabled by automation and a yeast optogenetic toolkit. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.07.536078. [PMID: 37066312 PMCID: PMC10104134 DOI: 10.1101/2023.04.07.536078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Optogenetic systems use genetically-encoded light-sensitive proteins to control cellular processes. This provides the potential to orthogonally control cells with light, however these systems require many design-build-test cycles to achieve a functional design and multiple illumination variables need to be laboriously tuned for optimal stimulation. We combine laboratory automation and a modular cloning scheme to enable high-throughput construction and characterization of optogenetic split transcription factors in Saccharomyces cerevisiae . We expand the yeast optogenetic toolkit to include variants of the cryptochromes and Enhanced Magnets, incorporate these light-sensitive dimerizers into split transcription factors, and automate illumination and measurement of cultures in a 96-well microplate format for high-throughput characterization. We use this approach to rationally design and test an optimized Enhanced Magnet transcription factor with improved light-sensitive gene expression. This approach is generalizable to high-throughput characterization of optogenetic systems across a range of biological systems and applications.
Collapse
|
7
|
Heidari A, Sentürk OI, Yang S, Joesaar A, Gobbo P, Mann S, de Greef TFA, Wegner SV. Orthogonal Light-Dependent Membrane Adhesion Induces Social Self-Sorting and Member-Specific DNA Communication in Synthetic Cell Communities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206474. [PMID: 36599623 DOI: 10.1002/smll.202206474] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Indexed: 06/17/2023]
Abstract
Developing orthogonal chemical communication pathways in diverse synthetic cell communities is a considerable challenge due to the increased crosstalk and interference associated with large numbers of different types of sender-receiver pairs. Herein, the authors control which sender-receiver pairs communicate in a three-membered community of synthetic cells through red and blue light illumination. Semipermeable protein-polymer-based synthetic cells (proteinosomes) with complementary membrane-attached protein adhesion communicate through single-stranded DNA oligomers and synergistically process biochemical information within a community consisting of one sender and two different receiver populations. Different pairs of red and blue light-responsive protein-protein interactions act as membrane adhesion mediators between the sender and receivers such that they self-assemble and socially self-sort into different multicellular structures under red and blue light. Consequently, distinct sender-receiver pairs come into the signaling range depending on the light illumination and are able to communicate specifically without activation of the other receiver population. Overall, this work shows how photoswitchable membrane adhesion gives rise to different self-sorting protocell patterns that mediate member-specific DNA-based communication in ternary populations of synthetic cells and provides a step towards the design of orthogonal chemical communication networks in diverse communities of synthetic cells.
Collapse
Affiliation(s)
- Ali Heidari
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| | - Oya I Sentürk
- Department of Physical Chemistry of Polymers, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Shuo Yang
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Alex Joesaar
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Pierangelo Gobbo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Trieste, 34127, Italy
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, Max Planck Bristol Centre for Minimal Biology, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Tom F A de Greef
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, 5612 AZ, The Netherlands
| | - Seraphine V Wegner
- Institute of Physiological Chemistry and Pathobiochemistry University of Münster, Waldeyerstr. 15, 48149, Münster, Germany
| |
Collapse
|
8
|
Russ M, Ehret AK, Hörner M, Peschkov D, Bohnert R, Idstein V, Minguet S, Weber W, Lillemeier BF, Yousefi OS, Schamel WW. Opto-APC: Engineering of cells that display phytochrome B on their surface for optogenetic studies of cell-cell interactions. Front Mol Biosci 2023; 10:1143274. [PMID: 36936981 PMCID: PMC10016228 DOI: 10.3389/fmolb.2023.1143274] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
The kinetics of a ligand-receptor interaction determine the responses of the receptor-expressing cell. One approach to experimentally and reversibly change this kinetics on demand is optogenetics. We have previously developed a system in which the interaction of a modified receptor with an engineered ligand can be controlled by light. In this system the ligand is a soluble Phytochrome B (PhyB) tetramer and the receptor is fused to a mutated PhyB-interacting factor (PIFS). However, often the natural ligand is not soluble, but expressed as a membrane protein on another cell. This allows ligand-receptor interactions in two dimensions. Here, we developed a strategy to generate cells that display PhyB as a membrane-bound protein by expressing the SpyCatcher fused to a transmembrane domain in HEK-293T cells and covalently coupling purified PhyB-SpyTag to these cells. As proof-of-principle, we use Jurkat T cells that express a GFP-PIFS-T cell receptor and show that these cells can be stimulated by the PhyB-coupled HEK-293T cells in a light dependent manner. Thus, we call the PhyB-coupled cells opto-antigen presenting cells (opto-APCs). Our work expands the toolbox of optogenetic technologies, allowing two-dimensional ligand-receptor interactions to be controlled by light.
Collapse
Affiliation(s)
- Marissa Russ
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Anna K. Ehret
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Maximilian Hörner
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Daniel Peschkov
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Rebecca Bohnert
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Vincent Idstein
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Susana Minguet
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Björn F. Lillemeier
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - O. Sascha Yousefi
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Wolfgang W. Schamel
- Signalling Research Centres BIOSS and CIBSS, Faculty of Biology, University of Freiburg, Freiburg, Germany
- Centre for Chronic Immunodeficiency (CCI), Medical Centre Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- *Correspondence: Wolfgang W. Schamel,
| |
Collapse
|
9
|
Emig R, Hoess P, Cai H, Kohl P, Peyronnet R, Weber W, Hörner M. Benchmarking of Cph1 Mutants and DrBphP for Light-Responsive Phytochrome-Based Hydrogels with Reversibly Adjustable Mechanical Properties. Adv Biol (Weinh) 2022; 6:e2000337. [PMID: 35481696 DOI: 10.1002/adbi.202000337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 03/31/2022] [Indexed: 01/28/2023]
Abstract
In the rapidly expanding field of molecular optogenetics, the performance of the engineered systems relies on the switching properties of the underlying genetically encoded photoreceptors. In this study, the bacterial phytochromes Cph1 and DrBphP are engineered, recombinantly produced in Escherichia coli, and characterized regarding their switching properties in order to synthesize biohybrid hydrogels with increased light-responsive stiffness modulations. The R472A mutant of the cyanobacterial phytochrome 1 (Cph1) is identified to confer the phytochrome-based hydrogels with an increased dynamic range for the storage modulus but a different light-response for the loss modulus compared to the original Cph1-based hydrogel. Stiffness measurements of human atrial fibroblasts grown on these hydrogels suggest that differences in the loss modulus at comparable changes in the storage modulus affect cell stiffness and thus underline the importance of matrix viscoelasticity on cellular mechanotransduction. The hydrogels presented here are of interest for analyzing how mammalian cells respond to dynamic viscoelastic cues. Moreover, the Cph1-R472A mutant, as well as the benchmarking of the other phytochrome variants, are expected to foster the development and performance of future optogenetic systems.
Collapse
Affiliation(s)
- Ramona Emig
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Philipp Hoess
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Hanyang Cai
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany.,CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, 79110, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, 79110, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
10
|
Hörner M, Weber W. Spatially Defined Gene Delivery into Native Cells with the Red Light-Controlled OptoAAV Technology. Curr Protoc 2022; 2:e440. [PMID: 35671165 DOI: 10.1002/cpz1.440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The OptoAAV technology allows spatially defined delivery of transgenes into native target cells down to single-cell resolution by the illumination with cell-compatible and tissue-penetrating red light. The system is based on an adeno-associated viral (AAV) vector of serotype 2 with an engineered capsid (OptoAAV) and a photoreceptor-containing adapter protein mediating the interaction of the OptoAAV with the surface of the target cell in response to low doses of red and far-red light. In this article, we first provide detailed protocols for the production, purification, and analysis of the OptoAAV and the adapter protein. Afterward, we describe in detail the application of the OptoAAV system for the light-controlled transduction of human cells with global and patterned illumination. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol 1: Production, purification, and analysis of PhyB-DARPinEGFR adapter protein Basic Protocol 2: Production, purification, and analysis of OptoAAV Basic Protocol 3: Red light-controlled viral transduction with the OptoAAV system Support Protocol: Spatially resolved transduction of two transgenes with the OptoAAV system.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
12
|
Hörner M, Jerez-Longres C, Hudek A, Hook S, Yousefi OS, Schamel WWA, Hörner C, Zurbriggen MD, Ye H, Wagner HJ, Weber W. Spatiotemporally confined red light-controlled gene delivery at single-cell resolution using adeno-associated viral vectors. SCIENCE ADVANCES 2021; 7:7/25/eabf0797. [PMID: 34134986 PMCID: PMC8208708 DOI: 10.1126/sciadv.abf0797] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 05/04/2021] [Indexed: 05/15/2023]
Abstract
Methodologies for the controlled delivery of genetic information into target cells are of utmost importance for genetic engineering in both fundamental and applied research. However, available methods for efficient gene transfer into user-selected or even single cells suffer from low throughput, the need for complicated equipment, high invasiveness, or side effects by off-target viral uptake. Here, we engineer an adeno-associated viral (AAV) vector system that transfers genetic information into native target cells upon illumination with cell-compatible red light. This OptoAAV system allows adjustable and spatially resolved gene transfer down to single-cell resolution and is compatible with different cell lines and primary cells. Moreover, the sequential application of multiple OptoAAVs enables spatially resolved transduction with different transgenes. The approach presented is likely extendable to other classes of viral vectors and is expected to foster advances in basic and applied genetic research.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Carolina Jerez-Longres
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| | - Anna Hudek
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Sebastian Hook
- Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - O Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Wolfgang W A Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center of Chronic Immunodeficiency CCI, University Clinics and Medical Faculty, Freiburg, Germany
| | - Cindy Hörner
- Division of Veterinary Medicine, Paul-Ehrlich-Institut, Langen, Germany
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Haifeng Ye
- Synthetic Biology and Biomedical Engineering Laboratory, Biomedical Synthetic Biology Research Center, Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Hanna J Wagner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Synthesis of a Light-Controlled Phytochrome-Based Extracellular Matrix with Reversibly Adjustable Mechanical Properties. Methods Mol Biol 2021; 2173:217-231. [PMID: 32651921 DOI: 10.1007/978-1-0716-0755-8_15] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Synthetic extracellular matrices with reversibly adjustable mechanical properties are essential for the investigation of how cells respond to dynamic mechanical cues as occurring in living organisms. One interesting approach to engineer dynamic biomaterials is the incorporation of photoreceptors from cyanobacteria or plants into polymer materials. Here, we give an overview of existing photoreceptor-based biomaterials and describe a detailed protocol for the synthesis of a phytochrome-based extracellular matrix (CyPhyGel). Using cell-compatible light in the red and far-red spectrum, the mechanical properties of this matrix can be adjusted in a fully reversible, wavelength-specific, and dose-dependent manner with high spatiotemporal control.
Collapse
|
14
|
Hörner M, Yousefi OS, Schamel WWA, Weber W. Production, Purification and Characterization of Recombinant Biotinylated Phytochrome B for Extracellular Optogenetics. Bio Protoc 2020; 10:e3541. [PMID: 33659515 PMCID: PMC7842835 DOI: 10.21769/bioprotoc.3541] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
In the field of extracellular optogenetics, photoreceptors are applied outside of cells to obtain systems with a desired functionality. Among the diverse applied photoreceptors, phytochromes are the only ones that can be actively and reversibly switched between the active and inactive photostate by the illumination with cell-compatible red and far-red light. In this protocol, we describe the production of a biotinylated variant of the photosensory domain of A. thaliana phytochrome B (PhyB-AviTag) in E. coli with a single, optimized expression plasmid. We give detailed instructions for the purification of the protein by immobilized metal affinity chromatography and the characterization of the protein in terms of purity, biotinylation, spectral photoswitching and the light-dependent interaction with its interaction partner PIF6. In comparison to previous studies applying PhyB-AviTag, the optimized expression plasmid used in this protocol simplifies the production process and shows an increased yield and purity.
Collapse
Affiliation(s)
- Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - O. Sascha Yousefi
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Wolfgang W. A. Schamel
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for Chronic Immunodeficiency (CCI), Medical Center Freiburg and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
15
|
Emig R, Zgierski-Johnston CM, Beyersdorf F, Rylski B, Ravens U, Weber W, Kohl P, Hörner M, Peyronnet R. Human Atrial Fibroblast Adaptation to Heterogeneities in Substrate Stiffness. Front Physiol 2020; 10:1526. [PMID: 31998137 PMCID: PMC6965062 DOI: 10.3389/fphys.2019.01526] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 12/04/2019] [Indexed: 01/12/2023] Open
Abstract
Fibrosis is associated with aging and many cardiac pathologies. It is characterized both by myofibroblast differentiation and by excessive accumulation of extracellular matrix proteins. Fibrosis-related tissue remodeling results in significant changes in tissue structure and function, including passive mechanical properties. This research area has gained significant momentum with the recent development of new tools and approaches to better characterize and understand the ability of cells to sense and respond to their biophysical environment. We use a novel hydrogel, termed CyPhyGel, to provide an advanced in vitro model of remodeling-related changes in tissue stiffness. Based on light-controlled dimerization of a Cyanobacterial Phytochrome, it enables contactless and reversible tuning of hydrogel mechanical properties with high spatial and temporal resolution. Human primary atrial fibroblasts were cultured on CyPhyGels. After 4 days of culturing on stiff (~4.6 kPa) or soft (~2.7 kPa) CyPhyGels, we analyzed fibroblast cell area and stiffness. Cells grown on the softer substrate were smaller and softer, compared to cells grown on the stiffer substrate. This difference was absent when both soft and stiff growth substrates were combined in a single CyPhyGel, with the resulting cell areas being similar to those on homogeneously stiff gels and cell stiffnesses being similar to those on homogeneously soft substrates. Using CyPhyGels to mimic tissue stiffness heterogeneities in vitro, our results confirm the ability of cardiac fibroblasts to adapt to their mechanical environment, and suggest the presence of a paracrine mechanism that tunes fibroblast structural and functional properties associated with mechanically induced phenotype conversion toward myofibroblasts. In the context of regionally increased tissue stiffness, such as upon scarring or in diffuse fibrosis, such a mechanism could help to prevent abrupt changes in cell properties at the border zone between normal and diseased tissue. The light-tunable mechanical properties of CyPhyGels and their suitability for studying human primary cardiac cells make them an attractive model system for cardiac mechanobiology research. Further investigations will explore the interactions between biophysical and soluble factors in the response of cardiac fibroblasts to spatially and temporally heterogeneous mechanical cues.
Collapse
Affiliation(s)
- Ramona Emig
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Callum M Zgierski-Johnston
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Friedhelm Beyersdorf
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Bartosz Rylski
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Department of Cardiovascular Surgery, University Heart Center Freiburg, University of Freiburg, Freiburg, Germany
| | - Ursula Ravens
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Wilfried Weber
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Peter Kohl
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Maximilian Hörner
- Faculty of Biology, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| | - Rémi Peyronnet
- Institute for Experimental Cardiovascular Medicine, University Heart Center Freiburg - Bad Krozingen, Medical Center-University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|