1
|
Lammens EM, Volke DC, Kerremans A, Aerts Y, Boon M, Nikel PI, Lavigne R. Engineering a phi15-based expression system for stringent gene expression in Pseudomonas putida. Commun Biol 2025; 8:171. [PMID: 39905116 PMCID: PMC11794488 DOI: 10.1038/s42003-025-07508-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 01/09/2025] [Indexed: 02/06/2025] Open
Abstract
The T7 phage RNA polymerase (RNAP) is a widely used expression platform, but its implementation in non-model microbial hosts poses significant challenges due to cytotoxicity. We constructed an optimized phage phi15-based expression system as alternative to the T7 platform for a wide range of applications in Pseudomonas putida. The new system employs the small phi15 RNAP, driving expression from an orthogonal phi15 promoter. By finetuning expression levels of phi15rnap and introducing a phi15 lysozyme mutant that inhibits phi15 RNAP in uninduced conditions, a stringent system was created with 200-fold inducibility. Moreover, by successfully decoupling cell growth and protein production using phi15 gp16, a host RNAP inhibitor, expression levels could be enhanced further (20%). Apart from creating four optimized platform P. putida hosts and a set of Golden Gate-compatible vectors, we demonstrate the extensive flexibility of the phi15 system. A proof-of-concept expression for industrially relevant fluorinase resulted in 2.5- and 5-fold increased yield compared to other widely-adopted expression systems. The system functions well in combination with several inducer systems, and in a variety of vector-based and genomically integrated set-ups. In conclusion, the phi15 RNAP, promoter, lysozyme and growth-decoupler provide a valuable plug-and-play set of genetic parts for the P. putida toolbox.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Daniel C Volke
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, DK, Denmark
| | - Alison Kerremans
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Yannick Aerts
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Maarten Boon
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Pablo I Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, DK, Denmark
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium.
| |
Collapse
|
2
|
Hueso-Gil A, Calles B, de Lorenzo V. Engineering Green-light-responsive Heterologous Gene Expression in Pseudomonas. Methods Mol Biol 2024; 2721:35-44. [PMID: 37819513 DOI: 10.1007/978-1-0716-3473-8_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Engineering bacterial properties requires precision and fine-tuning for optimal control of the desired application. In consequence, it is essential to accurately turn the function of interest from OFF to ON state and vice versa, avoiding any type of residual activation. For this type of purpose, light switches have revealed a clean and powerful tool in which control does not depend on the addition of chemical compounds that may remain in the media. To reach this degree of directed regulation through light, the switch based on the cyanobacterial two-component system CcaSR system was previously adapted to manipulate Pseudomonas putida for transcription of a gene of interest. In this chapter, we describe how to induce biofilm formation by placing the expression of the c-di-GMP-producing diguanylate cyclase PleD from Caulobacter sp. under the control of the CcaSR system. The regulation through optogenetics accomplished with this protocol promotes higher exploitation of biofilm beneficial features in a cheaper and cleaner way compared to chemical induction.
Collapse
Affiliation(s)
- Angeles Hueso-Gil
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA/CSIC), Madrid, Spain
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| |
Collapse
|
3
|
Hueso-Gil A, Calles B, de Lorenzo V. In Vivo Sampling of Intracellular Heterogeneity of Pseudomonas putida Enables Multiobjective Optimization of Genetic Devices. ACS Synth Biol 2023; 12:1667-1676. [PMID: 37196337 PMCID: PMC10278179 DOI: 10.1021/acssynbio.3c00009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Indexed: 05/19/2023]
Abstract
The inner physicochemical heterogeneity of bacterial cells generates three-dimensional (3D)-dependent variations of resources for effective expression of given chromosomally located genes. This fact has been exploited for adjusting the most favorable parameters for implanting a complex device for optogenetic control of biofilm formation in the soil bacterium Pseudomonas putida. To this end, a DNA segment encoding a superactive variant of the Caulobacter crescendus diguanylate cyclase PleD expressed under the control of the cyanobacterial light-responsive CcaSR system was placed in a mini-Tn5 transposon vector and randomly inserted through the chromosome of wild-type and biofilm-deficient variants of P. putida lacking the wsp gene cluster. This operation delivered a collection of clones covering a whole range of biofilm-building capacities and dynamic ranges in response to green light. Since the phenotypic output of the device depends on a large number of parameters (multiple promoters, RNA stability, translational efficacy, metabolic precursors, protein folding, etc.), we argue that random chromosomal insertions enable sampling the intracellular milieu for an optimal set of resources that deliver a preset phenotypic specification. Results thus support the notion that the context dependency can be exploited as a tool for multiobjective optimization, rather than a foe to be suppressed in Synthetic Biology constructs.
Collapse
Affiliation(s)
| | - Belén Calles
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus
de Cantoblanco, Madrid 28049, Spain
| | - Víctor de Lorenzo
- Systems Biology Department, Centro Nacional de Biotecnología-CSIC, Campus
de Cantoblanco, Madrid 28049, Spain
| |
Collapse
|
4
|
Ye JW, Lin YN, Yi XQ, Yu ZX, Liu X, Chen GQ. Synthetic biology of extremophiles: a new wave of biomanufacturing. Trends Biotechnol 2023; 41:342-357. [PMID: 36535816 DOI: 10.1016/j.tibtech.2022.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/12/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022]
Abstract
Microbial biomanufacturing, powered by the advances of synthetic biology, has attracted growing interest for the production of diverse products. In contrast to conventional microbes, extremophiles have shown better performance for low-cost production owing to their outstanding growth and synthesis capacity under stress conditions, allowing unsterilized fermentation processes. We review increasing numbers of products already manufactured utilizing extremophiles in recent years. In addition, genetic parts, molecular tools, and manipulation approaches for extremophile engineering are also summarized, and challenges and opportunities are predicted for non-conventional chassis. Next-generation industrial biotechnology (NGIB) based on engineered extremophiles promises to simplify biomanufacturing processes and achieve open and continuous fermentation, without sterilization, and utilizing low-cost substrates, making NGIB an attractive green process for sustainable manufacturing.
Collapse
Affiliation(s)
- Jian-Wen Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Yi-Na Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China; Guangdong Key Laboratory of Fermentation and Enzyme Engineering, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China; Guangdong Research Center of Industrial Enzyme and Green Manufacturing Technology, School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Xue-Qing Yi
- School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhuo-Xuan Yu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510006, China
| | - Xu Liu
- PhaBuilder Biotech Company, Shunyi District, Zhaoquan Ying, Beijing 101309, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, Beijing 100084, China; Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China; Ministry of Education (MOE) Laboratory of Industrial Biocatalysis, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, China.
| |
Collapse
|
5
|
Ohlendorf R, Möglich A. Light-regulated gene expression in Bacteria: Fundamentals, advances, and perspectives. Front Bioeng Biotechnol 2022; 10:1029403. [PMID: 36312534 PMCID: PMC9614035 DOI: 10.3389/fbioe.2022.1029403] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/29/2022] [Indexed: 11/13/2022] Open
Abstract
Numerous photoreceptors and genetic circuits emerged over the past two decades and now enable the light-dependent i.e., optogenetic, regulation of gene expression in bacteria. Prompted by light cues in the near-ultraviolet to near-infrared region of the electromagnetic spectrum, gene expression can be up- or downregulated stringently, reversibly, non-invasively, and with precision in space and time. Here, we survey the underlying principles, available options, and prominent examples of optogenetically regulated gene expression in bacteria. While transcription initiation and elongation remain most important for optogenetic intervention, other processes e.g., translation and downstream events, were also rendered light-dependent. The optogenetic control of bacterial expression predominantly employs but three fundamental strategies: light-sensitive two-component systems, oligomerization reactions, and second-messenger signaling. Certain optogenetic circuits moved beyond the proof-of-principle and stood the test of practice. They enable unprecedented applications in three major areas. First, light-dependent expression underpins novel concepts and strategies for enhanced yields in microbial production processes. Second, light-responsive bacteria can be optogenetically stimulated while residing within the bodies of animals, thus prompting the secretion of compounds that grant health benefits to the animal host. Third, optogenetics allows the generation of precisely structured, novel biomaterials. These applications jointly testify to the maturity of the optogenetic approach and serve as blueprints bound to inspire and template innovative use cases of light-regulated gene expression in bacteria. Researchers pursuing these lines can choose from an ever-growing, versatile, and efficient toolkit of optogenetic circuits.
Collapse
Affiliation(s)
- Robert Ohlendorf
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Andreas Möglich
- Department of Biochemistry, University of Bayreuth, Bayreuth, Germany
- Bayreuth Center for Biochemistry and Molecular Biology, Universität Bayreuth, Bayreuth, Germany
- North-Bavarian NMR Center, Universität Bayreuth, Bayreuth, Germany
| |
Collapse
|
6
|
Yilmaz S, Nyerges A, van der Oost J, Church GM, Claassens NJ. Towards next-generation cell factories by rational genome-scale engineering. Nat Catal 2022. [DOI: 10.1038/s41929-022-00836-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Chen B, Cui M, Wang Y, Shi P, Wang H, Wang F. Recent advances in cellular optogenetics for photomedicine. Adv Drug Deliv Rev 2022; 188:114457. [PMID: 35843507 DOI: 10.1016/j.addr.2022.114457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 06/13/2022] [Accepted: 07/11/2022] [Indexed: 11/26/2022]
Abstract
Since the successful introduction of exogenous photosensitive proteins, channelrhodopsin, to neurons, optogenetics has enabled substantial understanding of profound brain function by selectively manipulating neural circuits. In an optogenetic system, optical stimulation can be precisely delivered to brain tissue to achieve regulation of cellular electrical activity with unprecedented spatio-temporal resolution in living organisms. In recent years, the development of various optical actuators and novel light-delivery techniques has greatly expanded the scope of optogenetics, enabling the control of other signal pathways in non-neuronal cells for different biomedical applications, such as phototherapy and immunotherapy. This review focuses on the recent advances in optogenetic regulation of cellular activities for photomedicine. We discuss emerging optogenetic tools and light-delivery platforms, along with a survey of optogenetic execution in mammalian and microbial cells.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Meihui Cui
- School of Life Sciences, Tianjin University, Tianjin 300072, China
| | - Yuan Wang
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China
| | - Peng Shi
- Department of Biomedical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China.
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China.
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, China; City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| |
Collapse
|
8
|
Lindner F, Diepold A. Optogenetics in bacteria - applications and opportunities. FEMS Microbiol Rev 2021; 46:6427354. [PMID: 34791201 PMCID: PMC8892541 DOI: 10.1093/femsre/fuab055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Optogenetics holds the promise of controlling biological processes with superb temporal and spatial resolution at minimal perturbation. Although many of the light-reactive proteins used in optogenetic systems are derived from prokaryotes, applications were largely limited to eukaryotes for a long time. In recent years, however, an increasing number of microbiologists use optogenetics as a powerful new tool to study and control key aspects of bacterial biology in a fast and often reversible manner. After a brief discussion of optogenetic principles, this review provides an overview of the rapidly growing number of optogenetic applications in bacteria, with a particular focus on studies venturing beyond transcriptional control. To guide future experiments, we highlight helpful tools, provide considerations for successful application of optogenetics in bacterial systems, and identify particular opportunities and challenges that arise when applying these approaches in bacteria.
Collapse
Affiliation(s)
- Florian Lindner
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany
| | - Andreas Diepold
- Max-Planck-Institute for Terrestrial Microbiology, Department of Ecophysiology, Karl-von-Frisch-Str. 10, 35043 Marburg, Germany.,SYNMIKRO, LOEWE Center for Synthetic Microbiology, Marburg, Germany
| |
Collapse
|
9
|
|
10
|
|
11
|
Bandara S, Rockwell NC, Zeng X, Ren Z, Wang C, Shin H, Martin SS, Moreno MV, Lagarias JC, Yang X. Crystal structure of a far-red-sensing cyanobacteriochrome reveals an atypical bilin conformation and spectral tuning mechanism. Proc Natl Acad Sci U S A 2021; 118:e2025094118. [PMID: 33727422 PMCID: PMC8000052 DOI: 10.1073/pnas.2025094118] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Cyanobacteriochromes (CBCRs) are small, linear tetrapyrrole (bilin)-binding photoreceptors in the phytochrome superfamily that regulate diverse light-mediated adaptive processes in cyanobacteria. More spectrally diverse than canonical red/far-red-sensing phytochromes, CBCRs were thought to be restricted to sensing visible and near UV light until recently when several subfamilies with far-red-sensing representatives (frCBCRs) were discovered. Two of these frCBCRs subfamilies have been shown to incorporate bilin precursors with larger pi-conjugated chromophores, while the third frCBCR subfamily uses the same phycocyanobilin precursor found in the bulk of the known CBCRs. To elucidate the molecular basis of far-red light perception by this third frCBCR subfamily, we determined the crystal structure of the far-red-absorbing dark state of one such frCBCR Anacy_2551g3 from Anabaena cylindrica PCC 7122 which exhibits a reversible far-red/orange photocycle. Determined by room temperature serial crystallography and cryocrystallography, the refined 2.7-Å structure reveals an unusual all-Z,syn configuration of the phycocyanobilin (PCB) chromophore that is considerably less extended than those of previously characterized red-light sensors in the phytochrome superfamily. Based on structural and spectroscopic comparisons with other bilin-binding proteins together with site-directed mutagenesis data, our studies reveal protein-chromophore interactions that are critical for the atypical bathochromic shift. Based on these analyses, we propose that far-red absorption in Anacy_2551g3 is the result of the additive effect of two distinct red-shift mechanisms involving cationic bilin lactim tautomers stabilized by a constrained all-Z,syn conformation and specific interactions with a highly conserved anionic residue.
Collapse
Affiliation(s)
- Sepalika Bandara
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Nathan C Rockwell
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Xiaoli Zeng
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Zhong Ren
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Cong Wang
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Heewhan Shin
- Department of Chemistry, University of Illinois, Chicago, IL 60607
| | - Shelley S Martin
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - Marcus V Moreno
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616
| | - J Clark Lagarias
- Department of Molecular and Cellular Biology, University of California, Davis, CA 95616;
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois, Chicago, IL 60607;
- Department of Ophthalmology and Vision Sciences, University of Illinois, Chicago, IL 60607
| |
Collapse
|
12
|
Wannier TM, Ciaccia PN, Ellington AD, Filsinger GT, Isaacs FJ, Javanmardi K, Jones MA, Kunjapur AM, Nyerges A, Pal C, Schubert MG, Church GM. Recombineering and MAGE. NATURE REVIEWS. METHODS PRIMERS 2021; 1:7. [PMID: 35540496 PMCID: PMC9083505 DOI: 10.1038/s43586-020-00006-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/19/2020] [Indexed: 12/17/2022]
Abstract
Recombination-mediated genetic engineering, also known as recombineering, is the genomic incorporation of homologous single-stranded or double-stranded DNA into bacterial genomes. Recombineering and its derivative methods have radically improved genome engineering capabilities, perhaps none more so than multiplex automated genome engineering (MAGE). MAGE is representative of a set of highly multiplexed single-stranded DNA-mediated technologies. First described in Escherichia coli, both MAGE and recombineering are being rapidly translated into diverse prokaryotes and even into eukaryotic cells. Together, this modern set of tools offers the promise of radically improving the scope and throughput of experimental biology by providing powerful new methods to ease the genetic manipulation of model and non-model organisms. In this Primer, we describe recombineering and MAGE, their optimal use, their diverse applications and methods for pairing them with other genetic editing tools. We then look forward to the future of genetic engineering.
Collapse
Affiliation(s)
- Timothy M. Wannier
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Peter N. Ciaccia
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Gabriel T. Filsinger
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
- Department of Systems Biology, Harvard University, Cambridge, MA, USA
| | - Farren J. Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT, USA
- Systems Biology Institute, Yale University, West Haven, CT, USA
- Department of Biomedical Engineering, Yale University, New Haven, CT, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Michaela A. Jones
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Aditya M. Kunjapur
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA
| | - Akos Nyerges
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Csaba Pal
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged, Hungary
| | - Max G. Schubert
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - George M. Church
- Department of Genetics, Harvard Medical School, Boston, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
13
|
Pouzet S, Banderas A, Le Bec M, Lautier T, Truan G, Hersen P. The Promise of Optogenetics for Bioproduction: Dynamic Control Strategies and Scale-Up Instruments. Bioengineering (Basel) 2020; 7:E151. [PMID: 33255280 PMCID: PMC7712799 DOI: 10.3390/bioengineering7040151] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/11/2020] [Accepted: 11/19/2020] [Indexed: 12/18/2022] Open
Abstract
Progress in metabolic engineering and synthetic and systems biology has made bioproduction an increasingly attractive and competitive strategy for synthesizing biomolecules, recombinant proteins and biofuels from renewable feedstocks. Yet, due to poor productivity, it remains difficult to make a bioproduction process economically viable at large scale. Achieving dynamic control of cellular processes could lead to even better yields by balancing the two characteristic phases of bioproduction, namely, growth versus production, which lie at the heart of a trade-off that substantially impacts productivity. The versatility and controllability offered by light will be a key element in attaining the level of control desired. The popularity of light-mediated control is increasing, with an expanding repertoire of optogenetic systems for novel applications, and many optogenetic devices have been designed to test optogenetic strains at various culture scales for bioproduction objectives. In this review, we aim to highlight the most important advances in this direction. We discuss how optogenetics is currently applied to control metabolism in the context of bioproduction, describe the optogenetic instruments and devices used at the laboratory scale for strain development, and explore how current industrial-scale bioproduction processes could be adapted for optogenetics or could benefit from existing photobioreactor designs. We then draw attention to the steps that must be undertaken to further optimize the control of biological systems in order to take full advantage of the potential offered by microbial factories.
Collapse
Affiliation(s)
- Sylvain Pouzet
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France; (A.B.); (M.L.B.)
- Sorbonne Université, 75005 Paris, France
- Laboratoire MSC, UMR7057, Université Paris Diderot-CNRS, 75013 Paris, France
| | - Alvaro Banderas
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France; (A.B.); (M.L.B.)
- Sorbonne Université, 75005 Paris, France
- Laboratoire MSC, UMR7057, Université Paris Diderot-CNRS, 75013 Paris, France
| | - Matthias Le Bec
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France; (A.B.); (M.L.B.)
- Sorbonne Université, 75005 Paris, France
- Laboratoire MSC, UMR7057, Université Paris Diderot-CNRS, 75013 Paris, France
| | - Thomas Lautier
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France; (T.L.); (G.T.)
- Singapore Institute of Food and Biotechnology Innovation, Agency for Science Technology and Research, Singapore 138673, Singapore
| | - Gilles Truan
- Toulouse Biotechnology Institute, Université de Toulouse, CNRS, INRAE, INSA, 31400 Toulouse, France; (T.L.); (G.T.)
| | - Pascal Hersen
- Laboratoire Physico Chimie Curie, Institut Curie, PSL Research University, CNRS UMR168, 26 rue d’Ulm, 75005 Paris, France; (A.B.); (M.L.B.)
- Sorbonne Université, 75005 Paris, France
- Laboratoire MSC, UMR7057, Université Paris Diderot-CNRS, 75013 Paris, France
| |
Collapse
|
14
|
Lammens EM, Nikel PI, Lavigne R. Exploring the synthetic biology potential of bacteriophages for engineering non-model bacteria. Nat Commun 2020; 11:5294. [PMID: 33082347 PMCID: PMC7576135 DOI: 10.1038/s41467-020-19124-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 09/25/2020] [Indexed: 12/26/2022] Open
Abstract
Non-model bacteria like Pseudomonas putida, Lactococcus lactis and other species have unique and versatile metabolisms, offering unique opportunities for Synthetic Biology (SynBio). However, key genome editing and recombineering tools require optimization and large-scale multiplexing to unlock the full SynBio potential of these bacteria. In addition, the limited availability of a set of characterized, species-specific biological parts hampers the construction of reliable genetic circuitry. Mining of currently available, diverse bacteriophages could complete the SynBio toolbox, as they constitute an unexplored treasure trove for fully adapted metabolic modulators and orthogonally-functioning parts, driven by the longstanding co-evolution between phage and host.
Collapse
Affiliation(s)
- Eveline-Marie Lammens
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium
| | - Pablo Ivan Nikel
- The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kemitorvet, Building 220, 2800 Kgs, Lyngby, DK, Denmark
| | - Rob Lavigne
- Department of Biosystems, Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21 box 2462, 3001, Leuven, BE, Belgium.
| |
Collapse
|
15
|
Aparicio T, Nyerges A, Martínez-García E, de Lorenzo V. High-Efficiency Multi-site Genomic Editing of Pseudomonas putida through Thermoinducible ssDNA Recombineering. iScience 2020; 23:100946. [PMID: 32179472 PMCID: PMC7068128 DOI: 10.1016/j.isci.2020.100946] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 02/06/2020] [Accepted: 02/21/2020] [Indexed: 12/21/2022] Open
Abstract
Application of single-stranded DNA recombineering for genome editing of species other than enterobacteria is limited by the efficiency of the recombinase and the action of endogenous mismatch repair (MMR) systems. In this work we have set up a genetic system for entering multiple changes in the chromosome of the biotechnologically relevant strain EM42 of Pseudomononas putida. To this end high-level heat-inducible co-transcription of the rec2 recombinase and P. putida's allele mutLE36KPP was designed under the control of the PL/cI857 system. Cycles of short thermal shifts followed by transformation with a suite of mutagenic oligos delivered different types of genomic changes at frequencies up to 10% per single modification. The same approach was instrumental to super-diversify short chromosomal portions for creating libraries of functional genomic segments-e.g., ribosomal-binding sites. These results enabled multiplexing of genome engineering of P. putida, as required for metabolic reprogramming of this important synthetic biology chassis.
Collapse
Affiliation(s)
- Tomas Aparicio
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain
| | - Akos Nyerges
- Synthetic and Systems Biology Unit, Institute of Biochemistry, Biological Research Centre, Szeged 6726, Hungary
| | - Esteban Martínez-García
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain.
| | - Víctor de Lorenzo
- Systems and Synthetic Biology Program, Centro Nacional de Biotecnología (CNB-CSIC), Campus de Cantoblanco, Madrid 28049, Spain.
| |
Collapse
|