1
|
Kumar S, Beyer HM, Chen M, Zurbriggen MD, Khammash M. Image-guided optogenetic spatiotemporal tissue patterning using μPatternScope. Nat Commun 2024; 15:10469. [PMID: 39622799 PMCID: PMC11612157 DOI: 10.1038/s41467-024-54351-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 11/08/2024] [Indexed: 12/06/2024] Open
Abstract
In the field of tissue engineering, achieving precise spatiotemporal control over engineered cells is critical for sculpting functional 2D cell cultures into intricate morphological shapes. In this study, we engineer light-responsive mammalian cells and target them with dynamic light patterns to realize 2D cell culture patterning control. To achieve this, we developed μPatternScope (μPS), a modular framework for software-controlled projection of high-resolution light patterns onto microscope samples. μPS comprises hardware and software suite governing pattern projection and microscope maneuvers. Together with a 2D culture of the engineered cells, we utilize μPS for controlled spatiotemporal induction of apoptosis to generate desired 2D shapes. Furthermore, we introduce interactive closed-loop patterning, enabling a dynamic feedback mechanism between the measured cell culture patterns and the light illumination profiles to achieve the desired target patterning trends. Our work offers innovative tools for advanced tissue engineering applications through seamless fusion of optogenetics, optical engineering, and cybernetics.
Collapse
Affiliation(s)
- Sant Kumar
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Hannes M Beyer
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany
| | - Mingzhe Chen
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Matias D Zurbriggen
- Institute of Synthetic Biology, Heinrich-Heine-University Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany.
- CEPLAS - Cluster of Excellence on Plant Sciences, Düsseldorf, Universitätsstrasse 1, D-40225, Düsseldorf, Germany.
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering (D-BSSE), ETH Zürich, Klingelbergstrasse 48, 4056, Basel, Switzerland.
| |
Collapse
|
2
|
Salzano D, Fiore D, di Bernardo M. Ratiometric control of cell phenotypes in monostrain microbial consortia. JOURNAL OF THE ROYAL SOCIETY, INTERFACE 2022; 19:20220335. [PMID: 35858050 PMCID: PMC9277296 DOI: 10.1098/rsif.2022.0335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We address the problem of regulating and keeping at a desired balance the relative numbers between cells exhibiting a different phenotype within a monostrain microbial consortium. We propose a strategy based on the use of external control inputs, assuming each cell in the community is endowed with a reversible, bistable memory mechanism. Specifically, we provide a general analytical framework to guide the design of external feedback control strategies aimed at balancing the ratio between cells whose memory is stabilized at either one of two equilibria associated with different cell phenotypes. We demonstrate the stability and robustness properties of the control laws proposed and validate them in silico, implementing the memory element via a genetic toggle-switch. The proposed control framework may be used to allow long-term coexistence of different populations, with both industrial and biotechnological applications. As a representative example, we consider the realistic agent-based implementation of our control strategy to enable cooperative bioproduction of a dimer in a monostrain microbial consortium.
Collapse
Affiliation(s)
- Davide Salzano
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Davide Fiore
- Department of Mathematics and Applications 'R. Caccioppoli', University of Naples Federico II, Via Cintia, Monte S. Angelo, 80126 Naples, Italy
| | - Mario di Bernardo
- Department of Electrical Engineering and Information Technology, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.,Scuola Superiore Meridionale, Largo S. Marcellino 10, 80138 Naples, Italy
| |
Collapse
|
3
|
de Cesare I, Salzano D, di Bernardo M, Renson L, Marucci L. Control-Based Continuation: A New Approach to Prototype Synthetic Gene Networks. ACS Synth Biol 2022; 11:2300-2313. [PMID: 35729740 PMCID: PMC9295158 DOI: 10.1021/acssynbio.1c00632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
![]()
Control-Based Continuation
(CBC) is a general and systematic method
to carry out the bifurcation analysis of physical experiments. CBC
does not rely on a mathematical model and thus overcomes the uncertainty
introduced when identifying bifurcation curves indirectly through
modeling and parameter estimation. We demonstrate, in silico, CBC applicability to biochemical processes by tracking the equilibrium
curve of a toggle switch, which includes additive process noise and
exhibits bistability. We compare the results obtained when CBC uses
a model-free and model-based control strategy and show that both can
track stable and unstable solutions, revealing bistability. We then
demonstrate CBC in conditions more representative of an in
vivo experiment using an agent-based simulator describing
cell growth and division, cell-to-cell variability, spatial distribution,
and diffusion of chemicals. We further show how the identified curves
can be used for parameter estimation and discuss how CBC can significantly
accelerate the prototyping of synthetic gene regulatory networks.
Collapse
Affiliation(s)
- Irene de Cesare
- Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K.,Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy
| | - Davide Salzano
- Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K.,Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy
| | - Mario di Bernardo
- Department of Electrical Engineering and Information Technologies, University of Naples Federico II, 80125 Naples, Italy
| | - Ludovic Renson
- Department of Mechanical Engineering, Imperial College London, London SW7 2BX, U.K
| | - Lucia Marucci
- Engineering Mathematics Department, University of Bristol, Bristol BS8 1TW, U.K.,BrisSynBio, University of Bristol, Bristol BS8 1TQ, U.K.,School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1UB, U.K
| |
Collapse
|
4
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Highly Reversible Tunable Thermal-Repressible Split-T7 RNA Polymerases (Thermal-T7RNAPs) for Dynamic Gene Regulation. ACS Synth Biol 2022; 11:921-937. [PMID: 35089710 DOI: 10.1021/acssynbio.1c00545] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Temperature is a physical cue that is easy to apply, allowing cellular behaviors to be controlled in a contactless and dynamic manner via heat-inducible/repressible systems. However, existing heat-repressible systems are limited in number, rely on thermal sensitive mRNA or transcription factors that function at low temperatures, lack tunability, suffer delays, and are overly complex. To provide an alternative mode of thermal regulation, we developed a library of compact, reversible, and tunable thermal-repressible split-T7 RNA polymerase systems (Thermal-T7RNAPs), which fused temperature-sensitive domains of Tlpa protein with split-T7RNAP to enable direct thermal control of the T7RNAP activity between 30 and 42 °C. We generated a large mutant library with varying thermal performances via an automated screening framework to extend temperature tunability. Lastly, using the mutants, novel thermal logic circuitry was implemented to regulate cell growth and achieve active thermal control of the cell proportions within co-cultures. Overall, this technology expanded avenues for thermal control in biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, 117456 Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 4 Engineering Drive 3, 117583 Singapore
- NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), National University of Singapore, 28 Medical Drive, 117456 Singapore
| |
Collapse
|
5
|
Chee WKD, Yeoh JW, Dao VL, Poh CL. Thermogenetics: Applications come of age. Biotechnol Adv 2022; 55:107907. [PMID: 35041863 DOI: 10.1016/j.biotechadv.2022.107907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 12/13/2021] [Accepted: 01/09/2022] [Indexed: 12/20/2022]
Abstract
Temperature is a ubiquitous physical cue that is non-invasive, penetrative and easy to apply. In the growing field of thermogenetics, through beneficial repurposing of natural thermosensing mechanisms, synthetic biology is bringing new opportunities to design and build robust temperature-sensitive (TS) sensors which forms a thermogenetic toolbox of well characterised biological parts. Recent advancements in technological platforms available have expedited the discovery of novel or de novo thermosensors which are increasingly deployed in many practical temperature-dependent biomedical, industrial and biosafety applications. In all, the review aims to convey both the exhilarating recent technological developments underlying the advancement of thermosensors and the exciting opportunities the nascent thermogenetic field holds for biomedical and biotechnology applications.
Collapse
Affiliation(s)
- Wai Kit David Chee
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Jing Wui Yeoh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Viet Linh Dao
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore
| | - Chueh Loo Poh
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 4 Engineering Drive 3, Singapore 117583, Singapore; NUS Synthetic Biology for Clinical and Technological Innovation (SynCTI), Life Sciences Institute, National University of Singapore, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
6
|
May MP, Munsky B. Exploiting Noise, Non-Linearity, and Feedback for Differential Control of Multiple Synthetic Cells with a Single Optogenetic Input. ACS Synth Biol 2021; 10:3396-3410. [PMID: 34793137 PMCID: PMC9875732 DOI: 10.1021/acssynbio.1c00341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Synthetic biology seeks to develop modular biocircuits that combine to produce complex, controllable behaviors. These designs are often subject to noisy fluctuations and uncertainties, and most modern synthetic biology design processes have focused to create robust components to mitigate the noise of gene expression and reduce the heterogeneity of single-cell responses. However, a deeper understanding of noise can achieve control goals that would otherwise be impossible. We explore how an "Optogenetic Maxwell Demon" could selectively amplify noise to control multiple cells using single-input-multiple-output (SIMO) feedback. Using data-constrained stochastic model simulations and theory, we show how an appropriately selected stochastic SIMO controller can drive multiple different cells to different user-specified configurations irrespective of initial conditions. We explore how controllability depends on cells' regulatory structures, the amount of information available to the controller, and the accuracy of the model used. Our results suggest that gene regulation noise, when combined with optogenetic feedback and non-linear biochemical auto-regulation, can achieve synergy to enable precise control of complex stochastic processes.
Collapse
Affiliation(s)
- Michael P May
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA, 80523
| | - Brian Munsky
- School of Biomedical Engineering, Colorado State University, Fort Collins, CO, USA, 80523,Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO, USA, 80523
| |
Collapse
|
7
|
Gyorgy A. Context-Dependent Stability and Robustness of Genetic Toggle Switches with Leaky Promoters. Life (Basel) 2021; 11:life11111150. [PMID: 34833026 PMCID: PMC8624834 DOI: 10.3390/life11111150] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/21/2021] [Accepted: 10/26/2021] [Indexed: 01/22/2023] Open
Abstract
Multistable switches are ubiquitous building blocks in both systems and synthetic biology. Given their central role, it is thus imperative to understand how their fundamental properties depend not only on the tunable biophysical properties of the switches themselves, but also on their genetic context. To this end, we reveal in this article how these factors shape the essential characteristics of toggle switches implemented using leaky promoters such as their stability and robustness to noise, both at single-cell and population levels. In particular, our results expose the roles that competition for scarce transcriptional and translational resources, promoter leakiness, and cell-to-cell heterogeneity collectively play. For instance, the interplay between protein expression from leaky promoters and the associated cost of relying on shared cellular resources can give rise to tristable dynamics even in the absence of positive feedback. Similarly, we demonstrate that while promoter leakiness always acts against multistability, resource competition can be leveraged to counteract this undesirable phenomenon. Underpinned by a mechanistic model, our results thus enable the context-aware rational design of multistable genetic switches that are directly translatable to experimental considerations, and can be further leveraged during the synthesis of large-scale genetic systems using computer-aided biodesign automation platforms.
Collapse
Affiliation(s)
- Andras Gyorgy
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi P.O. Box 129188, United Arab Emirates
| |
Collapse
|
8
|
Winkle JJ, Karamched BR, Bennett MR, Ott W, Josić K. Emergent spatiotemporal population dynamics with cell-length control of synthetic microbial consortia. PLoS Comput Biol 2021; 17:e1009381. [PMID: 34550968 PMCID: PMC8489724 DOI: 10.1371/journal.pcbi.1009381] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 10/04/2021] [Accepted: 08/25/2021] [Indexed: 12/04/2022] Open
Abstract
The increased complexity of synthetic microbial biocircuits highlights the need for distributed cell functionality due to concomitant increases in metabolic and regulatory burdens imposed on single-strain topologies. Distributed systems, however, introduce additional challenges since consortium composition and spatiotemporal dynamics of constituent strains must be robustly controlled to achieve desired circuit behaviors. Here, we address these challenges with a modeling-based investigation of emergent spatiotemporal population dynamics using cell-length control in monolayer, two-strain bacterial consortia. We demonstrate that with dynamic control of a strain's division length, nematic cell alignment in close-packed monolayers can be destabilized. We find that this destabilization confers an emergent, competitive advantage to smaller-length strains-but by mechanisms that differ depending on the spatial patterns of the population. We used complementary modeling approaches to elucidate underlying mechanisms: an agent-based model to simulate detailed mechanical and signaling interactions between the competing strains, and a reductive, stochastic lattice model to represent cell-cell interactions with a single rotational parameter. Our modeling suggests that spatial strain-fraction oscillations can be generated when cell-length control is coupled to quorum-sensing signaling in negative feedback topologies. Our research employs novel methods of population control and points the way to programming strain fraction dynamics in consortial synthetic biology.
Collapse
Affiliation(s)
- James J Winkle
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Bhargav R Karamched
- Department of Mathematics, Florida State University, Tallahassee, Florida, United States of America
- Institute of Molecular Biophysics, Florida State University, Tallahassee, Florida, United States of America
| | - Matthew R Bennett
- Department of Bioengineering, Rice University, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - William Ott
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
| | - Krešimir Josić
- Department of Mathematics, University of Houston, Houston, Texas, United States of America
- Department of Biosciences, Rice University, Houston, Texas, United States of America
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, United States of America
| |
Collapse
|
9
|
Autonomous and Assisted Control for Synthetic Microbiology. Int J Mol Sci 2020; 21:ijms21239223. [PMID: 33287299 PMCID: PMC7731081 DOI: 10.3390/ijms21239223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/17/2020] [Accepted: 11/25/2020] [Indexed: 01/29/2023] Open
Abstract
The control of microbes and microbial consortia to achieve specific functions requires synthetic circuits that can reliably cope with internal and external perturbations. Circuits that naturally evolved to regulate biological functions are frequently robust to alterations in their parameters. As the complexity of synthetic circuits increases, synthetic biologists need to implement such robust control "by design". This is especially true for intercellular signaling circuits for synthetic consortia, where robustness is highly desirable, but its mechanisms remain unclear. Cybergenetics, the interface between synthetic biology and control theory, offers two approaches to this challenge: external (computer-aided) and internal (autonomous) control. Here, we review natural and synthetic microbial systems with robustness, and outline experimental approaches to implement such robust control in microbial consortia through population-level cybergenetics. We propose that harnessing natural intercellular circuit topologies with robust evolved functions can help to achieve similar robust control in synthetic intercellular circuits. A "hybrid biology" approach, where robust synthetic microbes interact with natural consortia and-additionally-with external computers, could become a useful tool for health and environmental applications.
Collapse
|