1
|
Campbell E, Luxton T, Kohl D, Goodchild SA, Walti C, Jeuken LJC. Chimeric Protein Switch Biosensors. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2024; 187:1-35. [PMID: 38273207 DOI: 10.1007/10_2023_241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Rapid detection of protein and small-molecule analytes is a valuable technique across multiple disciplines, but most in vitro testing of biological or environmental samples requires long, laborious processes and trained personnel in laboratory settings, leading to long wait times for results and high expenses. Fusion of recognition with reporter elements has been introduced to detection methods such as enzyme-linked immunoassays (ELISA), with enzyme-conjugated secondary antibodies removing one of the many incubation and wash steps. Chimeric protein switch biosensors go further and provide a platform for homogenous mix-and-read assays where long wash and incubation steps are eradicated from the process. Chimeric protein switch biosensors consist of an enzyme switch (the reporter) coupled to a recognition element, where binding of the analyte results in switching the activity of the reporter enzyme on or off. Several chimeric protein switch biosensors have successfully been developed for analytes ranging from small molecule drugs to large protein biomarkers. There are two main formats of chimeric protein switch biosensor developed, one-component and multi-component, and these formats exhibit unique advantages and disadvantages. Genetically fusing a recognition protein to the enzyme switch has many advantages in the production and performance of the biosensor. A range of immune and synthetic binding proteins have been developed as alternatives to antibodies, including antibody mimetics or antibody fragments. These are mainly small, easily manipulated proteins and can be genetically fused to a reporter for recombinant expression or manipulated to allow chemical fusion. Here, aspects of chimeric protein switch biosensors will be reviewed with a comparison of different classes of recognition elements and switching mechanisms.
Collapse
Affiliation(s)
- Emma Campbell
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Timothy Luxton
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | - Declan Kohl
- School of Biomedical Sciences, University of Leeds, Leeds, UK
| | | | - Christoph Walti
- School of Electronic and Electrical Engineering, University of Leeds, Leeds, UK
| | - Lars J C Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds, UK.
- Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
2
|
In vivo protein-based biosensors: seeing metabolism in real time. Trends Biotechnol 2023; 41:19-26. [PMID: 35918219 DOI: 10.1016/j.tibtech.2022.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 06/11/2022] [Accepted: 07/06/2022] [Indexed: 12/31/2022]
Abstract
Biological homeostasis is a dynamic and elastic equilibrium of countless interlinked biochemical reactions. A key goal of life sciences is to understand these dynamics; bioengineers seek to reconfigure such networks. Both goals require the ability to monitor the concentration of individual intracellular metabolites with sufficient spatiotemporal resolution. To achieve this, a range of protein or protein/DNA signalling circuits with optical readouts have been constructed. Protein biosensors can provide quantitative information at subsecond temporal and suborganelle spatial resolution. However, their construction is fraught with difficulties related to integrating the affinity- and selectivity-endowing components with the signal reporters. We argue that development of efficient approaches for construction of chemically induced dimerisation systems and reporter domains with large dynamic ranges will solve these problems.
Collapse
|
3
|
Jackson C, Anderson A, Alexandrov K. The present and the future of protein biosensor engineering. Curr Opin Struct Biol 2022; 75:102424. [PMID: 35870398 DOI: 10.1016/j.sbi.2022.102424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/14/2022] [Accepted: 06/14/2022] [Indexed: 11/16/2022]
Abstract
Protein biosensors play increasingly important roles in cell and neurobiology and have the potential to revolutionise the way clinical and industrial analytics are performed. The gradual transition from multicomponent biosensors to fully integrated single chain allosteric biosensors has brought the field closer to commercial applications. We evaluate various approaches for converting constitutively active protein reporter domains into analyte operated switches. We discuss the paucity of the natural receptors that undergo conformational changes sufficiently large to control the activity of allosteric reporter domains. This problem can be overcome by constructing artificial versions of such receptors. The design path to such receptors involves the construction of Chemically Induced Dimerisation systems (CIDs) that can be configured to operate single and two-component biosensors.
Collapse
Affiliation(s)
- Colin Jackson
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia; Australian Research Council Centre of Excellence in Synthetic Biology, Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia
| | - Alisha Anderson
- CSIRO Health & Biosecurity, Black Mountain, Canberra, ACT 2600, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, Queensland University of Technology, Brisbane, QLD, 4001, Australia; Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia; Australian Research Council Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
4
|
Protein engineering for electrochemical biosensors. Curr Opin Biotechnol 2022; 76:102751. [PMID: 35777077 DOI: 10.1016/j.copbio.2022.102751] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 05/14/2022] [Accepted: 06/02/2022] [Indexed: 11/23/2022]
Abstract
The development of electrochemical biosensors has gained tremendous attention. Protein engineering has been applied for enhancing properties of native redox enzymes, such as selectivity, sensitivity, and stability required for applicable biosensors. This review highlights recent advances of protein engineering to improve enzymatic catalysis of biosensors, facilitate electron transfer and enzyme immobilization, and construct allosteric protein biosensors. The pros and cons of different protein engineering strategies are briefly discussed, and perspectives are further provided.
Collapse
|
5
|
Ergun Ayva C, Fiorito MM, Guo Z, Edwardraja S, Kaczmarski JA, Gagoski D, Walden P, Johnston WA, Jackson CJ, Nebl T, Alexandrov K. Exploring Performance Parameters of Artificial Allosteric Protein Switches. J Mol Biol 2022; 434:167678. [PMID: 35709893 DOI: 10.1016/j.jmb.2022.167678] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 05/30/2022] [Accepted: 06/06/2022] [Indexed: 10/18/2022]
Abstract
Biological information processing networks rely on allosteric protein switches that dynamically interconvert biological signals. Construction of their artificial analogues is a central goal of synthetic biology and bioengineering. Receptor domain insertion is one of the leading methods for constructing chimeric protein switches. Here we present an in vitro expression-based platform for the analysis of chimeric protein libraries for which traditional cell survival or cytometric high throughput assays are not applicable. We utilise this platform to screen a focused library of chimeras between PQQ-glucose dehydrogenase and calmodulin. Using this approach, we identified 50 chimeras (approximately 23% of the library) that were activated by calmodulin-binding peptides. We analysed performance parameters of the active chimeras and demonstrated that their dynamic range and response times are anticorrelated, pointing to the existence of an inherent thermodynamic trade-off. We show that the structure of the ligand peptide affects both the response and activation kinetics of the biosensors suggesting that the structure of a ligand:receptor complex can influence the chimera's activation pathway. In order to understand the extent of structural changes in the reporter protein induced by the receptor domains, we have analysed one of the chimeric molecules by CD spectroscopy and hydrogen-deuterium exchange mass spectrometry. We concluded that subtle ligand-induced changes in the receptor domain propagated into the GDH domain and affected residues important for substrate and cofactor binding. Finally, we used one of the identified chimeras to construct a two-component rapamycin biosensor and demonstrated that core switch optimisation translated into improved biosensor performance.
Collapse
Affiliation(s)
- Cagla Ergun Ayva
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Maria M Fiorito
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Zhong Guo
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Joe A Kaczmarski
- ARC Centre of Excellence in Synthetic Biology, Australia; Research School of Biology, Australian National University, Canberra, ACT 2601, Australia
| | - Dejan Gagoski
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA; Department of Chemistry, Columbia University, New York, NY 10027, USA
| | - Patricia Walden
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Wayne A Johnston
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Colin J Jackson
- ARC Centre of Excellence in Synthetic Biology, Australia; Research School of Biology, Australian National University, Canberra, ACT 2601, Australia; Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia; Research School of Chemistry, Australian National University, Canberra, ACT 2601, Australia; Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, Australian National University, Canberra, ACT 2601, Australia. https://twitter.com/Jackson_Lab
| | - Tom Nebl
- Biology Group, Biomedical Manufacturing Program, CSIRO, Bayview Ave/Research Way, Clayton, VIC 3168, Australia
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Australia; Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia; School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD 4001, Australia; CSIRO-QUT Synthetic Biology Alliance, Brisbane, QLD 4001, Australia; Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD 4001, Australia.
| |
Collapse
|
6
|
Wells PK, Smutok O, Guo Z, Alexandrov K, Katz E. Nanostructured Interface Loaded with Chimeric Enzymes for Fluorimetric Quantification of Cyclosporine A and FK506. Anal Chem 2022; 94:7303-7310. [PMID: 35543230 DOI: 10.1021/acs.analchem.2c00650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in protein engineering resulted in increased efforts to create protein biosensors that can replace instrumentation-heavy analytical and diagnostic methods. Sensitivity, amenability to multiplexing, and manufacturability remain to be among the key issues preventing broad utilization of protein biosensors. Here, we attempt to address these by constructing arrays utilizing protein biosensors based on the artificial allosteric variant of PQQ-glucose dehydrogenase (GDH). We demonstrated that the silica nanoparticle-immobilized GDH protein could be deposited on fiberglass sheets without loss of activity. The particle-associated GDH activity could be monitored using changes in the fluorescence of the commonly used electron mediator phenazine methosulfate. The constructed biosensor arrays of macrocyclic immunosuppressant drugs cyclosporine A and FK-506 displayed very low background and a remarkable dynamic range exceeding 300-fold that resulted in a limit of detection of 2 pM for both analytes. This enabled us to quantify both drugs in human blood, serum, urine, and saliva. The arrays could be stored in dry form and quantitatively imaged using a smartphone camera, demonstrating the method's suitability for field and point-of-care applications. The developed approach provides a generalizable platform for biosensor array development that is compatible with inexpensive and potentially scalable manufacturing.
Collapse
Affiliation(s)
- Paulina K Wells
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia.,Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, Potsdam, New York 13699, United States
| |
Collapse
|
7
|
Guo Z, Parakra RD, Xiong Y, Johnston WA, Walden P, Edwardraja S, Moradi SV, Ungerer JPJ, Ai HW, Phillips JJ, Alexandrov K. Engineering and exploiting synthetic allostery of NanoLuc luciferase. Nat Commun 2022; 13:789. [PMID: 35145068 PMCID: PMC8831504 DOI: 10.1038/s41467-022-28425-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 01/25/2022] [Indexed: 02/08/2023] Open
Abstract
Allostery enables proteins to interconvert different biochemical signals and form complex metabolic and signaling networks. We hypothesize that circular permutation of proteins increases the probability of functional coupling of new N- and C- termini with the protein's active center through increased local structural disorder. To test this we construct a synthetically allosteric version of circular permutated NanoLuc luciferase that can be activated through ligand-induced intramolecular non-covalent cyclisation. This switch module is tolerant of the structure of binding domains and their ligands, and can be used to create biosensors of proteins and small molecules. The developed biosensors covers a range of emission wavelengths and displays sensitivity as low as 50pM and dynamic range as high as 16-fold and could quantify their cognate ligand in human fluids. We apply hydrogen exchange kinetic mass spectroscopy to analyze time resolved structural changes in the developed biosensors and observe ligand-mediated folding of newly created termini.
Collapse
Affiliation(s)
- Zhong Guo
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Rinky D Parakra
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK
| | - Ying Xiong
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Wayne A Johnston
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Patricia Walden
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shayli Varasteh Moradi
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia
| | - Jacobus P J Ungerer
- Department of Chemical Pathology, Pathology Queensland, Brisbane, QLD, 4001, Australia
- Faculty of Health and Behavioural Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Hui-Wang Ai
- Center for Membrane and Cell Physiology, Department of Molecular Physiology and Biological Physics, Department of Chemistry, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA, 22908, USA
| | - Jonathan J Phillips
- Living Systems Institute, Department of Biosciences, University of Exeter, Exeter, EX4 4QD, UK.
- Alan Turing Institute, British Library 96, Euston road, London, NW1 2DB, UK.
| | - Kirill Alexandrov
- ARC Centre of Excellence in Synthetic Biology, Sydney, Australia.
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
- Centre for Genomics and Personalised Health, Queensland University of Technology, Brisbane, QLD, 4001, Australia.
| |
Collapse
|
8
|
Guo Z, Smutok O, Johnston WA, Ayva CE, Walden P, McWhinney B, Ungerer JPJ, Melman A, Katz E, Alexandrov K. Circular Permutated PQQ‐Glucose Dehydrogenase as an Ultrasensitive Electrochemical Biosensor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Oleh Smutok
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Wayne A. Johnston
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Cagla Ergun Ayva
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| | - Brett McWhinney
- Department of Chemical Pathology Pathology Queensland Brisbane QLD 4001 Australia
| | - Jacobus P. J. Ungerer
- Department of Chemical Pathology Pathology Queensland Brisbane QLD 4001 Australia
- Faculty of Health and Behavioural Sciences University of Queensland Brisbane QLD 4072 Australia
| | - Artem Melman
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science Clarkson University 8 Clarkson Ave. Potsdam NY 13699 USA
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy Centre for Genomics and Personalised Health School of Biology and Environmental Science Queensland University of Technology Brisbane QLD 4001 Australia
| |
Collapse
|
9
|
Design of a methotrexate-controlled chemical dimerization system and its use in bio-electronic devices. Nat Commun 2021; 12:7137. [PMID: 34880210 PMCID: PMC8654847 DOI: 10.1038/s41467-021-27184-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 11/03/2021] [Indexed: 11/08/2022] Open
Abstract
Natural evolution produced polypeptides that selectively recognize chemical entities and their polymers, ranging from ions to proteins and nucleic acids. Such selective interactions serve as entry points to biological signaling and metabolic pathways. The ability to engineer artificial versions of such entry points is a key goal of synthetic biology, bioengineering and bioelectronics. We set out to map the optimal strategy for developing artificial small molecule:protein complexes that function as chemically induced dimerization (CID) systems. Using several starting points, we evolved CID systems controlled by a therapeutic drug methotrexate. Biophysical and structural analysis of methotrexate-controlled CID system reveals the critical role played by drug-induced conformational change in ligand-controlled protein complex assembly. We demonstrate utility of the developed CID by constructing electrochemical biosensors of methotrexate that enable quantification of methotrexate in human serum. Furthermore, using the methotrexate and functionally related biosensor of rapamycin we developed a multiplexed bioelectronic system that can perform repeated measurements of multiple analytes. The presented results open the door for construction of genetically encoded signaling systems for use in bioelectronics and diagnostics, as well as metabolic and signaling network engineering.
Collapse
|
10
|
Bollella P, Edwardraja S, Guo Z, Vickers CE, Whitfield J, Walden P, Melman A, Alexandrov K, Katz E. Connecting Artificial Proteolytic and Electrochemical Signaling Systems with Caged Messenger Peptides. ACS Sens 2021; 6:3596-3603. [PMID: 34637274 DOI: 10.1021/acssensors.1c00845] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enzymatic polypeptide proteolysis is a widespread and powerful biological control mechanism. Over the last few years, substantial progress has been made in creating artificial proteolytic systems where an input of choice modulates the protease activity and thereby the activity of its substrates. However, all proteolytic systems developed so far have relied on the direct proteolytic cleavage of their effectors. Here, we propose a new concept where protease biosensors with a tunable input uncage a signaling peptide, which can then transmit a signal to an allosteric protein reporter. We demonstrate that both the cage and the regulatory domain of the reporter can be constructed from the same peptide-binding domain, such as calmodulin. To demonstrate this concept, we constructed a proteolytic rapamycin biosensor and demonstrated its quantitative actuation on fluorescent, luminescent, and electrochemical reporters. Using the latter, we constructed sensitive bioelectrodes that detect the messenger peptide release and quantitatively convert the recognition event into electric current. We discuss the application of such systems for the construction of in vitro sensory arrays and in vivo signaling circuits.
Collapse
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
- Department of Chemistry, University of Bari A. Moro, Via E. Orabona 4, Bari 70125, Italy
| | - Selvakumar Edwardraja
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Zhong Guo
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Claudia E. Vickers
- CSIRO Synthetic Biology Future Science Platform, GP.O. Box 2583, Brisbane, Queensland 4001, Australia
| | - Jason Whitfield
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Patricia Walden
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Artem Melman
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| | - Kirill Alexandrov
- CSIRO-QUT Synthetic Biology Alliance, ARC Centre of Excellence in Synthetic Biology, Centre for Agriculture and the Bioeconomy, Centre for Genomics and Personalised Health, School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland 4001, Australia
| | - Evgeny Katz
- Department of Chemistry and Biomolecular Science, Clarkson University, 8 Clarkson Avenue, Potsdam, New York 13699, United States
| |
Collapse
|
11
|
Bhan N, Callisto A, Strutz J, Glaser J, Kalhor R, Boyden ES, Church G, Kording K, Tyo KEJ. Recording Temporal Signals with Minutes Resolution Using Enzymatic DNA Synthesis. J Am Chem Soc 2021; 143:16630-16640. [PMID: 34591459 PMCID: PMC8982284 DOI: 10.1021/jacs.1c07331] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Employing DNA as a high-density data storage medium has paved the way for next-generation digital storage and biosensing technologies. However, the multipart architecture of current DNA-based recording techniques renders them inherently slow and incapable of recording fluctuating signals with subhour frequencies. To address this limitation, we developed a simplified system employing a single enzyme, terminal deoxynucleotidyl transferase (TdT), to transduce environmental signals into DNA. TdT adds nucleotides to the 3'-ends of single-stranded DNA (ssDNA) in a template-independent manner, selecting bases according to inherent preferences and environmental conditions. By characterizing TdT nucleotide selectivity under different conditions, we show that TdT can encode various physiologically relevant signals such as Co2+, Ca2+, and Zn2+ concentrations and temperature changes in vitro. Further, by considering the average rate of nucleotide incorporation, we show that the resulting ssDNA functions as a molecular ticker tape. With this method we accurately encode a temporal record of fluctuations in Co2+ concentration to within 1 min over a 60 min period. Finally, we engineer TdT to allosterically turn off in the presence of a physiologically relevant concentration of calcium. We use this engineered TdT in concert with a reference TdT to develop a two-polymerase system capable of recording a single-step change in the Ca2+ signal to within 1 min over a 60 min period. This work expands the repertoire of DNA-based recording techniques by developing a novel DNA synthesis-based system that can record temporal environmental signals into DNA with a resolution of minutes.
Collapse
Affiliation(s)
- Namita Bhan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Mitolab, Cambridge, Massachusetts 02139, United States
| | - Alec Callisto
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Jonathan Strutz
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Joshua Glaser
- Center for Theoretical Neuroscience, Columbia University, New York, New York 10027, United States
| | - Reza Kalhor
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Edward S Boyden
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- McGovern Institute, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
- Howard Hughes Medical Institute, Department of Neurobiology, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - George Church
- Department of Biomedical Engineering, Center for Epigenetics, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, United States
| | - Konrad Kording
- Department of Neuroscience, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
12
|
Alexandrov K, Guo Z, Smutok O, Wayne A Johnston WAJ, Ergun Ayva C, Walden PM, McWhinney B, Ungerer J, Melman A, Katz E. Circular permutated PQQ-glucose dehydrogenase as an ultrasensitive electrochemical biosensor. Angew Chem Int Ed Engl 2021; 61:e202109005. [PMID: 34633119 DOI: 10.1002/anie.202109005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Indexed: 11/08/2022]
Abstract
Protein biosensors play an increasingly important role as reporters for research and clinical applications. Here we present an approach for the construction of fully integrated but modular electrochemical biosensors based on the principal component of glucose monitors PQQ-glucose dehydrogenase (PQQ-GDH). We designed allosterically regulated circular permutated variants of PQQ-GDH that show large (>10 fold) changes in enzymatic activity following intramolecular scaffolding of the newly generated N- and C termini by ligand binding domain:ligand complexes. The developed biosensors demonstrated sub-nanomolar affinities for small molecules and proteins in colorimetric and electrochemical assays. For instance, the concentration of Cyclosporine A could be measured in 1 ml of undiluted blood with the same accuracy as the leading diagnostic technique that uses 50 times more sample. We further used this biosensor to construct highly porous gold bioelectrodes capable of robustly detecting concentrations of Cyclosporine A as low as 20 pM and retained functionality in samples containing at least 60% human serum. These experiments suggest that the developed biosensor platform is generalizable and may be suitable for Point-of-Care diagnostics.
Collapse
Affiliation(s)
- Kirill Alexandrov
- Queensland University of Technology, Centre for Tropical Crops and Biocommodities, 2 george st, 4100, Brisbane, AUSTRALIA
| | - Zhong Guo
- Queensland University of Technology Institute of Health and Biomedical Innovation Research Methods Group: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic Biology Alliance, AUSTRALIA
| | - Oleh Smutok
- Clarkson University, electrochemistry, UNITED STATES
| | - Wayne A Johnston Wayne A Johnston
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic Biology Alliance, AUSTRALIA
| | - Cagla Ergun Ayva
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT Synthetic Biology Alliance, AUSTRALIA
| | - Patricia M Walden
- Queensland University of Technology IHBI: Queensland University of Technology Institute of Health and Biomedical Innovation, CSIRO-QUT synthetic biology alliance, AUSTRALIA
| | - Brett McWhinney
- Central Laboratory: Health Support Queensland Pathology Queensland, chemical pathology, AUSTRALIA
| | - Jacobus Ungerer
- Health Support Queensland Pathology Queensland, Chemical Pathology, AUSTRALIA
| | | | - Evgeny Katz
- Clarkson University, electrochemistry, AUSTRALIA
| |
Collapse
|
13
|
Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken SE, Lajoie MJ, Cao L, Chow CM, Miranda MC, Wi J, Hong HJ, Stewart L, Oh BH, Baker D. De novo design of modular and tunable protein biosensors. Nature 2021; 591:482-487. [PMID: 33503651 PMCID: PMC8074680 DOI: 10.1038/s41586-021-03258-z] [Citation(s) in RCA: 143] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 01/19/2021] [Indexed: 01/30/2023]
Abstract
Naturally occurring protein switches have been repurposed for the development of biosensors and reporters for cellular and clinical applications1. However, the number of such switches is limited, and reengineering them is challenging. Here we show that a general class of protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which the binding of a peptide key triggers biological outputs of interest2. The designed sensors are modular molecular devices with a closed dark state and an open luminescent state; analyte binding drives the switch from the closed to the open state. Because the sensor is based on the thermodynamic coupling of analyte binding to sensor activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We create biosensors that can sensitively detect the anti-apoptosis protein BCL-2, the IgG1 Fc domain, the HER2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac troponin I and an anti-hepatitis B virus antibody with the high sensitivity required to detect these molecules clinically. Given the need for diagnostic tools to track the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)3, we used the approach to design sensors for the SARS-CoV-2 spike protein and antibodies against the membrane and nucleocapsid proteins. The former, which incorporates a de novo designed spike receptor binding domain (RBD) binder4, has a limit of detection of 15 pM and a luminescence signal 50-fold higher than the background level. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes, and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.
Collapse
Affiliation(s)
- Alfredo Quijano-Rubio
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Department of Bioengineering, University of Washington, Seattle, Washington 98195, USA
| | - Hsien-Wei Yeh
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Jooyoung Park
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Hansol Lee
- Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Robert A. Langan
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Scott E. Boyken
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Marc J. Lajoie
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Longxing Cao
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Cameron M. Chow
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Marcos C. Miranda
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Jimin Wi
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Hyo Jeong Hong
- Department of Systems Immunology, College of Biomedical Science, Kangwon National University, Chuncheon 200-701, Republic of Korea
| | - Lance Stewart
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA
| | - Byung-Ha Oh
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Department of Biological Sciences, KAIST Institute for the Biocentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea,Correspondence and requests for materials should be addressed to D.B. or B.-H.O
| | - David Baker
- Department of Biochemistry and Institute for Protein Design, University of Washington, Seattle, Washington 98195, USA,Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA,Correspondence and requests for materials should be addressed to D.B. or B.-H.O
| |
Collapse
|
14
|
Abstract
Biological signaling pathways are underpinned by protein switches that sense and respond to molecular inputs. Inspired by nature, engineered protein switches have been designed to directly transduce analyte binding into a quantitative signal in a simple, wash-free, homogeneous assay format. As such, they offer great potential to underpin point-of-need diagnostics that are needed across broad sectors to improve access, costs, and speed compared to laboratory assays. Despite this, protein switch assays are not yet in routine diagnostic use, and a number of barriers to uptake must be overcome to realize this potential. Here, we review the opportunities and challenges in engineering protein switches for rapid diagnostic tests. We evaluate how their design, comprising a recognition element, reporter, and switching mechanism, relates to performance and identify areas for improvement to guide further optimization. Recent modular switches that enable new analytes to be targeted without redesign are crucial to ensure robust and efficient development processes. The importance of translational steps toward practical implementation, including integration into a user-friendly device and thorough assay validation, is also discussed.
Collapse
Affiliation(s)
- Hope Adamson
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lars J. C. Jeuken
- School of Biomedical Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
15
|
Quijano-Rubio A, Yeh HW, Park J, Lee H, Langan RA, Boyken SE, Lajoie MJ, Cao L, Chow CM, Miranda MC, Wi J, Hong HJ, Stewart L, Oh BH, Baker D. De novo design of modular and tunable allosteric biosensors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020. [PMID: 32743576 DOI: 10.1101/2020.07.18.206946] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Naturally occurring allosteric protein switches have been repurposed for developing novel biosensors and reporters for cellular and clinical applications 1 , but the number of such switches is limited, and engineering them is often challenging as each is different. Here, we show that a very general class of allosteric protein-based biosensors can be created by inverting the flow of information through de novo designed protein switches in which binding of a peptide key triggers biological outputs of interest 2 . Using broadly applicable design principles, we allosterically couple binding of protein analytes of interest to the reconstitution of luciferase activity and a bioluminescent readout through the association of designed lock and key proteins. Because the sensor is based purely on thermodynamic coupling of analyte binding to switch activation, only one target binding domain is required, which simplifies sensor design and allows direct readout in solution. We demonstrate the modularity of this platform by creating biosensors that, with little optimization, sensitively detect the anti-apoptosis protein Bcl-2, the hIgG1 Fc domain, the Her2 receptor, and Botulinum neurotoxin B, as well as biosensors for cardiac Troponin I and an anti-Hepatitis B virus (HBV) antibody that achieve the sub-nanomolar sensitivity necessary to detect clinically relevant concentrations of these molecules. Given the current need for diagnostic tools for tracking COVID-19 3 , we use the approach to design sensors of antibodies against SARS-CoV-2 protein epitopes and of the receptor-binding domain (RBD) of the SARS-CoV-2 Spike protein. The latter, which incorporates a de novo designed RBD binder, has a limit of detection of 15pM with an up to seventeen fold increase in luminescence upon addition of RBD. The modularity and sensitivity of the platform should enable the rapid construction of sensors for a wide range of analytes and highlights the power of de novo protein design to create multi-state protein systems with new and useful functions.
Collapse
|